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Abstract—Several localized routing protocols guarantee the delivery of the packets when the underlying network topology is a

planar graph. Typically, relative neighborhood graph (RNG) or Gabriel graph (GG) is used as such planar structure. However, it is

well-known that the spanning ratios of these two graphs are not bounded by any constant (even for uniform randomly distributed

points). Bose et al. [11] recently developed a localized routing protocol that guarantees that the distance traveled by the packets is

within a constant factor of the minimum if Delaunay triangulation of all wireless nodes is used, in addition, to guarantee the delivery

of the packets. However, it is expensive to construct the Delaunay triangulation in a distributed manner. Given a set of wireless

nodes, we model the network as a unit-disk graph (UDG), in which a link uv exists only if the distance kuvk is at most the maximum

transmission range. In this paper, we present a novel localized networking protocol that constructs a planar 2.5-spanner of UDG,

called the localized Delaunay triangulation (LDEL), as network topology. It contains all edges that are both in the unit-disk graph and

the Delaunay triangulation of all nodes. The total communication cost of our networking protocol is Oðn lognÞ bits, which is within a

constant factor of the optimum to construct any structure in a distributed manner. Our experiments show that the delivery rates of

some of the existing localized routing protocols are increased when localized Delaunay triangulation is used instead of several

previously proposed topologies. Our simulations also show that the traveled distance of the packets is significantly less when the

FACE routing algorithm is applied on LDEL, rather than applied on GG.

Index Terms—Delaunay triangulation, localized method, planar, routing, spanner, topology control, wireless networks.
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1 INTRODUCTION

WE consider a wireless ad hoc network (or sensor
network) with all nodes distributed in a two-dimen-

sional plane. Assume that all wireless nodes have dis-
tinctive identities and each static wireless node knows its
position information,1 either through a low-power Global
Position System (GPS) receiver or through some other way.
For simplicity, we also assume that all wireless nodes have
the same maximum transmission range and we normalize it
to one unit. By one-hop broadcasting, each node u can
gather the location information of all nodes within the
transmission range of u. Consequently, all wireless nodes V
together, define a unit-disk graph UDGðV Þ, which has an
edge uv if and only if the Euclidean distance kuvk between u
and v is less than one unit. Throughout this paper, a
broadcast by a node u means u sends the message to all
nodes within its transmission range. In wireless ad hoc
networks, the radio signal sent out by a node u can be
received by all nodes within the transmission range of u.
The main communication cost in wireless networks is to
send out the signal while the receiving cost of a message is

neglected here. Consequently, throughout this paper, we
are interested in designing a protocol with a small total
number of messages sent out by all wireless nodes.

One of the key challenges in the design of ad hoc
networks is the development of dynamic routing protocols
that can efficiently find routes between two communication
nodes. In recent years, a variety of routing protocols [1], [2],
[3], [4], [5], [6] targeted specifically for ad hoc environment
have been developed. See [7], [8] for a review of most
routing protocols.

Several researchers proposed another set of routing
protocols, namely, the localized routing, which selects the
next node to forward the packets based on the information in
the packet header and the position of its local neighbors. Bose
andMorin [9] showed that several localized routingprotocols
guarantee to deliver the packets if the underlying network
topology is the Delaunay triangulation of all wireless nodes.
They also gave a localized routing protocol based on the
Delaunay triangulation such that the total distance traveled
by the packet is no more than a small constant factor of the
distance between the source and the destination. However, it
is expensive to construct the Delaunay triangulation in a
distributed manner, and routing based on it might not be
possible since the Delaunay triangulation can contain links
longer than one unit.

Several researchers also proposed to use some planar

network topologies that can be constructed efficiently in a

distributed manner. Lin et al. [10] proposed the first

localized algorithm that guarantees delivery by memorizing

past traffic at nodes. Bose et al. [11] proposed to use the

Gabriel graph as the underlying structure for the FACE

routing method. Subsequently, Karp et al. [12] discussed, in
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1. More specifically, it is enough for our protocol when each node knows
the relative position of its one-hop neighbors. The relative position of
neighbors can be estimated by the direction of arrival and strength of signal.
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detail, the medium access layer and conducted experiments

with moving nodes for the Face routing method. Barriére et

al. [13] extended the scheme on graphs which are fuzzy unit

graphs; that is, two nodes are connected if their distance is

at most r, not connected if the distance is at least R, and

may be connected otherwise. They showed that their

algorithm works correctly if R �
ffiffiffi
2

p
r. Routing, according

to the right-hand rule, which guarantees delivery in planar

graphs [9], is also used when simple greedy-based routing

heuristics fail.

However, it is well-known [14], [15] that the spanning

ratios of both RNG andGG are not bounded by any constant.

Here, given a graph H, a spanning subgraph G of H is a

t-spanner if the length of the shortest path connecting any two

points in G is no more than t times the length of the shortest

path connecting the two points inH. Moreover, it was shown

by Bose et al. [14] that the spanning ratio of the Gabriel graph

on a uniformly random n points set in a square is almost

surely at least�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn= log logn

p
Þ. Thus, nomatter howgood

the routing method is, the spanning ratio achieved by

applying the method on the Gabriel graph or on the relative

neighborhood graph is at least �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn= log logn

p
Þ, almost

surely. Consequently, to make a localized routing protocol

efficient, we need to construct a planar spanner locally. Here, a

structureG canbe constructed locally if everywireless nodeu

can decide the edges of G incident on u, by using only the

informationof nodeswithin a constant hops. In this paper,we

design a localized algorithm that constructs a planar

t-spanner for the unit-disk graph, such that some of the

localized routing protocols can be applied on it. We obtain a

value of approximately 2:5 for the constant t. Notice that the

spanning ratio achieved by a specific routing method could

be much larger than the spanning ratio of the underlying

structure. Nonetheless, a structure with a small spanning

ratio is necessary for some routing method to possibly

perform well.
Our structure is based on the Delaunay triangulation.

Given a set of points V , the unit Delaunay triangulation,
denoted by UDelðV Þ, is the graph obtained by removing all
edges of the Delaunay triangulation DelðV Þ that are longer
than one unit. It was proven in [16], [17] that UDelðV Þ is a
t-spanner of UDGðV Þ. We then give a localized algorithm
that constructs a graph, called localized Delaunay graph
LDelð1ÞðV Þ. We prove that LDelð1ÞðV Þ is a t-spanner by
showing that it is a supergraph of UDelðV Þ. Additionally,
we prove that LDelð1ÞðV Þ has thickness two, i.e., it can be
decomposed to two planar graphs. We then show how to
make the graph LDelð1ÞðV Þ planar efficiently without losing
the spanner property. The total communication cost of our
approach is Oðn lognÞ bits, which is optimal within a
constant factor. Notice that every node has to send at least
one message to its neighbors to notify its existence in any
protocol, which implies that the communication cost is at
least n logn bits for any protocol. We assume a node ID can
be represented by logn bits.

