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Abstract—Conventionally, most network protocols assume that
the network entities who participate in the network activities
will always behave as instructed. However, in practice, most
network entities are selfish: they will try to maximize their own
benefits instead of altruistically contributing to the network by
following the prescribed protocols. Thus, new protocols should
be designed for the non-cooperative network that is composed
of selfish entities. In this paper, we specifically show how to
design fruthful multicast protocols for non-cooperative networks
such that these selfish entities will follow the protocols out of
their own interests. By assuming that every entity has a fixed
cost for a specific multicast, we give a general framework to
decide whether it is possible and how, if possible, to transform
an existing multicast protocol to a truthful multicast protocol
by designing a proper payment protocol. We then show how
the payments to those relay entities are shared fairly among all
receivers so that it encourages collaboration among receivers.
As running examples, we show how to design truthful multicast
protocols for several multicast structures that are currently used
in practice.

Index Terms—Control theory, combinatorics, economics, non-
cooperative, multicast, payment, sharing.

I. INTRODUCTION

INCE first introduced by Deering in [1] and the audiocast
Sexperiment by IETF, multicast has received more and
more attention over the past few years due to its resource
sharing capability. In multicast, there is a topology, either a
tree or a mesh, that connects the source to a set of receivers,
and the packet is only duplicated at the branching nodes.
Numerous multicast protocols have been proposed, and most
of them assumed that the network entities will relay the
multicast packets as prescribed by the multicast protocol
without any deviation. While this may be true for the case
of LAN multicast in which all network entities belong to the
same organization, it can not be taken for granted when the
multicast datagrams are routed through different IP networks
(called autonomous systems (ASs) in some places). Although
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multicast benefits the whole system by saving bandwidth
and resource, it is dubious that multicast will also bring
benefit to every individual AS who relays packets. Thus, it
is more reasonable to assume that these ASs, probably owned
by different organizations or users, are selfish: they aim to
maximize their own benefits instead of faithfully conforming
to the prescribed multicast protocols. A network composed of
selfish ASs is generally known as a non-cooperative network.
In this paper, we would like to use the terminology “agent”
instead of AS because it reflects the selfish nature of the AS.

Nisan and Ronen [2] studied the unicast routing problem
in non-cooperative networks and introduced the idea of algo-
rithmic mechanism design. They proposed to give the agents
some proper payments to ensure that every agent conforms to
the prescribed protocol regardless of other agents’ behavior,
which is known as truthful or strategyproof. They designed
the payment for unicast by using the VCG mechanism [3]-
[5], which is considered as one of the most positive results in
mechanism design. Unfortunately, the VCG mechanism has
its own drawback. For multicast, if we want to apply the
VCG mechanism, we have to find the minimum cost multicast
tree, which is known to be NP-Hard for both link weighted
networks [6], [7] and node weighted networks [8], [9]. If we
insist on applying the VCG mechanism to a multicast topology
that does not have the minimum cost, the VCG mechanism
is no longer truthful [10]. Thus, some payment schemes other
than the VCG mechanism should be designed for multicast.
Recently, several non-VCG truthful payment schemes were
proposed in [10] for several commonly used multicast trees.
In this paper, instead of focusing on a specific multicast
structure, we study whether it is possible to transform a
multicast protocol using any given multicast structure to a
truthful multicast protocol, and if possible, how to design such
truthful multicast protocol.

Designing a truthful payment scheme is not the whole
story for many practical applications. A natural question to be
answered is who will be charged for the payments to the relay
agents. A simple solution is that the organization to which
the receivers belong pays [10]. However, this solution is not
panacea. In many applications such as video streaming, each
individual receiver often has to pay for receiving the data. How
to charge the receivers for multicast transmission has been
studied extensively in literatures [11]-[16]. In most of their
models, they assumed that (1) every receiver has a valuation
for receiving the data and the receiver is selfish, (2) all relay
agents are cooperative and will reveal their true costs, and (3)
the multicast tree is fixed as the union of the shortest paths
from the source to receivers. In a sharp contrast, we take the
selfish behavior of the relay agents into account in this paper.
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Thus, we model the network differently by assuming that
(1) the relay agents are selfish and rational, (2) the receivers
always receive the data and pay what they “should” pay in a
fair way, and (3) the multicast topology could be any structure,
including trees and meshes. To the best of our knowledge, this
is the first paper to consider multicast pricing when the relay
agents are non-cooperative. We also show the hardness when
both the receivers and the relay agents are selfish and rational,
and each receiver has a privately known valuation.

The main contributions of this paper are two-fold. First, we
present a general framework to decide whether it is possible,
and how, if possible, to transform an existing multicast proto-
col to a truthful one. We then show how the payments to the
relay agents are shared fairly among the receivers. As running
examples, we show how to design truthful multicast protocols
for some commonly used Inter-AS multicast protocols.

The rest of the paper is organized as follows. We introduce
some preliminaries, related works, our communication model,
and the problems to be solved in Section II. In Section III,
we discuss the existence of the truthful payment and how to
compute it based on a given multicast structure. We show
how to design truthful multicast protocols for the Inter-AS
multicast protocol based on source-based tree in Section IV
and shared-based tree in Section V. An alternative model for
truthful multicast is discussed in Section VI. We conclude our
paper in Section VIIL.

II. TECHNICAL PRELIMINARIES
A. Algorithmic Mechanism Design

In a standard model of algorithmic mechanism design, there
are n agents {1,2,--- ,n}. Each agent 7 has some private
information ¢;, called its fype, e.g., its cost to forward a packet
in a network environment. All agents’ types define a profile
t = (t1,t2, - ,t,). Each agent i declares a valid type 7,
which may be different from its actual type ¢;, and all agents’
strategies define a declared type vector 7 = (719, - ,Tp).
A mechanism M = (O,P) is composed of two parts: an
allocation method O that maps a declared type vector 7
to an output o, and a payment scheme P that decides the
monetary payment p; = P;(r) for every agent i. Each
agent ¢ has a valuation function w;(¢;,0) that expresses its
preference over different outcomes. Agent ¢’s utility (also
called profit) is wu;(t;,0) = w;(t;,0) + p;. An agent i is said
to be rational if it always chooses its strategy 7; to maxi-
mize its utility u;. Let 7—; = (71, ,Tic1, Tit1, " 5 Tn)>
i.e., the strategies of all other agents except i and 7|'a =
(11,72, ,Ti—1,G,Ti+1," ** ,Tn). In this paper, we are only
interested in a mechanism M = (O,P) that satisfies the
following three conditions:

1) Incentive Compatibility (IC): For every agent ¢ and any

7, wi(ts, O(7|'t:)) + pi(7|'t:) > wi(ts, O(7)) + pi(7).