The precise worst-case upper bound on the communica-
tion costs to construct our planar spanner is ð37q þ 13pþ
100Þn bits, where q is the number of bits required to
represent the unique node IDs, and p is the number of bits

required to represent the geometric position of a node. Our
method operates in an asynchronous environment, and we
do not count the time it takes to build the structure. We do
not have nontrivial worst-case upper bounds on maintain-
ing the structure due to changes in the network configura-
tion, but believe the average case (assuming changes are
random) is acceptable due to the fact that, because the
structure is planar and planar graphs have at most 3n� 6
edges, the average degree of a node in the structure is at
most 6. Our belief is also based on the fact that inserting
nodes in a Delaunay triangulation in a random order results
in a Oðn lognÞ expected-time centralized algorithm [23].
When a node moves, the expected number of edges that are
affected is at most 6. Thus, the average cost of updating the
structure is small.

The Gabriel graph can be constructed with ðq þ pþ 1Þn
bits and is very easy to maintain when the network changes.
Thus, there is a trade off between the better worst-case
spanning ratiowhenapplying the greedy routing schemes on
our structure and the higher cost of constructing and
maintaining it, compared to the Gabriel graph.

Previously, there were some approaches proposed to
approximate the Delaunay triangulation locally. Hu [18]
used the Delaunay triangulation to configure the wireless
network topology such that a planar graph with a bounded
node degree is computed. A major step in his method is that
each node u computes all Delaunay edges whose length is
no more than the transmission range. It used the Voronoi
diagram of node u to compute all such Delaunay edges.
However, this approach will not always work. A simple
observation is that, in order to determine whether an edge
uv belongs to the Delaunay triangulation, we have to check
whether certain circles passing through u and v are empty
(not containing wireless nodes in their interior). Obviously,
in the worst case, the circumradius of such a circle could be
infinity even when the edge length uv is bounded, implying
that we may have to check all nodes. Due to space limit, we
omit the detail of why the method in [18] will not work.
Moreover, it is unknown whether Hu’s structure has a
constant spanning ratio.

A related result was published by Gao et al. [17]. The
conference version of this paper, [16], was obtained
independently and was submitted before [17] was pub-
lished. Gao et al. [17] proposed another structure, called
restricted Delaunay graph RDG and showed that it has good
spanning ratio properties and described how to maintain it
locally. They called any planar graph containing UDelðV Þ a
restricted Delaunay graph. They described a distributed
algorithm to maintain a RDG such that, at the end of the
algorithm, each node u maintains a set of edges EðuÞ
incident to u. Those edges EðuÞ satisfy that 1) each edge in
EðuÞ has length at most one unit; 2) the edges are consistent,
i.e., an edge uv 2 EðuÞ if and only if uv 2 EðvÞ; 3) the graph
obtained is planar; and 4) UDelðV Þ is in the union of all
edges EðuÞ.

Their algorithm works as follows: First, each node u
acquires the position of its 1-hop neighbors N1ðuÞ and
computes the Delaunay triangulation DelðN1ðuÞÞ on N1ðuÞ,
including u itself. In the second step, each node u sends
DelðN1ðuÞÞ to all of its neighbors. Let EðuÞ = fuv j uv 2
DelðN1ðuÞÞg. For each edgeuv 2 EðuÞ and for eachw 2 N1ðuÞ,
if u and v are in N1ðwÞ and uv 62 DelðN1ðwÞÞ, then node u
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deletes edge uv fromEðuÞ. They proved that, when the above
steps are finished, the resulting edges EðuÞ satisfy the four
properties listed above. The communication cost could be as
large as�ðn2Þ, and the computation cost could be as large as
�ðn3Þ, which are much higher than ours.

Recently, Li et al. [19] also proposed another structure
partial Delaunay triangulation (PDT), which is a subset of
UDelðV Þ and a superset of Gabriel graph, for scatternet
formation in Bluetooth network. Unfortunately, PDT does
not have constant bounded spanning ratio.

Bose et al. [11] and Karp et al. [12] proposed similar
algorithms that route the packets using the Gabriel graph to
guarantee the delivery. Applying the routing methods
proposed in [11], [12] on the planarized localized Delaunay
graph LDelð1ÞðV Þ, a better performance is expected because
the localized Delaunay triangulation is denser compared to
the Gabriel graph, but still with OðnÞ edges. Our simula-
tions show that the delivery rates of several localized
routing protocols are increased when the localized Delau-
nay triangulation is used. In our experiments, several
simple local routing heuristics, applied on the localized
Delaunay triangulation, have always successfully delivered
the packets, while other heuristics were successful in more
than 90 percent of the random instances. The greedy-based
localized routing schemes may still fail to deliver the packet
on localized Delaunay triangulation. Because the con-
structed topology is planar, we can use the right-hand rule
or Face routing to guarantee the delivery of the packets
from source node to the destination when simple heuristics
fail. The experiments also show that several localized
routing algorithms (notably, compass routing [20] and
greedy routing) also result in a path whose length is within
a small constant factor of the shortest path; we already
know such a path exists since the localized Delaunay
triangulation is a t-spanner. Notice that there is a difference
between the spanning ratio of the underlying structure and
the spanning ratio achieved by a specific routing algorithm.
Obviously, any routing method cannot achieve small
spanning ratio when it is applied on a structure with large
spanning ratio. We also conduct extensive simulations of
the Face routing method [11] and the Greedy Face Routing
method (applies the greedy routing whenever possible and
uses the Face routing if local minimum occurs) on the
localized Delaunay triangulation and the Gabriel graph. For
Face routing, we found that the worst-case spanning ratio
when localized Delaunay triangulation is used is signifi-
cantly less than the spanning ratio when Gabriel graph is
used, although the average spanning ratio achieved by
these two structures are almost the same when the network
has no more than 100 nodes. We expect our local Delaunay
triangulation to perform better when the number of nodes is
significantly large, since the spanning ratio of the Gabriel
graph on a set of n random points is �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn= log logn

p
Þ.

The remainder of the paper is organized as follows: In
Section 2, we review some structures that are often used to
construct the topology for wireless networks. We define
localized Delaunay triangulations LDelðkÞðV Þ and study
their properties in Section 3. Section 4 presents the first
localized efficient algorithm that constructs a planar graph,
PLDelðV Þ, which contains UDelðV Þ as a subgraph. Thus,

PLDelðV Þ is a planar t-spanner. The correctness of our
algorithm is justified in the Appendix. We demonstrate the
effectiveness of the localized Delaunay triangulation in
Section 5, by studying the performance of various routing
protocols on it. We conclude our paper and discuss possible
future research directions in Section 6.