2) Individual Rationality (IR): It is also called Voluntary

Participation. Every participating agent 7 must have a
non-negative utility, i.e., w;(t;, O(7|'t;)) + pi (7]'t;) > 0.
3) Polynomial Time Computability (PC): O(-) and P(-)
are computable in polynomial time.
A mechanism is truthful if it satisfies both IR and IC. Thus,
for every agent ¢, revealing its true type ¢; maximizes its utility
regardless of what other agents do.
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VCG MECHANISM: A mechanism M = (O,P) belongs
to the Vickrey-Clarke-Groves (VCG) mechanism family [3]-
[5] if (1) there are fixed positive numbers 3;, ¢ < ¢ < n,
such that the output O(¢) maximizes the objective function
glo,t) = >, Bi - wi(t;,0), and (2) the payment to the agent
is an arbitrary function of ¢_;, e.g., h;(t_;) = —ﬁi > i B
w;(t;,O(t—;)). A VCG mechanism is truthful [5].

B. Network Model and Problem Statement

In this paper, we focus on the Inter-AS multicast instead of
the Intra-AS routing because Intra-ASs are usually cooperative
instead of non-cooperative. Here, we model the Inter-AS
network topology as a graph G = (V| E,¢), where V =
{v1,-+ ,v,} is the set of ASs, E = {ej,ea, -+ ,en} is the
set of links between ASs. Usually, in Inter-AS routing, each
AS actually is an independent economic decision maker who
could choose its strategy for financial advantage in routing
decisions. We assume that each AS wv; is an individual agent
and it has a fixed private cost ¢; to transmit a unit size of
data in multicast. Thus, every AS is called upon to declare its
cost to the protocol. When the nodes are the selfish agents,
we call this network a node weighted network. On the other
hand, sometimes we need to treat the selfish agents as links
in the network, e.g., the multicast datagram is sent from one
AS to another AS by using application layer tunneling through
other ASs. If links are agents, the network is modeled as a link
weighted network. Most of our general techniques in Section
IIT and Section IV are not specific to one model, and thus
can be applied to both models. Notice that all our results also
apply to other network models, such as peer-to-peer networks
(P2P) [25], [26].

Given a set of multicast group members, in this paper, the
receivers are the ASs with some attached group members
instead of the actual end hosts who are the multicast group
members. For the convenience of our analysis, we assume that
s is the source AS in one specific multicast and the size of
the data is normalized to 1. We also assume that agents in the
network will not collude to improve their profits together. In
order to prevent monopoly, we assume that the network is bi-
connected. Given a source node s = ¢y and a set of multicast
receivers R = {q1,q2, -+ ,¢-} C V, we need to

1) construct a topology (a tree, a mesh, a ring, etc.) that
spans the source and all receivers;

2) calculate a payment for each relay AS according to a
payment scheme that is truthful;

3) charge each receiver according to a payment sharing
scheme that is fair. We will formally define what is fair
in subsection III-C.

Here the multicast protocol for the network with n ASs
is a mechanism M = (O,P,§) for the n selfish agents.
The allocation method O is the method to construct the
multicast topology and the output o is the constructed topology
which includes all relay ASs who are selected to participate
the multicast sessions. The payment scheme P decides the
payment for each relay AS. The payment sharing scheme ¢ is
used for sharing the charges for each receiver.
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One thing we should highlight here is that, instead of rein-
venting the wheel by designing some new multicast structures,
we focus on how we can design a truthful payment scheme
for a certain existing multicast protocols to ensure that they
work correctly even in non-cooperative networks. Based on
the truthful payment scheme we designed, we further study
how we charge the receivers in a fair way.

Given a structure H C G, we use ¢(H) to denote the total
cost of all agents in H. If we change the cost of any AS ¢ to ¢,
we denote the new network as G’ = (V, E, c|c}), or simply
c|ic;. If we remove one AS v; from the network, we denote
it as ¢|’co. Hereafter, we use LCP(u, v, ) to denote the least
cost path from node u to node v in a network G = (V, E, ¢).
For simplicity of notations, we will use only the cost vector ¢
to denote the network G' = (V, E, ¢) if no confusion is caused.
We let c¢_; denote the costs of all ASs other than AS v;. We
summarize all notations and abbreviations used in this paper
in Table I which is given in Appendix.

C. Related Work

Routing has been part of algorithmic mechanism design
from the very beginning. Nisan and Ronen [17] provided a
polynomial-time truthful mechanism for unicast routing in a
centralized computational model. Each link e; of the network
is an agent and has a private cost ¢; of sending a message.
Their mechanism is essentially a VCG mechanism. The result
in [17] is extended in [18] to deal with unicast problem for all
pairs of agents. They assume that there is a traffic demand T ;
from an agent ¢ to an agent j. They also gave a distributed
method to compute the payment. Anderegg and Eidenbenz
[19] recently proposed a similar routing protocol based on the
VCG mechanism for wireless ad hoc networks. By assuming
that each node is a selfish agent, Wang and Li [20] proposed
an asymptotically optimum centralized method to compute the
payment for unicast and showed that no truthful mechanism
can prevent collusion among any pair of agents.

For multicast, Feigenbaum et al. [15] assumed that there is
a universal tree 7" spanning all receivers and for every subset
@ C R of receivers, the tree T'(Q) spanning () is merely the
subtree of T that spans (). They also assumed that the link
costs are publicly known and each receiver ¢; has a privately
known valuation w; on receiving the data. It will report a
number w;, which is the amount of money it is willing to pay
to receive the data, and w; may be different from w;. They
studied how to select a subset Q C R of receivers according to
some criteria and proposed to use Shapely value and marginal
cost to share the link cost of the multicast tree. Maximizing
profit in multicast was studied in [21], [22] ( [22] is based
on cancellable auction [23]). Sharing the cost of the multicast
structure among receivers to achieve some fairness was studied
in [14], [16], [24], [27]-[29]. Wang et al. [10] studied how to
design truthful multicast protocols for various multicast trees
in wireless networks when the nodes or links are selfish.

III. CHARACTERIZATION OF TRUTHFUL MULTICAST
ROUTING

Several multicast topologies have been proposed and used
in practice and more topologies are expected to appear in the
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Algorithm 1 Payment Scheme P
1: For any agent ¢ not selected to relay, its payment is 0.

2: For any agent ¢ selected to relay, its payment is
m((’),c_i).

near future. It will be difficult, if not impossible, to design
a truthful multicast mechanism for each of these topologies
individually. Thus, instead of studying some specific multicast
topologies, we focus on designing a general framework to
solve the problem whether there is, and how to design if it
exits, a truthful mechanism for a given multicast topology.
We also consider how to charge the receivers to cover the
payments to the selfish relay agents.

Intuitively, we may still want to use the VCG payment
schemes for these multicast topologies. Notice that an alloca-
tion method of a VCG mechanism is required to maximize
the total valuations of agents. This makes the mechanism
computationally intractable in many cases, e.g., multicast.
Notice that replacing the optimal solution with non-optimal
approximation usually leads to untruthful mechanisms [10].
Thus a mechanism other than VCG is needed when we cannot
find the optimal solution or the objective is not to maximize
the total valuation of the agents. This paper presents the
first general framework to design truthful mechanisms for
multicast in case we cannot find a structure with the minimum
total cost.

A. Existence of Truthful Payment Mechanism

Before we design some truthful payment scheme for a
given multicast topology, we should decide whether such
payment scheme exists or not. The following definition and
theorem will present a sufficient and necessary condition for
the existence of the truthful payment scheme.

Definition 1: A method O constructing a multicast topol-
ogy satisfies the monotone non-increasing property (MNP)
if for every agent ¢ and fixed c_;, the following condition is
satisfied: if agent 7 is selected as a relay agent with cost ¢;,,
then it is also selected with a cost ¢;;, < ¢;,.

Obviously, the above condition is equivalent to the follow-
ing condition: there exists a threshold value #;(O, c_;) such
that if 7 is selected as a relay agent, then its cost is at most
k: (O, c_;). For convenience, we use O;(c) = 1 (respectively,
0) to denote that agent ¢ is selected (respectively, not selected)
to the multicast topology when the cost vector is c.

Theorem 1: Given a method O constructing a multicast

topology, there exists a payment P such that M = (O, P)
is truthful if and only if O satisfies the MNP.
The detailed proof of this theorem is given in Appendix. In the
proof, we first prove that if there exists a truthful payment P
based on O then O satisfies the MNP. Then, by constructing
the following payment scheme P, we prove that if O satisfies
MNP, there exists a truthful mechanism M = (O, P) .

B. Rules to Find Truthful Payment Scheme

Given a multicast structure satisfying MNP, it seems quite
simple to find a truthful payment scheme by applying Algo-
rithm 1. However, sometimes the process to find the thresh-
old value in Algorithm 1 is far more complicated. Instead
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Algorithm 2 A round-based multicast method

Algorithm 3 Link weighted multicast structure [7]

1: Set r =1 and ¢() = ¢ and Q) = R initially.

2: repeat

3:  Let O" be a deterministic method that decides in round
r which agents will be selected.

4:  Update the network cost vector and receiver set, i.e., we
obtain a new network cost vector ¢("t1) and receiver
set Q1) according to an updating rule U":

U 0" x ", Q] — [+, Qb

5: until the desired property of the multicast topology is met
6: Return the union of the selected relay agents in all rounds.

of trying to propose a unified approach that can find the
threshold value for all multicast topologies satisfying MNP,
we present some useful techniques to find the threshold value
under certain circumstances. Our general approach works as
follows. First, given an allocation method O that constructs
a multicast structure, we decompose it into several simpler
allocation methods. We then find the threshold value for each
of the decomposed methods. Finally, we calculate the original
threshold value by combining the threshold values for those
decomposed methods. In the following, we present several
useful decomposition techniques.

1) Simple Combination: Given a multicast method O, let
k(0O, ¢) denote the n-tuple vector

(£1(0,c-1),62(0,c—2), - ,kn (O, c_p)).

Here, x;(O,c_;) is the threshold value for agent i when the
multicast topology is constructed by O and the costs ¢_; of
all other agents are fixed. We then present a simple but useful
technique to find the threshold value.

Theorem 2: Given g allocation methods O!,--- , (09 each
satisfying MNP, and the threshold value x(O?, ¢) for each 07,
the method O(c) = O(c)\V O%*(c)\/ -\ O9(c) satisfies
MNP. Moreover, the threshold value for O is

K(0, ) = gggg{fi(@iv c)}-

The proof of Theorem 2 is straightforward and thus is omit-
ted here. We will show how to use this simple combination
technique in Section IV. Notice each individual method O?
may not construct a multicast tree at all.

2) Round-based Method: Many multicast topologies are
constructed in a round-based manner: in each round some pre-
viously unselected agents are selected, and then the network
and the receiver set are updated if necessary. In Algorithm 2,
we give a general characterization of a round-based method
that constructs a multicast topology.

To illustrate the general round-based method, in Algorithm
3 we review a round-based multicast tree construction method
[7] that finds a tree whose cost is no more than 2 times that
of a minimum cost Steiner tree (MCST) in a link weighted
network. We denote the constructed multicast tree as LST,
which stands for Link-weighted Steiner Tree.

Here, no receiver remains in R corresponds to the desired
property of the general round-based method; LCP(s, g, d)
in round 7 corresponds to O7; setting costs of links on

1: repeat

2:  Let d be the vector of costs declared by all agents.

3:  Find one receiver in the receiver set R, say ¢;, that is
closest to the source s, i.e., LCP(s, ¢;, d) has the lowest
cost among the shortest paths from s to all receivers.
Connect ¢; to the source s using LCP(s, ¢;, d), i.e., all
agents on this path are selected.

4:  Set the cost of every link on this path to 0. Remove g;
from the receiver set R.

5: until no receiver remains in R

Algorithm 4 Computing payment for a selected agent k based
on round-based method O
1: Initially set the cost ¢ of k to oo and r = 1.
2: repeat
3:  Find the threshold value for agent k& based on O"
under cost vector c(_T,z and receiver set Q). Let ¢, =
ki (O", ¢ ) be the threshold value found. Here we set
£, = 0 if agent k cannot be selected in this round under
any cost.
4:  Update the cost vector and receiver set to obtain the
new cost vector ¢("t1) and QY. Set r = r + 1.
5: until the desired property of the multicast topology is met
6: Fix c_; and assume x is the payment for agent k. Let
fi(x) be the cost for agent k in round i if the original
cost is c[*z. Then x the largest value that satisfies the
following inequalities: f;(z) < ¢; for 1 <4 < r. In other
words, the payment to an agent k is the largest possible
value it could declare such that it is still selected in some
round.

LCP(s, ¢;,d) to 0 and removing ¢; from R is the updating rule
U". To study whether a general round-based method implies a
truthful payment scheme we propose the following definition.

Definition 2: An updating rule U" is said to be crossing-
independent if for any agent ¢ not selected in round 7r:

o <" and QU+ do not depend on "

o For a fixed c(_Tz) if dzm < cgr) then dgH_l) < CET-H).

Theorem 3: A round-based multicast method O satisfies
MNP if, for every round r, method O" satisfies MNP and
the updating rule U" is crossing-independent.

Proof: For an agent ¢, fix the cost c_; of all other agents.

We prove that if ¢ is selected when the cost vector is a =
{c_i, ¢}, then it is also selected when the cost vector is b =
{c_i,c}} such that ¢ < c¢;. Without loss of generality, we
assume that ¢ is selected in round r when the cost vector is a.
Then when the cost vector is b, if agent 7 is selected before
round 7, our claim holds. Otherwise, in round r, a(fi) = b(fz
and air) > bgr) since agent ¢ is not selected in the previous
rounds. Notice that agent ¢ is selected in round r when the
cost vector is ay). Thus, agent ¢ is also selected in round r
when the cost vector is bgr) since O" satisfies MNP. [ |

In Algorithm 4, we show how to find the threshold value
for any selected agent k when the truthful payment scheme
exists for a round-based multicast method.

We use the network in Figure 1 to illustrate how to find
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links

(a) The multicast tree (b)
LST({q1,92})

Payment for

Fig. 1. Payment calculation based on LST found by Algorithm 3.

the threshold value for link v3vs based on LST. In the first
round, v3vs cannot be selected, thus /1 = 0. In second round,
it is easy to observe that when vsv4’s cost is smaller than 0.9,
the path vsvavsq; is selected and when vsv,’s cost is greater
than 0.9, path sq; is selected. Thus, the threshold value for
vy in this round is 2 = 0.9. Notice that the updating rule of
Algorithm 3 does not change the cost of an unselected agent,
i.e., it is crossing-independent and f;(x) = x. Thus, the final
threshold value is simply max{¢i, ¢} = 0.9, which is the
payment to link v3vy. Similarly, we can find all selected links’
threshold values as shown by the numbers in the parenthesis
in Figure 1(b).