2 PRELIMINARIES

2.1 Spanner

Let �Gðu; vÞ be the shortest path connecting u and v in a
weighted graph G and k�Gðu; vÞk be the length of �Gðu; vÞ.
Then, a graph G is a t-spanner of a graph H if V ðGÞ ¼ V ðHÞ
and, for any two nodes u and v of V ðHÞ, k�Hðu; vÞk �
k�Gðu; vÞk � tk�Hðu; vÞk. With H understood, we also call t
the length stretch factor of the spanner G.

There are several geometrical structures which are
proven to be t-spanners for the Euclidean complete graph
KðV Þ of a point set V . For example, the Yao graph [21] and
the �-graph [22] have been shown to be t-spanners.
However, both of these two geometrical structures are not
guaranteed to be planar in two dimensions.

Let %Gðu; vÞ be the path found by a unicasting routing
method % from node u to v in a weighted graph G and
k%Gðu; vÞk be the length of the path. The spanning ratio
achieved by a routing method % is defined as maxG maxu;v
k%Gðu; vÞk= kuvk.

2.2 Delaunay Triangulation

We review the definition of Delaunay triangulation [23]. We

assume that all wireless nodes are given as a set V of

n nodes in a two-dimensional space. Each node has some

computational power. We also assume that there are not

four nodes of V that are cocircular. A triangulation of V is a

Delaunay triangulation, denoted by DelðV Þ, if the circumcir-

cle of each of its triangles does not contain any other nodes

of V in its interior. A triangle is called the Delaunay triangle

if its circumcircle is empty of nodes of V inside. It is well-

known that the Delaunay triangulation DelðV Þ is a planar

t-spanner of the completed Euclidean graph KðV Þ. This was

first proven by Dobkin et al. [24] with upper bound 1þ
ffiffi
5

p

2 � �
5:08 on t. Then, Kevin and Gutwin [25], [22] improved the

upper bound on t to be 2�
3 cos�6

¼ 4
ffiffi
3

p

9 � � 2:42. The best-known

lower bound on t is �=2, which is due to Chew [26], and it is

widely believed to be the actual upper bound also.

2.3 Proximity Graphs

Besides the Delaunay triangulation, various proximity
subgraphs of UDG can be defined [27], [28], [29], [30], [21]
over a set of n two-dimensional wireless nodes V .

For convenience, let diskðu; vÞ be the closed disk with
diameter uv, let diskðu; v; wÞ be the circumcircle defined by
the triangle 4uvw, and let Bðu; rÞ be the circle centered at u
with radius r. Let xðvÞ and yðvÞ be the value of the
x-coordinate and y-coordinate of a node v, respectively.

The constrained relative neighborhood graph, denoted by

RNGðV Þ, consists of all edgesuv such that kuvk � 1 and there

is no point w 2 S such that kuwk < kuvk and kwvk < kuvk.
The constrained Gabriel graph, denoted by GGðV Þ, consists of
all edges uv such that kuvk � 1 and the interior of diskðu; vÞ

LI ET AL.: LOCALIZED DELAUNAY TRIANGULATION WITH APPLICATION IN AD HOC WIRELESS NETWORKS 1037



does not contain any node from V . The constrained Yao graph

with an integer parameter k � 6, denoted by YG
��!

kðV Þ, is
definedas follows:At eachnodeu, anykequal-separated rays

originated at udefine k cones. In each cone, choose the closest

node v touwith distance atmost one, if there is any, and adda

directed link uv�!. Ties are broken arbitrarily. Let YGkðV Þ be
the undirected graph obtained by ignoring the direction of

each link in YG
��!

kðV Þ.
The length stretch factor of RNGðV Þ is at most n� 1, see

[14]; and the length stretch factor of GGðV Þ is at mostffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
, see [31]. Several papers [32], [33], [27] have shown

that the Yao graph YGkðV Þ has length stretch factor at most
1

1�2 sin�k
. However, the Yao graph is not guaranteed to be

planar. The relative neighborhood graph and the Gabriel
graph are planar graphs, but they are not spanners for the
unit-disk graph. In this paper, we are interested in locally
constructing a planar graph that is a spanner of the unit-
disk graph.

2.4 Localized Routing Algorithms

Let NkðuÞ be the set of nodes of V that are within k hops of u
in the unit-disk graph UDGðV Þ. A node v 2 NkðuÞ is called
the k-neighbor of the node u. Usually, here, the constant k is
1 or 2, which will be omitted if it is clear from the context. In
this paper, we always assume that each node u of V knows
its location and identity. Then, after one broadcast by every
node, each node u of V knows the location and identity
information of all nodes in N1ðuÞ. The total communication
cost of all nodes to do so is Oðn lognÞ bits.

A distributed algorithm is a localized algorithm if it uses
only the information of all k-local nodes of each node plus
the information of a constant number of additional nodes.
In this paper, we concentrate on the case k ¼ 1. That is, a
node uses only the information of the 1-hop neighbors. A
graph G can be constructed locally in the ad hoc wireless
environment if each wireless node u can compute the edges
of G incident on u by using only the location information of
all its k-local nodes. In this paper, we design a localized
algorithm that constructs a planar t-spanner for the unit-
disk graph UDGðV Þ such that some localized routing
protocols can be applied on it. The localized construction
of the structure is attractive for wireless ad hoc networks
due to efficient updating of the structure in mobile
environment.

Assumeapacket is currently at nodeu, and thedestination
node is t. Several localized routing algorithms that use just the
local information of u to route packets (i.e., find the next node
vofu)weredeveloped.Kranakis et al. [20]proposed touse the
compass routing, which basically finds the next relay node v
such that the angle ffvut is the smallest among all neighbors of
u in a given topology. Lin et al. [10], Bose et al. [11], and
Karp et al. [12] proposed similar greedy routing methods, in
which node u forwards the packet to its neighbor v in a given
topologywhich is closest to t. Recently, Bose et al. [34], [9], [11]
proposed several localized routing algorithms that route a
packet from a source node s to a destination node t.
Specifically, Bose andMorin [9] proposed a localized routing
method based on the Delaunay triangulation. They showed
that the distance traveled by the packet is within a small
constant factor of the distance between s and t. They also

proved that the compass routing and the greedy routing

method guarantee to deliver the packet if the Delaunay

triangulation is used.