C. Fair Payment Sharing Scheme

For a given set of receivers, after we calculate the payment
pr(d) for every relay agent k based on declared costs d, we
are ready to study how to share the payments fairly among
receivers. Notice that the payment sharing is different from
the traditional cost sharing. How to share the multicast cost
among the receivers has been studied previously in [11], [12],
[15], [27], with the assumption that the costs of relay agents
are public and the multicast topology is a fixed tree. Most of
the literatures used the Equal Link Split Downstream (ELSD)
pricing scheme to charge receivers: the cost of a link is shared
equally among all its downstream receivers. As we will show
later, if we use the ELSD to share the total payment among
receivers, it usually is not fair.

Given a set of receivers R, let P(R,d) = >, pr(R,d)
denote the total payment to all relay agents. For a sharing
scheme &, let & (R, d) denote the sharing (or called charge)
of a receiver ¢;. Let {(R,d) = > & (R, d) be the total
payment collected from all receivers. We call a sharing scheme
& reasonable or fair if it satisfies the following criteria.

1) Budget Balance (BB): The total payment to all agents

should be shared by all receivers, i.e., P(R,d) = (R, d).

2) Nonnegative Sharing (NNS): Any receiver ¢;’s sharing
should be positive, i.e., & (R, d) > 0.

3) Cross-Monotone (CM): For any two receiver sets R C
R containing ¢;: &;(R1,d) < & (Ra,d). In other words,
for a given network, receiver 7’s sharing does not increase
when more receivers require service.

4) No-Free-Rider (NFR): The sharing &;(R, d) of a receiver
¢; € R is at least ﬁ of its unicast sharing &;(g;, d). Thus,
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(a) LST(q1)
Fig. 2. LST(q1) and LST(g2) and their corresponding payment.

(b) LST(q2)

the sharing of any receiver will not be too small.

By assuming a universal multicast tree and publicly known
link costs, Feigenbaum e al. [15] proved that ELSD cost
sharing scheme is fair. Unfortunately, the ELSD scheme is
not fair if it is used to share the payment.

Lemma 4: ELSD is not a fair sharing scheme for payment
P defined based on tree LST.

Proof: We prove it by presenting a counter example using
the network shown in Figure 1 (a). When consider only one
receiver in LST, we have P(q1,¢) = 2.6 and P(q2,¢) = 1.4+
1.5 = 2.9. See Figure 2 for illustration. For two receivers
q1, g2, if we use ELSD to share payment, the sharing by ¢; is
& ({q1,q2},¢) = L2 + 0.9+ 1.1 + 1.5 = 4.2 which is larger
than its sharing &;(¢1,¢) = 2.6 when ¢; is the only receiver.
Thus, ELSD violates the CM property. It implies that ELSD
is not a fair sharing scheme for multicast topology LST. M

Furthermore, using the same example, we prove that:

Lemma 5: No payment sharing scheme satisfies both CM
and BB for the truthful payment scheme based on LST.

Proof: For the sake of contradiction, we assume that
a sharing scheme &’ satisfies both CM and BB. From the
property of BB, we have &'4(q1,¢) = 2.6, &1(q2,¢) = 2.9
and &'y ({q1, 92}, ¢) + §5({q1, 2}, ¢) = 6.4. From CM, we
have 5/1({QD QQ}ﬂ C) < 5/1(QIa C) = 2.6 and £l2({(ha q2}7 C) <
&' 5(g2,¢) = 2.9. Combining these two inequalities, we obtain
64 = &1 ({q1, 02} ¢) + €1 aa},0) < 2.9 +2.6 = 5.5,
which is a contradiction. [ ]

Thus, given a certain multicast topology and its corre-
sponding truthful payment scheme, a fair payment sharing
scheme may not exist. It is attractive and important to find
the necessary and sufficient condition for the existence of a
fair sharing scheme for a given payment scheme.

IV. TRUTHFUL MULTICAST USING SOURCE-BASED TREE

In this section, we illustrate how to design a truthful mul-
ticast protocol with the support of Multiprotocol Extensions
for BGP-4 [30]. We treat every AS i in the network as a node
in the graph, and assume that it has a fix cost ¢; to relay
a unit size of datagram for a specific multicast regardless of
its downstream links. This could be because that the multicast
ASs adopt the Reverse Path Broadcasting (RPB) scheme or the
cost of sending extra copies to other interfaces is negligible.
Thus, the network is modeled as a node weighted graph. All
our results presented hereafter also apply to the case when the
network is modeled as a link weighted graph. We focus on the
source-based tree in this section and discuss the shared-based
tree in the next section.



WANG et al.: DESIGNING MULTICAST PROTOCOLS FOR NON-COOPERATIVE NETWORKS

A. Construct Multicast Tree

Before designing a truthful multicast protocol, we review
some technical details of MBGP including the multicast
tree construction method. Multiprotocol extension for BGP
(MBGP) [30] is an extension to the existing Border Gate
Way (BGP) protocol [31]. In BGP, every node v; stores, for
each other node v;, the least cost path (the sequence of ASs
traversed) from v; to v;. Let D be the diameter of the network,
i.e., the maximum number of ASs in an least cost path (LCP).
An AS stores O(n-D) AS numbers. In BGP, to perform Inter-
AS multicast routing, we use the BGP infrastructure that was
in place for unicast routing. A multicast routing protocol, such
as Protocol Independent Multicast (PIM) dense mode, uses the
multicast BGP database to perform Reverse Path Forwarding
(RPF) lookups for multicast-capable sources.

Thus, given a set of receivers R, the least cost path between
the source s and each receiver ¢; € R under the reported cost
profile d is already in receiver ¢;’s unicast database. The union
of all least cost paths between the source and the receivers is
called the least cost path tree, denoted by LCPT(R, d). Every
node that is the part of the multicast tree LCPT has a copy of
the tree topology and all datagrams are routed along the tree.

B. Payment Scheme

It was shown in [10] that the direct application of VCG
payment scheme on LCPT is not truthful. In other words, a
node may have incentives to lie about its cost when VCG
payment scheme is used. On the other hand, since LCPT
is formed by the union of the least cost paths, by applying
Theorem 2, we can show that LCPT satisfies MNP. Thus, there
exists a truthful payment scheme and the truthful payment can
be found according to Theorem 1. It works as follows.

For each receiver ¢; € R, we find the least cost path
LCP(s,q;,d) from the source s (say qo) to ¢;, and com-
pute an intermediate payment pz,’o(d) to every node v, on
LCP(qo, ¢, d) using the VCG payment scheme for unicast
p°(d) = di + c(LCP(qo, ;. d|*o0)) — c(LCP(qo, 4s. d)).

The final payment to a node v, € LCPT is

p(d) = g}g;{gpi’o(d) (1)

The payment to a node is zero if it is not on LCPT.