3 LOCAL DELAUNAY TRIANGULATION

In this section, we define a new topology, called local

Delaunay triangulation, which can be constructed in a

localized manner. We first introduce some geometric

structures and notations to be used in this section. All

angles are measured in radians and take values in the range

0; �½ �. For any three points p1, p2, and p3, the angle between

the two rays p1p2 and p1p3 is denoted by ffp3p1p2 or ffp2p1p3.
The closed infinite area inside the angle ffp3p1p2, also referred

to as a sector, is denoted by ffp3p1p2 without confusion to the

angle notation. The triangle determined by p1, p2, and p3 is

denoted by 4p1p2p3.
An edge uv is called constrained Gabriel edge (or simply,

Gabriel edge here) if kuvk � 1 and the open disk using uv as

diameter does not contain any node from V . It is well-known

[23] that the constrained Gabriel graph is a subgraph of the

Delaunay triangulation, more precisely, GGðV Þ � UDelðV Þ.
Recall that a triangle 4uvw belongs to the Delaunay

triangulation DelðV Þ if its circumcircle diskðu; v; wÞ does not
contain any other node of V in its interior. To simplify the

proofs, from now on, we assume that there are no four nodes

ofV cocircumcircle. If fournodes areon the samecircle, a very

small random perturbation to their coordinates allows the

assumption above without causing any problems in the

actual network. It is easy to show that nodes u, v, and w

together cannot decide if they can form a triangle 4uvw in

DelðV Þ by using only their local information.We say a node x

can see another node y if kxyk � 1. The following definition is

one of the key ingredients of our localized algorithm.

Definition 1. A triangle 4uvw satisfies k-localized Delaunay

property if the interior of the circumcircle diskðu; v; wÞ does
not contain any node of V that is a k-neighbor of u, v, or w;

and all edges of the triangle 4uvw have a length of no more

than one unit. Triangle 4uvw is called a k-localized

Delaunay triangle.

Definition 2. The k-localized Delaunay graph over a node set

V , denoted by LDelðkÞðV Þ, has exactly all Gabriel edges and

the edges of all k-localized Delaunay triangles.

When it is clear from the context, we will omit the integer

k in our notation of LDelðkÞðV Þ. Our original conjecture was

that LDelð1ÞðV Þ is a planar graph and, thus, we can easily

construct a planar t-spanner of UDGðV Þ by using a localized

approach. Unfortunately, as we will show later, the edges of

the graph LDelð1ÞðV Þ may intersect. While LDelð1ÞðV Þ is a

t-spanner, its construction is a little bit more complicated

than some other nonplanar t-spanners, such as the Yao

structure [21] and the �-graph [22]. But, we can make

LDelð1ÞðV Þ planar efficiently, a result we describe later in

this paper.
The k-localized Delaunay graph LDelðkÞðV Þ over a node set

V satisfies a monotone property: LDelðkþ1ÞðV Þ is always a

subgraph of LDelðkÞðV Þ for any positive integer k.
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3.1 LDelðkÞðV Þ is a tt-Spanner

The following lemma was proven by us in [16].

Lemma 1. Graph UDelðV Þ is a t-spanner of UDGðV Þ for
t � 2:42.

Theorem 1. Graph UDelðV Þ is a subgraph of the k-localized
Delaunay graph LDelðkÞðV Þ.

Proof. We prove the theorem by showing that each edge uv
of the unit Delaunay triangulation graph UDelðV Þ
appears in the localized Delaunay graph LDelðkÞðV Þ.
For each edge uv of UDelðV Þ, the following five cases are
possible (see Fig. 1 for illustrations).

Case 1: There is a triangle 4uvw incident on uv such
that all edges of 4uvw have length at most one unit.
Because the circumcircle diskðu; v; wÞ is empty of nodes
of V , triangle 4uvw satisfies the k-localized Delaunay
property and, thus, edge uv belongs to LDelðkÞðV Þ.

Case 2: Each of the two triangles incident on uv has
only one edge longer than one unit.

Case 3: One triangle4uvw incident on uv has only one
edge with length larger than one unit and the other
triangle 4uvz has two edges with length larger than one
unit.

Case 4: Each of the two triangles incident on uv has
two edges longer than one unit.

We prove Cases 2, 3, and 4 together. Assume the two
triangles are 4uvw and 4uvz. Let Huv;w be the half-plane
that is divided by uv and contains node w. Then, edge uv
is not the longest edge in triangle 4uvw and, thus, the
angle ffuwv < �

2 . This implies that the circumcircle
diskðu; v; wÞ contains diskðu; vÞ \Huv;w. Similarly, the
other half of diskðu; vÞ is contained inside the circumcir-
cle diskðu; v; zÞ. Both diskðu; v; wÞ and diskðu; v; zÞ do not
contain any node of V inside. It implies that diskðu; vÞ is
empty, i.e., edge uv is a Gabriel edge. Consequently, edge
uv will be inserted to LDelðkÞðV Þ.

Case 5: There is only one triangle incident on uv and it
has at least one edge with length larger than one unit.
Similar to Cases 2, 3, and 4, we can show that diskðu; vÞ is
empty and, therefore, edge uv will be inserted to
LDelðkÞðV Þ as a Gabriel edge. tu

3.2 LDelð1ÞðV Þ May Be Nonplanar

The definition of the 1-localized Delaunay triangle does
not prevent two triangles from intersecting or prevent a
Gabriel edge from intersecting a triangle. Fig. 2 gives
such an example with six nodes fu; v; w; x; y; zg that
LDelð1ÞðV Þ is not a planar graph. Here, kuvk ¼ kxyk ¼ 1,
and kuyk ¼ kvyk > 1. Node x is out of circumcircle of
diskðu; v; wÞ. Triangle 4uvw is a 1-localized Delaunay
triangle. If the node z does not exist, edge xy is a Gabriel
edge. The triangle 4uvw intersects the Gabriel edge xy if

z does not exist, otherwise, it intersects the 1-localized
Delaunay triangle 4xyz. The example illustrated by Fig. 2
also implies that a triangle in LDelð1ÞðV Þ can intersect
many other edges (by creating equal-length Gabriel edges
x1y1, x2y2, � � � , which are parallel to Gabriel edge xy).

3.3 LDelð1ÞðV Þ Has Thickness 2

In this section, we claim that LDelð1ÞðV Þ has thickness two,
or, in other words, its edges can be partitioned in two
planar graphs. From Euler’s formula, it follows that a
simple planar graph with n nodes has at most 3n� 6 edges
and, therefore, LDelð1ÞðV Þ has at most 6n edges. The proof
of the following theorem is in the Appendix.

Theorem 2. Graph LDelð1ÞðV Þ has thickness 2.

Our construction algorithm of LDelð1ÞðV Þ below also
implies that LDelð1ÞðV Þ has a linear number of edges.
Theorem 2 gives a better constant.