C. Distributed Payment Algorithm

Remember that MBGP is only an extension to the BGP
which is used for unicast. Usually the unicast is a dominant
activity in the Inter-AS routing instead of multicast. Thus, we
assume that each AS already implements a truthful payment
scheme based on VCG for unicast. In [18], Feigenbaum et al.
proposed a distributed algorithm to compute the payment p;”
for every pair of nodes v;, v; and every node vy, on the least
cost path LCP(v;,v;,d). Their approach is an extension to
the existing BGP routing and converges to a stable state after
D_j, rounds, where D_j, is the maximum possible diameter
of graph G after removing any node k from the network. In
their approach, at every node v;, they only store the length of
the path LCP(v;, v, d) for every node v;, which requires an
extra O(n) space. However, in our approach, we require that
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Algorithm 5 Distributed payment computing

1: for every receiver ¢; do

2:  Prepare a control datagram composed of the payment

pZ’O for every node vy, on path LCP(qq, ¢;,d).

3:  Sends datagram containing the payment information to

its parent in the tree LCPT.

4: Upon receiving a packet containing the payment from its
child which is originated from receiver ¢;, node vy extracts
the payment pZO and sends the datagram containing all
remaining payment information to its parent if it exists.

5: When a node vy receives pZO from every downstream
receiver ¢;, it computes the maximum of them as its final
payment.

every node v; stores all the payments pz}j for every possible
source node v; and every node vy, on path LCP(v;, v, d). Our
approach requires an extra space size of O(«-D) for every AS,
where « is the number of possible source node and D is the
diameter of the network. Clearly, it avoids the recalculation of
every p,”’ when some nodes’ costs are updated. The following
algorithm summarize the distributed payment computing for
multicast when s = gq is the source node.

Now we discuss the overhead of our distributed multicast
payment computation in terms of both communication mes-
sages and memory space used in the AS. It is not difficult
to observe that every node receives at most r packets of size
O(D) where r is the number of the receivers and D is the
diameter of the network. For every node v;, it only needs to
store for each multicast session S' the final payment pg, which
is negligible. However, sometime in order to achieve a high
efficiency, node vy may cache every intermediate payment
pZO. Even in this case, it only needs an extra O(r) space
which is much smaller than the space needed for one session
of multicast in a cooperative network. Overall, the overhead
needed to calculate the payment is small both in terms of space
and network message.

D. Payment Sharing Among Receivers

In literature, the Shapely value [32] is one of the most
commonly used sharing schemes to achieve BB and CM.
If the total payment P(R,d) satisfies non-decreasing and
submodular property, then the Shapely value minimizes the
worst-case network welfare loss among all sharing schemes
that achieve BB and CM. Here, a payment P is submodular
if VRl - Q and RQ - Q, P(Rl,d) + P(RQ,CZ) > P(Rl U
Ro,d) + P(R1 N Ra,d). The network welfare is defined as
the total valuation of all selected receivers minus the cost of
the network providing service. If we apply Shapely value to
multicast payment sharing, we obtain the following formula

= 2

TCR—qi

|T|!(|R||;{||!T| -1t (P(T'U{q},d)—P(T,d))

By assuming a fixed multicast tree and publicly known
link costs, Feigenbaum et al. [15] proved that ELSD sharing
scheme is the Shapely Value. Intuitively, one may want to use
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Fig. 3. ELSD sharing scheme is not fair for payment based on LCPT.

ELSD as the payment sharing scheme. Unfortunately, we will
show by example that ELSD is not fair when coupled with
LCPT. Consider a network shown by Figure 3(a). There are
two receivers ¢i,q2. Tree LCPT(g1,d) is shown in Figure
3(b). The total payment to nodes on LCPT(gi,d) is 3.
Consider LCPT({q1,q2},d) illustrated by Figure 3(c). The
payment to only relay node vs is 7. If we apply ELSD to share
this payment, the shared payment of receiver ¢; is % =35
when the receiver set is {¢1,¢2}. Notice that the payment
sharing by ¢; is only 3 when it is the only receiver. Thus,
ELSD violates the CM property here. Therefore some fair
sharing scheme other than ELSD should be designed. We can
use Shapely value due to the following lemma.

Lemma 6: The total payment P(R,d) for tree LCPT, is
nondecreasing and submodular with respect to receiver set R.

Please see Appendix for the proof of the lemma. Con-
sequently, we obtain a sharing scheme satisfying CM and
BB by applying Shapely value. However, for any receiver
¢ € R, there are 2/%=1 subsets in R — ¢;. Thus, simply
applying Shapely value directly is computational intractable
when the number of receivers is large. Therefore, we present
another interpretation of the sharing scheme that can be
computed efficiently. The basic idea is that a receiver should
only pay a proportion of the payment that is due to its
existence. Roughly speaking, our payment sharing scheme
works as follows. Notice that a final payment to a node
k is the maximum of payments pi by all receivers. Since
different receivers may have different values of payment to
agent k, the final payment P}, should be shared proportionally
to their values, not equally among them (as what we do
for cost sharing). Figure 4 illustrates the payment sharing
scheme that follows. For any node vy, let R(vy) be the set
of downstream receivers of v;. Without loss of generality,
we assume that R(vk) = {¢o,,q0zs " 1 qoin,, } Such that
0<pP <pP2 <---<p, "% e, p =p, "% We then
divide the payment py, into |R(vy)| portions: p7', py* — pi',

Oi—1 T R(vp,) | IR (vg)|—1

pri—p; " is then equally shared among the last | R(vg)|—i+1

receivers, which have the largest |R(vy)| — i + 1 payments to
V-

We first illustrate how to calculate the payment sharing by
receiver ¢; using Algorithm 6 for a network represented by
Figure 3. For node vy, the two intermediate payments are
py, = 3 and p%s = 7. First, we obtain a rank of these receivers
based on the intermediate payments of {q1, ¢2}. Then p}Js =3
is equally split between ¢; and ¢o and p2, — p;. = 4 is
charged to g2 alone. Thus, receiver ¢; is charged 3/2 = 1.5
and receiver ¢ is charged 1.5+4 = 5.5 in LCPT({¢1, g2}, d).
Here, ¢;’s sharing is smaller than the sharing 3 when ¢; is the

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 7, SEPTEMBER 2008

Fig. 4. Share the payment to service providers among receivers fairly.

Algorithm 6 Fair payment sharing scheme for LCPT.

1: for each node vy € LCPT(R,d) do

2. Let R(vx) be the set of downstream receivers of vy,
i.e., pp(d) = maxy, e r(vy) Pj(d) = maxg,er py(d).

3:  Sort the receivers in R(vy) according to pj(d) in an
ascending order. If two or more receivers have the same
value, the receiver with smaller ID ranks first. Let o =
{00,01,- -+ ,0|R(vy)|} be the ranking. Here, we add a
dummy payment p;°(d) = 0 to ranking o.

4:  For a receiver not in R(vy,), its sharing of the payment
pr(d) of node vy, is 0.

5. For a receiver ¢q,, € R(vg), its sharing of the payment
pr(d) to node vy, is:

k NP (d) o (d)
B =) R - T 1

@)
r=1
In other word, for two receivers gy, , ¢»,,, Who are con-
secutive in ranking o, the difference p; "' (d) — p7* (d)
is shared by all receivers who rank after ¢, ;.
6: The total charge for receiver ¢; in LCPT is

GR,d) = > fH(R,)

vx ELCPT(R,d)

3)

only receiver. This shows that the payment sharing scheme
described by Algorithm 6 is fair for this specific network. The
following theorem shows that our sharing scheme is indeed the
Shapely value.