3.4 LDelðkÞðV Þ, k � 2, Is Planar

Although we gave an example showing that LDelð1ÞðV Þ is

not always a planar graph, we will show that LDelðkÞðV Þ,
k � 2, is always planar. Theorem 1 implies that each edge uv

of UDelðV Þ is either a Gabriel edge or forms a 1-localized

Delaunay triangle with some edges from UDelðV Þ. Ob-

viously, any two edges in UDelðV Þ do not intersect. Thus,

each possible intersection in LDelðkÞðV Þ is caused by at least

one edge of some localized Delaunay triangle. We begin the

proof that LDelðkÞðV Þ, k � 2, is planar by giving some

simple facts and lemmas.

Remark. If a Gabriel edge uv intersects an edge xy, then xy
does not belong to UDelðV Þ.

Lemma 2. If a Gabriel edge uw intersects a localized Delaunay
triangle 4xyz, then u and w cannot be both outside the
circumcircle diskðx; y; zÞ.

Proof. Let c be the circumcenter of the triangle 4xyz. Then,
at least one of the x, y, and zmust be on the different side
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Fig. 1. The neighborhood configuration of edge uv. Dashed lines (solid lines) denote edges with length > 1ð� 1Þ.

Fig. 2. LDelð1ÞðV Þ is not planar.



of line uw versus the center c; say x. If both u and w are
outside the circumcircle diskðx; y; zÞ, then ffwxu > �

2 .
Thus, x is inside diskðu;wÞ, which contradicts that uw
is a Gabriel edge. tu

Lemma 3. Let 4uvw and 4xyz be two triangles of LDelðkÞðV Þ,
k � 1, and assume the edge uw intersects the triangle 4xyz
and that diskðu; v; wÞ does not contain any of the nodes of
fx; y; zg. Then, diskðx; y; zÞ contains either u or w.

See the Appendix for the proof. The above lemma
guarantees that, if two k-localized Delaunay triangles 4uvw
and 4xyz intersect, then either diskðu; v; wÞ or diskðx; y; zÞ
violates the Delaunay property by just considering the
nodes fu; v; w; x; y; zg.

The following theorem gives more insight regarding
localized Delaunay graphs and it is never used later in the
paper. Its proof is immediate from Theorem 5.

Theorem 3. LDelð2ÞðV Þ is a planar graph.

In conclusion, we defined a sequence of localized
Delaunay graphs LDelðkÞðV Þ, where 1 � k � n. All graphs
are t-spaner of the unit-disk graph with the following
properties:

. UDelðV Þ � LDelðkÞðV Þ, for all 1 � k � n.

. LDelðkþ1ÞðV Þ � LDelðkÞðV Þ, for all 1 � k � n.

. LDelðkÞðV Þ are planar graphs for all 2 � k � n.

. LDelð1ÞðV Þ is not always planar.

4 LOCALIZED ALGORITHM

In this section, we study how to locally construct a planar

t-spanner of UDGðV Þ. We use q to denote the number of bits

required to represent the unique node IDs and p to denote

the number of bits required to represent the geometric

position of a node. When using big-Oh notation, we make

the reasonable assumption that both q and p are OðlognÞ.
Although the graph UDelðV Þ is a t-spanner for UDGðV Þ,

it cannot be constructed locally. We can construct
LDelð2ÞðV Þ, which is guaranteed to be a planar spanner of
UDelðV Þ, but the total communication cost of this approach
could be Oðm lognÞ bits, where m is the number of edges in
UDGðV Þ and could be as large as Oðn2Þ. In order to reduce
the total communication cost to Oðn lognÞ bits, we do not
construct LDelð2ÞðV Þ and, instead, we extract a planar graph
PLDelðV Þ out of LDelð1ÞðV Þ.

4.1 Algorithm

Recall that LDelð1ÞðV Þ is not guaranteed to be a planar

graph. Our algorithm first constructs LDelð1ÞðV Þ and then

removes edges from it to make it planar. The result of the

algorithm is called PLDelðV Þ and we show later that it is

planar and that it contains UDelðV Þ as a subgraph (and,

therefore, it is a t-spanner of UDGðV Þ).
We assume that when a node sends out a message, all

neighboring nodes will receive this message immediately.

Algorithm 1: Localized Unit Delaunay Triangulation

1. Each wireless node u broadcasts an announce
message with its identity and location to its

neighbors N1ðuÞ and listens to the messages from
other nodes in N1ðuÞ.

2. Assume that node u gathered the location informa-
tion of N1ðuÞ. It computes the Delaunay triangula-
tion DelðN1ðuÞÞ of its 1-neighbors N1ðuÞ, including u
itself.

3. For each edge uv of DelðN1ðuÞÞ, let 4uvw and 4uvz
be two triangles incident on uv. Edge uv is a Gabriel
edge if both angles ffuwv and ffuzv are less than �=2.
Node u marks all Gabriel edges uv, which will never
be deleted.

4. Each node u finds all triangles4uvw fromDelðN1ðuÞÞ
such that kvwk � 1 and ffwuv � �

3 . The node sorts the
edges uv 2 DelðN1ðuÞÞ in clockwise order and broad-
cast a proposal message. The proposal message
contains u’s ID, followed by the IDs of the ordered
nodes v with uv 2 DelðN1ðuÞÞ. A single bit sent in
between two IDs of v and w indicates if 4uvw is as
above, and we say that u is proposing that 4uvw be
added to LDelð1ÞðV Þ. Then, node u listens to the
messages from other nodes inN1ðuÞ.

5. Each node u, after receiving a proposal message
from node v, computes if v is proposing adding
triangles 4uvw and 4uvz to LDelð1ÞðV Þ. Then, u
computes if any of the triangles proposed by other
nodes belongs toDelðN1ðuÞÞ. After computing all the
triangles, u broadcast an accept message which
contains the IDs of u, the clockwise list of vertices
v such that u computed that for some w the triangle
4uvw belongs to DelðN1ðuÞÞ, and a bit indicating if
two such consecutive v; v0 form a triangle 4uvv0 of
DelðN1ðuÞÞ.

6. A node u adds the edges uv and uw to its set of
incident edges if the triangle 4uvw is in DelðN1ðuÞÞ
and both v and w have sent either a propose message
or an accept message for triangle 4uvw.

It turns out (see below) that the edges added by all
the vertices in this step form LDelð1ÞðV Þ. At this
moment, the planarization phase starts.

7. Each node u broadcasts a check message with its
ID and the position of all vertices v such that
uv 2 LDelð1ÞðV Þ.

8. Based on the check messages sent by the nodes in
N1ðuÞ, u computes for every 1-local Delaunay
triangle 4uvw if any node is inside the circumcircle
of 4uvw. If such a node is found, u discards the
triangle 4uvw. Then, the node u sorts clockwise the
edges uv which are either Gabriel or belong to a
triangle of LDelð1ÞðV Þ which was not discarded.

9. Each node u broadcasts an alive message, consisting
of its ID, followed by the IDs of nodes incident to u
and a single bit in between two such nodes v and w
telling if 4uvw 2 LDelð1ÞðV Þ and 4uvw was not
discarded.

10. Node u keeps the edge uv in its set of incident edges
if it is a Gabriel edge, or if there is a triangle 4uvw 2
LDelð1ÞðV Þ which appears in the alive messages of u,
v, and w. This implicitly creates the graph PLDelðV Þ
and finishes the algorithm.

We first claim that the graph constructed at the end of
Step 6 of the above algorithm is LDelð1ÞðV Þ. Indeed, for each
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triangle 4uvw of LDelð1ÞðV Þ, one of its interior angle is at
least �=3 and 4uvw is in DelðN1ðuÞÞ, DelðN1ðvÞÞ, and
DelðN1ðwÞÞ. So, one of the nodes among fu; v; wg will
broadcast the message proposal to form a 1-localized
Delaunay triangle 4uvw and the other two nodes will
accept the proposal. Thus, LDelð1ÞðV Þ is a subgraph of the
constructed graph. Obviously, the constructed graph is also
a subgraph of LDelð1ÞðV Þ by definition, which in turn
implies that they are the same.

Second, we show that PLDelðV Þ is indeed a planar
graph.

Theorem 4. PLDelðV Þ is a planar graph.

Proof. Two Gabriel edges do not intersect. Then, every
intersection must involve a localized Delaunay triangle
4xyz which was broadcast alive by all three x, y, and z.

Assume that an edge uw intersects a 1-localized
Delaunay triangle 4xyz on an edge xy. Edge uw is either
a Gabriel edge or an edge of another 1-localized
Delaunay triangle, say 4uvw. In either case, either
Lemma 2 or Lemma 3 implies that either u or w is inside
the diskðx; y; zÞ. By symmetry, we assume w is inside the
diskðx; y; zÞ. The triangle inequality implies that

kuxk þ kwyk < kuwk þ kxyk � 2:

The fact that triangle 4xyz is in PLDelðV Þ implies that
w =2N1ðxÞ [N1ðyÞ [N1ðzÞ. Thus, kwyk > 1, which implies
that kuxk < 1. In other words, u 2 N1ðxÞ.

When u broadcasts its check message, x does find out
the existence of a node inside diskðx; y; zÞ. Then, x does
not broadcast 4xyz in its alive message. We obtained a
contradiction, thus completing the proof. tu

Note that any triangle of LDelð1ÞðV Þ not kept by the
algorithm is not a triangle of LDelð2ÞðV Þ. Therefore, we
have:

Theorem 5. PLDelðV Þ is a supergraph of LDelð2ÞðV Þ.

Next, we carefully analyze the communication cost of the
algorithm. There are five types of messages and each
includes a few bits to describe which type. Disregarding the
few other bits used by every message, we have:

1. announce messages contain in total nðpþ qÞ bits,
and

2. proposal messages contain in total 11nq bits.
Indeed, if the proposal of a node includes the
nodes v1; v2; . . . ; vj, then for every 1 � i � j, either
ffviuviþ1 � �

3 or ffvi�1uvi � �
3 (where, for conveni-

ence, we assume v0 ¼ vj and v1 ¼ vjþ1). Immediate
geometric arguments imply that j � 10.

3. Each accept message contains the triangle incident
with some vertex u. Those triangles are either ”big” or
”small” as defined in the proof of Theorem 2. The
graph given by big triangles and the graph given by
small triangles are planar. Using Euler’s formula, we
obtain that there are at most 4n triangles accepted by
two nodes. In total, at most 6n triangles are implicitly
proposed. Counting multiplicity (some proposed
triangles are accepted once and some are accepted
twice), a total of 10n triangles are accepted—each

contributing one ID to the communication cost. As
eachacceptmessage also contains the IDof the sender,
a total of at most 11n IDs are broadcast by accept
messages.

4. Each checkmessage contains the ID of a node u and a
number of positions corresponding tou’s neighbors in
LDelð1ÞðV Þ. AsLDelð1ÞðV Þhas a thickness of two, it has
at most 6n edges and, therefore, a total of at most
12n positions are broadcast in check messages.

5. Each alivemessage contains the ID of a node u and a
number IDs corresponding to u’s neighbors in
LDelð1ÞðV Þ, and bits indicating whether consecutive
neighbors make a triangle not yet discarded. As
shown above, there are at most nþ 12n ¼ 13n IDs
broadcast.

From the previous discussion, Theorem 1, Theorem 2,
and the results of [16], [17] regarding the spanning ratio of
UDelðV Þ, we obtain:

Theorem 6. PLDelðV Þ is planar 4
ffiffi
3

p

9 �-spanner of UDGðV Þ,
and can be constructed with total communication cost of
nð37q þ 13pþ 100Þ bits, where q is the number of bits
required to represent a node ID, p is the number of bits
required to represent the position of a node, and 100 bits are
used to represent all messages types.

Recently, Calinescu [35] presented a localized method
such that all wireless nodes collectively find the 2-hop
neighbors N2ðuÞ for every node u with Oðn lognÞ commu-
nication complexity with the assumption that the geometric
location of every node is known. The knowledge of the 2-hop
neighbors information allows the direct construction of
LDel2ðV Þ. However, the hidden constant of [35] is much
larger than the constant presented here.

5 ROUTING

In this section, we discuss how to route packets on the
constructed graph. Recently, Bose and Morin [9] first
proposed a localized routing algorithm that routes a packet
using the Delaunay triangulation and guarantees the
distance traveled by the packet is no more than a small
constant factor of the distance between the source and the
destination nodes. However, this algorithm has a major
deficiency by requiring the construction of the Delaunay
triangulation and the Voronoi diagram of all wireless
nodes, which could be very expensive in distributed
computing. Bose et al. [11] also proposed another method,
called Face routing, that routes the packets using the
Gabriel graph to guarantee the delivery. The Gabriel graph
is a subgraph of PLDelðV Þ. Thus, if we apply the routing
method proposed in [11] on the newly proposed planar
graph PLDelðV Þ, we expect to achieve better performance
because PLDelðV Þ is denser than the Gabriel graph (but,
still with OðnÞ edges). The constructed local Delaunay
triangulation not only guarantees that the length of the
shortest path connecting any two wireless nodes is at most a
constant factor of the minimum in the unit-disk graph, but
it also guarantees that the energy consumed by the path is
also minimum, as it includes the Gabriel graph (see [36],
[27]). Moreover, because the constructed topology is planar,
a localized routing algorithm using the right-hand rule
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guarantees the delivery of the packets from source node to
the destination node.