Theorem 7: Our sharing scheme defined by Algorithm 6 is
the Shapely value.

Refer to Appendix for the proof of the theorem. Recall
that when applying Shapely value to a payment satisfying
submodular and non-increasing property, the resulting sharing
scheme satisfies BB, CM, NNS and NFR. Thus, we have the
following theorem directly.

Theorem 8: The sharing scheme in Algorithm 6 for LCPT
satisfies NNS, CM, NFR and BB.
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Algorithm 7 Distributed payment sharing scheme

Algorithm 8 Truthful payment scheme for SBT

1: Initially, the source node s sends all its children in LCPT
a r-dimensional vector ¢ = 0 for all receivers.

2: Every node v, in LCPT(R, d), upon receiving a sharing
vector ¢ from its parent, updates the charge for each of
its downstream receivers ¢; as 9i[i] = 9[i] + fi(R(vg)).
Here, f}(R(vy)) is calculated according to Algorithm 6.

3: if node v, has at least one downstream receiver then

4:  for every children node v;, it constructs a charge vector

9 = (Oi1],Iiz], - ,V[i|rv;)]) Here, the charge
Iig], 1 < t < |R(vy)|, is for receiver ¢;, who is a
downstream receiver of node v;. It then sends vector
¥, to node v;.

5. Every receiver ¢; will finally receive a charge 9[i] which
is equal to & (R, d) defined in Equation (3).

E. Distributed Computing of Payment-Sharing

In practice, we may need to implement a distributed
payment sharing scheme. In the following, we present a
distributed algorithm that implements our payment sharing
scheme. It requires at most O(r) space for each agent and
with O(r - h) total messages, where h is the height of LCPT.

In our distributed algorithm, for any node v, €
LCPT(R, d), we not only need its final payment py(d), but
also need the intermediate payment p) (d) for every down-
stream receiver g;. We assume that this is already available
through our distributed payment computing scheme (see Algo-
rithm 5). In our distributed charge scheme, at every node vy,
we use ¥g[i] to store the sum of the charge of vj’s upstream
nodes to the receiver g;. Our distributed payment sharing
scheme is implemented in a top-down fashion from the source
to all receivers. It is easy to show that Algorithm 7 indeed
computes the payment sharing of each receiver correctly.

V. TRUTHFUL MULTICAST USING SHARED-BASED TREE

In section IV, we discussed how to design a truthful
multicast protocol using MBGP based on a source-based tree
LCPT. However, in practice, Inter-AS multicast usually uses a
shared-based tree (SBT) instead due to the following reasons:

1) Multicast routing protocols (such as MOSPF, DVMRP
and PIM-DM) using a source-based tree are suitable for
LAN networks while multicast routing protocols (such as
PIM-SM and CBT) using a shared-based tree are more
suitable for networks composed of different ASs;

2) The shared-based tree is more scalable than the source-
based tree for applications in which every group member
could act as a source.

Furthermore, we can show that the size of extra space needed
to support the multicast payment calculation could be reduced
significantly. Here, we use the PIM-SM as the routing protocol
and the AS should also support MBGP in order to conduct
multicast.

We first review the multicast tree construction method by
the PIM-SM multicast protocol. For a specific multicast group,
the PIM-SM protocol specifies a Rendezvous Point (RP) and
the RP maintains a RP-tree, which is usually a least cost
path tree that spans all the group members. When any group

1: Assume that s = qo is the RP for a multicast group; and
q; 1s the source node for a specific multicast session.

2: Let d be the cost vector declared by all relay nodes.

3: Set the receiver set @ as R\g;.

4: Compute the payment p,;Q (d) for every node vy, on the tree
LCPT(@Q, d) rooted at RP s and spanning all receivers Q.
Set pj?(d) = 0 for other nodes .

5: Calculate the payment pzo(d) for every node vy, on path
LCP(¢;, qo,d). Set pz’o(d) = 0 otherwise.

6: for each node v; do

pr(d) = p(d) + p}°(d).

S

Algorithm 9 Fair payment sharing scheme for SBT

1: Set the receiver set Q = R\q;.

2: Share the payment incurred by unicast between ¢; and
RP equally among all receivers (). The payment shared
by receiver gy, is denoted as £i™(Q, d).

3: Share the payment of multicast with source s = ¢p and
receiver set () among all receivers according to Algorithm
6. The payment shared by receiver ¢ is denoted as
§1(Q, d).

4: The final payment shared by the receive gy, is & (Q,d) =

wi(Q,d) + €rY(Q, d) when g; is the source.

member wants to send data to the group, it first encapsulates
each data packet in a Register message and sends it by
unicast to the RP for that group. The RP decapsulates the
register messages and forwards the enclosed data packet to
downstream group members on the shared RP-tree. Upon
receiving data packet from its upstream AS, each intermediate
AS further forwards data packets to its downstream ASs. Thus,
we can treat the multicast based on a shared-based tree as
two separate activities: a unicast from the source to RP, and
a multicast with RP as the virtual source node.

We then discuss how to compute the payment to each
relay agent and share these payments among receivers. Let
pi(d) denote the payment to a relay node v, € LCPT(R,d)
according to our truthful payment scheme (see formula (1)).
Algorithm 8 presents our truthful payment scheme for multi-
cast based on a shared-based tree.

Theorem 9: The payment scheme defined by Algorithm 8
is truthful.

The proof of Theorem 9 is straightforward and thus is
omitted. A distributed payment computing protocol similar to
Algorithm 5 can be easily designed and thus is omitted here.
We then discuss how to share the payments among receivers
in Algorithm 9.

Theorem 10: The payment sharing scheme defined in Al-
gorithm 9 is fair, i.e., it satisfies NNS, CM, NFR and BB.

Both the proof of the correctness of the above method
and distributing payment-sharing computing are similar to the
source-based tree case, thus are omitted here. Here, we do
not consider the source g; as a receiver, which implies that
q; does not share any payment. If ¢; should also be treated
as a receiver and share the payment in certain circumstances,
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Algorithm 10 Payment sharing for selfish receivers R

1: Q — R.

2: repeat

3:  Prune out the branches of the original LCPT that do
not have receivers in Q.

4:  For each receiver ¢; € ), compute the payment sharing
& (Q, d) based on the declared costs of all relay agents.

5. Vg € @, the receiver ¢; is removed from () if
§i(Q,d) > G, ie, Q «— Q —{q:} if §(Q,d) > G.

6: until no receiver is removed in this round

7: All remaining receivers () C R will receive the data and

pay a sharing &,(Q, d) < G

we just need to modify the receiver set () = R instead of
@ = R\¢; in Line 1 of Algorithm 9.

VI. SHARING PAYMENT AMONG SELFISH RECEIVERS

So far, each receiver ¢; is assumed to pay its fair sharing
& (R,d) computed by our payment sharing Algorithm 6.
In practice, each individual receiver may have a maximum
valuation indicating how much it is willing to pay to receive
the information from the source. A receiver will choose to
receive the information if and only if the charge is at most
its valuation. Furthermore, a receiver could also be selfish and
rational: it will always maximize its profit by manipulating
its reported valuation, should it be possible. This makes the
multicast design even harder when both the relay agents and
the receivers could be selfish. It is well-known that a cross-
monotone cost sharing scheme implies a truthful mechanism
for selfish receivers [27]. Thus, when each receiver ¢; is
willing to pay at most (; for the data, we may design a
payment-sharing mechanism as follows.

However, we found out that a selected relay agent may have
incentives to lie about its relay cost under payment scheme
defined in Algorithm 6. Next, we show that a relay agent
could change the payment sharing of its downstream receivers
by reporting a higher or lower cost.

Figure 5 illustrates such an example of reporting a lower
cost. Here the private valuations of receivers ¢; and ¢y are 12
and 17 respectively. The true costs of links are ¢(svs) = b,
c(svg) = 3, c(vsq1) = b, c(vaqz) = 5, and ¢(q1q2) = 3. For
the sake of simplicity, we assume that all links (except link
v4q2) report their costs truthfully in the remaining discussion.
Notice when link vyqo truthfully reports its cost, the multicast
tree consists of links svs, vs3qi, svs and v4qe, as shown by
Figure 5 (b). In addition, the payments to selected links are
Psvy = c(sv3) +c(v3q1) + c(q1q2) — c(vag2) = 8, Puyg, = 10,
Dsvs = 0, Puyq, = 6, and the payments to all other links are
0. Consider two receivers ¢q; and go: the payment sharing by
receiver qp iS Psvs + Pusq, = 12, which is not larger than its
valuation 12; the payment sharing by g2 iS psy, + Posge =
18, which is larger than its valuation 17. Consequently, the
receiver qo will not join the multicast (illustrated by Figure 5
(c)). In other words, link v4q> gets payment 0.

Let’s see what happens if link v4qo lies its cost down to 3 <
¢(vaqe) (illustrated by Figure 5 (d)). Figure 5 (e) shows the
multicast tree constructed in this scenario. Notice that when
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link v4qo reported its cost as 3, the payments to selected links
are Py, = 10, py,q, = 10, Dy, ¢, = 4, and the payments to all
other links are 0. It is easy to show that the payment sharings
by receivers ¢; and ¢ are 7 and 16 respectively. Then both
q1 and g2 will join the multicast now. Thus, the link vyqs gets
a payment 10 when it lies its cost down to 3. This example
shows that a relay agent could lie down its cost to improve
its utility. We can devise an example in which a relay agent
can lie up its cost to improve its utility.

VII. CONCLUSION

In this paper we discuss how to design truthful payment
schemes and payment sharing mechanisms that stimulate
cooperation for multicast in a non-cooperative network. It
is well-known that the traditional protocols designed for
conforming agents cannot prevent the selfish agents from
manipulating their reported costs to increase their benefits.
Instead of redesigning the wheel, it is preferred to enhance an
existing multicast protocol to deal with selfish agents. In this
paper, we specifically gave a general rule to decide whether
it is possible and how, if possible, to transform an existing
multicast protocol to a truthful multicast protocol. We then
showed how the payments to all the relay agents could be
shared fairly among all receivers so that it encourages col-
laboration among receivers. As running examples, we showed
how to design a truthful multicast protocol when the least
cost path tree or the shared-based tree is used for multicast.
We also discussed in detail how to implement this scheme
on each selfish node in a distributed manner. As all truthful
mechanisms, the proposed scheme pays each relay agent more
than its declared cost to prevent it from lying. This paper
is the first step to exploring the general network protocol
design when relay agents are non-cooperative. There are many
interesting and important issues that have not been touched
(such as how to prevent collusion among agents, how to model
multicast game as repeated games, and how to use Nash
equilibrium to design multicast protocol instead of truthful
algorithmic mechanism) and thus are left for further study. In
addition, how to efficiently implement the proposed multicast
mechanisms in real ASs need to be further investigated.

APPENDIX

Theorem 1 Given a method O constructing a multicast
topology, there exists a payment P such that M = (O, P)
is truthful if and only if O satisfies the MNP.

Proof: We first prove that if there exists a truthful
payment P based on O then O satisfies the MNP. For the
sake of contradiction, we assume that there is a truthful
payment scheme P and O that does not satisfy MNP. From the
definition of MNP, there exists an agent ¢ and two cost vectors
c|ic;, and cl'c;, with ¢;; < ¢;, such that O;(c|’c;,) = 1 and
Oi(clici,) = 0. Let P;(clic;,) = p? and ’Pi(c|ici2) =pl.

Consider a network with a cost vector ¢|’c;,, the utility for
the agent i when it reveals its true cost is u;(c;, ) = p?. When
agent i lies its cost to ¢;,, its utility becomes p; — ¢;,. Since
payment scheme P is truthful, we have p? > p} — Ciy-

Similarly we consider another network with a cost vector
c|ici,. Agent i’s utility is p} — c;, when it reveals its true
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cost. Similarly, if it lies its cost to ¢;,, its utility is pg. Since
payment scheme P is truthful, p9 < pl} —¢;,.

Thus, we have p} —¢;, > p? > p} —¢;,, which implies that
¢i, > ci,. It is a contradiction to ¢;, < c¢;,.

We then prove that if O satisfies MNP, there exists a truthful
mechanism M = (O, P). We prove it by constructing the
payment scheme P shown in Algorithm 1 .

From the definition of MNP, the payment scheme P satisfies
IR. Thus we only need to prove that the payment scheme P
satisfies IC. We prove it by cases.

Case 1: Agent ¢ lies its cost upward to ¢; or downward
to ¢;, but it does not change the output whether agent ¢ is
selected or not. Notice that, for a fixed c_;, when the output
of agent ¢ does not change, its payment is the same. Thus,
agent ¢’s utility remains the same, implying that agent ¢ does
not have incentive to lie in this case.

Case 2: Agent i is selected when it reveals its actual cost
¢;, and it lies its cost upward to ¢; such that it is not selected.
From the property of MNP, we know ¢; < r;(O,c_;). This
ensures that agent 7 gets non-negative utility when it reveals its
actual cost ¢;. When 1 lies its cost to ¢;, it gets zero payment
and zero utility. Therefore, agent ¢ won’t lie in this case.

Case 3: Agent ¢ is not selected when it reveals its actual
cost ¢;, and it lies its cost downward to ¢; such that it is
selected. Similarly, we have ¢; > k;(O, c_;), which implies
that agent ¢ gets a non-positive utility. Comparing with the
zero utility when agent ¢ reveals its true cost, agent ¢ also has
no incentive to lie in this case. [ ]

Actually, if we require that relay agents who are not selected
should receive zero payment, our payment scheme illustrated
by Algorithm 1 is the only truthful payment scheme.
Lemma 6 The total payment P(R,d) to tree LCPT is non-
decreasing and submodular with respect to receiver set R.