We study the following routing algorithms, illustrated by
Fig. 3, on the graphs proposed in this paper.

Compass Routing (Cmp) Let t be the destination node.
Current node u finds the next relay node v such that
the angle ffvut is the smallest among all neighbors of u in
a given topology. See [20].

Random Compass Routing (RndCmp) Let u be the current
node and t be the destination node. Let v1 be the node on
the above of line ut such that ffv1ut is the smallest among
all such neighbors of u. Similarly, we define v2 to be
nodes below line ut that minimizes the angle ffv2ut. Then,
node u randomly chooses v1 or v2 to forward the packet.
See [20].

Greedy Routing (Grdy) Let t be the destination node. Current
node u finds the next relay node v such that the distance
kvtk is the smallest among all neighbors of u in a given
topology. See [11].

Most Forwarding Routing (MFR) Current node u finds the
next relay node v such that kv0tk is the smallest among all
neighbors of u in a given topology, where v0 is the
projection of v on segment ut. See [10].

Nearest Neighbor Routing (NN) Given a parameter angle �,
node u finds the nearest node v as forwarding node
among all neighbors of u in a given topology such that
ffvut � �.

Farthest Neighbor Routing (FN) Given a parameter angle �,
node u finds the farthest node v as forwarding node
among all neighbors of u in a given topology such that
ffvut � �.

It is shown in [11], [20] that the compass routing, random
compass routing, and the greedy routing guarantee to
deliver the packets from the source to the destination if

Delaunay triangulation is used as network topology. They
proved this by showing that the distance from the selected
forwarding node v to the destination node t is less than the
distance from current node u to t. However, the same proof
cannot be carried over when the network topology is Yao
graph, Gabriel graph, relative neighborhood graph, and the
localized Delaunay triangulation.

We present our experimental results of various routing
methods on different network topologies. Fig. 4 illustrates
some network topologies discussed in this paper. Recall
that Gabriel graph, relative neighborhood graph, Delau-
nay triangulation, LDelð2ÞðV Þ, and PLDelðV Þ are always
planar graphs. The Yao structure, Delaunay triangulation,
LDelð2ÞðV Þ, and PLDelðV Þ are always a t-spanner of the
unit-disk graph. We use integer parameter k ¼ 8 in
constructing the Yao graph. In the experimental results
presented here, we choose total n ¼ 50 wireless nodes
which are distributed randomly in a square area with side
length 100 meters. Each node is specified by a random
x-coordinate value and a random y-coordinate value. The
transmission radius of each wireless node is set as
30 meters. We randomly select 10 percent of nodes as
source nodes and, for every source node, we randomly
choose 10 percent of nodes as destination nodes. The
statistics are computed over 10 different node configura-
tions. Interestingly, we found that, when the underlying
network topology is Yao graph, LDelð2ÞðV Þ, or PLDelðV Þ,
the compass routing, random compass routing, and the
greedy routing delivered the packets in all our experi-
ments. Table 1 illustrates the delivery rates of different
localized routing protocols on various topologies. For
nearest neighbor routing and farthest neighbor routing,
we choose the angle � ¼ �=3. The LDelð2ÞðV Þ and
PLDelðV Þ graphs be preferred over the Yao graph
because we can apply the right-hand rule when previous
simple heuristic localized routing fails. The reason that the
compass, random compass, and greedy methods are able
to guarantee the delivery of the packets in our simulations
may be as follows: When the transmission range of a node
is large enough, the localized Delaunay triangulation of a
randomly uniformly distributed point set is almost the
same as the Delaunay triangulation (this can be proven
[37]). We already know that these three methods
guarantee delivery if Delaunay triangulation is used.
RNG and GG have small delivery rate when these simple
localized heuristics are used since these two structures
have less edges than other structures and, therefore, each
node often has less choices of nodes to relay messages.
Table 2 illustrates the maximum spanning ratios achieved
by different routing methods on various topologies. In our
experiment, these ratios are considerably small.
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We also conducted extensive simulations of the Face
routing method [11] and the Greedy-Face-Greedy (GFG)
routing method [38] on the Gabriel graph and the local
Delaunay triangulation LDel1ðV Þ. We choose n ¼ 20,
30; � � � ; 90; 100 nodes randomly and uniformly distributed
in a square of length 100 meters. The uniform transmission
range of nodes are set as r, where r varies from 30; 40; 50; 60,
or 70 meters. Since it will be hard to control the network
density directly, we change the network density by
indirectly changing the number of nodes in the network
or the transmission range of the nodes. A large number of
nodes or larger transmission range will result in a denser
network. See Tables 3 and 4. For a given point set, we
randomly select 10 percent of nodes as sources and
10 percent of nodes as targets. The maximum and average
spanning ratio is computed for all chosen pair of nodes.
Given n and r, we generate 10 sets of random n points. We
found that the spanning ratio of the Face routing method is
significantly smaller when the local Delaunay triangulation
is used instead of the Gabriel graph. This may be due to the
fact that local Delaunay triangulation has more edges, thus
the number of faces traversed by the Face routing algorithm
is often smaller when LDEL is used than when GG is used.

The average spanning ratios of the GFG method on the
Gabriel graph and the local Delaunay triangulation are
similar when the number of nodes in the network is no
more than 100. We expect our local Delaunay triangulation
to perform better when the number of nodes are signifi-
cantly large since, the spanning ratio of the Gabriel graph
on a set of n random points is about �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn= log logn

p
Þ.

When n is small, �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn= log logn

p
Þ is almost a small

constant, but when n is large, �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn= log logn

p
Þ cannot be

treated as a small constant anymore. Notice that our local
Delaunay triangulation guarantees that there is always a
path to connect any two nodes with length no more than
2:5 times the length of the shortest path connecting them in
the original UDG.

6 CONCLUSION

It is well-known that Delaunay triangulation DelðV Þ is a
t-spanner of the completed graph KðV Þ. In this paper, we
defined several new structures and then gave a localized
algorithm that constructs a graph, namely, PLDelðV Þ. We
proved that PLDelðV Þ is a planar graph and it is a t-spanner

by showing that UDelðV Þ is a subgraph of PLDelðV Þ. The
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total number of messages sent by all nodes in our algorithm
is Oðn lognÞ bits. Our experiments showed that the delivery
rates of existing localized routing protocols are increased
when localized Delaunay triangulation is used instead of
several previously proposed planar topologies. Our simula-
tions also shows that the traveled distance of the packets is
significantly less when the FACE routing algorithm or GFG
routing is applied on LDEL than applied on GG.