Proof: By the definition of LCPT, obviously if R C R’ C
@, then LCPT(d,R) C LCPT(d, R’). Remember the final
payment to a relay agent vy, based on receiver set R is

(R.d) = i (d
pr(R,d) glggpk()

Observe that pi(d) is not affected by the receiver set R.
Thus, for any relay node v, if R € R C @ then
pr(R,d) < pp(R',d). Thus, the total payment to agents on
tree LCPT(R, d) is nondecreasing.

We then prove that the total payment P(R,d) is a sub-
modular function of set R, i.e., VR; C @ and Ry C (),
P(Rl, d)+P(R2, d) > P(Rl URs, d) —I—P(Rl N Ry, d) Since
P(R,d)=3_, crpr(R,d), it is sufficient to prove that, V£,

pr(R1,d) + pr(R2,d) > pr(R1 U Ra,d) + pp(Ri N Ra, d).

(c) pruned LCPT

A relay agent could lie down its cost to improve its utility using Algorithm 6.

q, 2 17 9,
(d) link vyqo lies

q, 2 179,
(e) pruned LCPT after lie

We prove this by studying two cases whether the agent vy is
on LCPT(R; N Ry, d) or not.

Case 1: Agent vy, is not on LCPT(R; N Ry, d). Without
loss of generality, assume that vg is on LCPT(R; \ Ra,d).
Then pi(R2,d) = pp(Ri N Ra,d) = pe(R2 \ Ri,d) = 0.
Consequently, py(R1 U R2,d) = maxger,ur, Pip(d) =
maXg, c R, p;c(d) + MaXy, eRy\Ry Pl (d) = maXg, c R, p;c(d)
Therefore, in this case we have

pr(Ri,d) + pr(R2,d) = pp(Ri N Ra,d) + pir(R1 U xR, d).

Case 2: Agent vy, is on LCPT(Ry N Rs,d). Without loss
of generality, assume py(R1,d) < prp(Rz,d). Thus,

B §
pr(RiURy,d) = LJmax pi(d)
_ i (d), k(d
max{mnle%)ipk( ) qienll%?}\(Rz pi(d)}

< i d nax i, d
ma,X{quna,Xz pk( ), e pk( )}
= X { d) = pr(Ro. d
ql;na 2pk( ) pk( 2, )

On the other hand, we have py(Rs2,d) < px(R1 U Ra,d).
Thus, pk(RQ, d) = pk(Rl U Ra, d) The fact R1 N Ry C R,
implies pr(R1 N Ra,d) < pr(Ra,d). Thus, pip(R1,d) +
pk(RQ,d) Zpk(Rl ﬂRQ,d)+pk(R1 URQ,d). [ |
Theorem 7: Our payment sharing scheme defined in Algo-

rithm 6 is the Shapely value.
Proof: Remember Shapely value for multicast is

FR) =Y |T|/(|R| — |T| —1)!

|R]!
TCR\a;

[P(T'Uqi,d)—P(T,d)] (4)

In other words, the Shapely value of the receiver ¢; is fi(R)
given a set of receivers K. Notice that an agent vy will
contribute to P(T' U ¢;,d) — P(T,d) if and only if

1) Agent vy, is an upstream agent of receiver g;.

2) pi(d) < pj(d), where p} (d) = maxg, er pj,(d).
For fixed T', agent vj, satisfying above two criteria will add
non-negative value pi (d) — pf(d) to P(T Ug;,d) — P(T,d).
Let T_, be a receiver set with the highest rank in o that is
exactly . Similarly, we use T, to denote a receiver set with
the highest rank in o that is less than . Let g}, (R) be payment
to agent vy that is shared by receiver ¢;. Assume that ¢; is
ranked a in the ranking o when sorting the payment to agent
vk in a increasing order. Then

T<ol(|R| — T<o — 1)
Z Tl ||R|' : -pr(d)
T<aCR\q; ’

D>

z=0T=CR—q;

9i(R)

T—o|/(|R| — |T=o| — 1)! .
LI EL
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TABLE 1

NOTATIONS AND ABBREVIATIONS USED IN THIS PAPER.

V,E, ¢, ¢

G=(V.E )

R =
{a,a2, a4}y
$=4do

G =
(V. E,c|'c})

or c|ich)

LCP(u,v,c)

C_i

The set of ASs, the set of links be-
tween ASs, the cost vector of ASs,
and the cost of AS v;

The network (a node-weighted graph)
The set of multicast receivers and the
source

A new network if we change the cost
of AS v; to ¢}

The the least cost path from node u
to node v in a network G
The costs of all ASs other than AS v;

O; P’§

ki(O, c_;)

O;(c) =1 (or 0)

d, d;

pi(d) or pi(R,d)
P(R,d) =
fi (Ra d)

g(Ra d) =
2 qerbi(R,d)

The method of constructing a multi-
cast topology, the payment scheme,
the sharing scheme

The threshold value such that if v; is
selected as a relay agent, then its cost
is at most k;(O, c_;)

Agent v; is selected (or not selected)
to the multicast topology when the
cost vector is ¢

The vector of declared cost of ASs,
the declared cost of AS v;

The payment of agent v; based on
declared cost d

The total payment to all relay agents

the sharing (or called charge) of a
receiver g;

The total payment collected from all
receivers

), QW, "
d",ur, o

The cost vector, receiver set, cost of
v;, declared cost of v;, updating rule,
and selection method in round r

The threshold value found in round r

The cost for agent v in round r if
the original cost is c|[*x

py’ (d) or py’

The payment to node vy for unicast
from node v; to node v;

The payment to node vy for traffic
from the source gy to receiver ¢;
The sharing of the payment py(d) to
node vy, for a receiver ¢;

p°(d) or p°,
p;.(d) or pj,
FE(R, d) or
FH(R)

LCPT, LST, SBT
MNP

ELSD

BB, NNS, CM,
NFR

Least cost path tree, link-weighted
Steiner tree, share-based tree
Monotone Non-increasing Property
Equal Link Split Downstream
Budget Balance, Nonnegative Shar-
ing, Cross-Monotone, No-Free-Rider

Let ~ be the number of receivers who are not the down-

stream receivers of vy. Simplifying the first part of the

equation, we get

Tea(|R| = Tea — 1)1,

T<aCR—gq;
yta—1
o zl(|R|—xz—1)! (a+~v—1
_ pild)  _ pi(d)
IRl —a—~v+1 |R(vk)|—a+1

Simplifying the second part of the equation, we get

a—1 Too|\(|R| — |T=z] — 1) .
2T§_.<| 1 ||R||! =Dt e (d))
S KGR —y -2 [(r4y—1
§<Pk’(d" > e 00— >.< , ))
= pr*(d)

2 TR 7 +D) (A =7

a—1 v 1 1
2P (d)- <(|R(vk>| ~ " (Rn) -zt 1))

PN e p(d) —pp T (d)
(R —a+1) = (Rw)l-z+1)

Combining the above two equations, then g (R) equals to

pi(d) 0 P (d)
|R(vk)|—a+1 (IR(vr)] —a+1)
a—1 : a O O

pp(d) —pp" (d)] pp(d) —p" ' (d)

(|R(vk)| —z+1) < (IR(vx)| =z +1)
It shows that the sharing f;(R) computed in Algorithm 6
equals the sharing defined by the Shapely value. [ |
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