We proved that the shortest path in PLDelðV Þ connect-
ing any two nodes u and v is at most a constant factor of the
shortest path connecting u and v in UDG. It remains open
designing a localized algorithm such that the path traversed
by a packet from u to v has length within a constant of the
shortest path connecting u and v in UDG.

Recently, Li et al. [39], [40] present a novel method to
construct bounded degree planar spanner locally.

APPENDIX

We start this with the proof of Lemma 3, which we restate
below:

Lemma 4. Let 4uvw and 4xyz be two triangles of LDelðkÞðV Þ,
k � 1, and assume the edge xy intersects the triangle 4uvw
and that diskðx; y; zÞ does not contain any of the nodes of
fu; v; wg. Then, diskðu; v; wÞ contains either x or y.

The following lemma is implicitly used in its proof.

Lemma 5. If an edge xy intersects a localized Delaunay triangle
4uvw, then it intersects two edges of 4uvw.

Proof. If it intersects one edge of 4uvw, then either x or y
must be inside 4uvw, say x. Then xu < maxðuv; uwÞ � 1,
which contradicts that 4uvw is a localized Delaunay
triangle. tu

We present some other useful facts and lemmas.

Lemma 6. If an edge xy intersects a localized Delaunay triangle

4uvw, then x and y can not be both inside the circumcircle

diskðu; v; wÞ.
Proof. For the sake of contradiction, assume that x and y are

both inside diskðu; v; wÞ. Fig. 5 illustrates the proof that

follows. Notice that diskðu; v; wÞ is divided into four

regions by the triangle 4uvw. Let cuvuv, cvwvw, and cwuwu be the

three fan regions defined by edges uv, vw, and wu,

respectively. First of all, neither x nor y can be inside the

triangle 4uvw. Assume that x is inside the region cuvuv and
y is inside the region cvwvw. Then, one of the angles ffuwv
and ffvuw is less than �

2, which implies that one of the

angles ffuxv and ffvyw is larger than �
2. Thus, either vy <

vw � 1 or vx < vu � 1. In other words, the diskðu; v; wÞ
contains a node fromN1ðvÞ. This contradicts that4uvw is

a k-localized Delaunay triangle. tu

We now present the proof of Lemma 3.

Proof. There are three cases: triangles4uvw and4xyz share

two nodes (i.e., one edge), one node, or do not share any

node.
Case 1: Triangles 4uvw and 4xyz share one edge.
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Case 2: Triangles 4uvw and 4xyz share one node.
These two cases are impossible. See the proof of
Theorem 10 in the Appendix of our conference version
[16].

Case 3: Triangles 4uvw and 4xyz do not share any
node. It is not difficult to show that there are only two
possible subcases as illustrated by Fig. 6.

Subcase 3.1: All edges of 4xyz and 4uvw are
intersected by some edges of the other triangle.
Assume that the nodes have the order as illustrated
by the Fig. 6a. Then, it is easy to show that all angles
ffwxu, ffxuy, ffuyv, ffyvz, ffvzw, and ffzwx are less than �.
Notice that ffwxuþ ffwvu < � because x is not inside
the circumcircle diskðu; v; wÞ. Similarly, ffuyvþ ffuwv < �
and ffvzwþ ffvuw < �. Therefore,

ffwxuþ ffuyvþ ffvzw < 3�� ðffwvuþ ffuwvþ ffvuwÞ ¼ 2�:

Notice that

ffwxuþ ffuyvþ ffvzwþ ffxuyþ ffyvzþ ffzwx ¼ 4�:

It implies that ffxuyþ ffyvzþ ffzwx > 2�. Then, we
know that at least one of the nodes of u, v, and w is
contained inside the circumcircle diskðx; y; zÞ (other-
wise by symmetry, similarly, we would have
ffxuyþ ffyvzþ ffzwx < 2�). We prove that Subcase 3.1
is impossible. For the sake of contradiction, assume
that it is possible. Then, from the proof of Subcase 3.1,
either diskðu; v; wÞ contains one of the nodes of x, y,
and z; or diskðx; y; zÞ contains at least one of the nodes
of u, v, and w. Without loss of generality, assume that
node x is contained in the interior of diskðu; v; wÞ.
Then, Lemma 6 implies that both y and z are outside
of diskðu; v; wÞ. Fig. 7 illustrates the proof that follows.
The existence of triangle 4uvw implies that kxuk > 1,
kxvk > 1, and kxwk > 1. Notice that kxyk � 1 and
kxzk � 1. Let c be the circumcenter of the triangle
4uvw. Here, c cannot be x because xu > 1, xy � 1, and
y is outside of the circle. The angle ffuxv < �

3 because
uv must be the shortest edge of triangle 4uxv.
Consider the following five segments lying in the
interior of the wedge uxv: xv, xz, xw, xy, and xu. From
the pigeonhole principle, there are at least three such
segments lying on the same side of the line xc. More
precisely, we have either xv, xz, and xw on the same

side of xc or xw, xy, and xu are on the same side of xc.
Without loss of generality, assume that the first
scenario happens. Then, it is easy to prove that
kxzk > minðxv; xwÞ > 1. This contradicts to kxzk � 1.
Fig. 7b illustrates the proof using that

kxvk2 ¼ kxck2 þ kcvk2 � 2kxck � kcvk � cosðffxcvÞ;

and kcvk ¼ kcz0k ¼ kcwk. Therefore, the assumption that
Subcase 3.1 is possible does not hold.

Subcase 3.2: One edge of each triangle is not
intersected by the edges of the other triangle. We prove
that diskðx; y; zÞ contains at least one of the nodes of u
and w. Fig. 6b illustrates the proof that follows. Let x0 be
the intersection point of segment xzwith the circumcircle
diskðu; v; wÞ, which is closer to x. Let z0 be the intersection
point of segment uz with the circumcircle diskðu; v; wÞ.
Let x00 and y0 be the two intersection points of segment xy
with the circumcircle diskðu; v; wÞ, where x00 is closer to x
and y0 is closer to y. Then,

ffxzu < ffx0z0u ¼ ffx0wu < ffxwu; and
ffwyx < ffwy0x00 ¼ ffwux00 < ffwux:

Notice that ffyzuþ ffzux+ ffuxwþ ffxwy+ ffwyz ¼ 3�. Then,

ðffyzxþ ffywxÞ þ ðffzyxþffzuxÞ¼3�� ðffxzuþ ffwyxþ ffuxwÞ
> 3�� ðffxwuþ ffwuxþ ffuxwÞ¼2�:

So, either ffyzxþ ffywx > � or ffzyxþ ffzux > � from the
pigeonhole principle. Consequently, diskðx; y; zÞ contains
either node w or node u. tu
Wepresent the proof that graphLDelð1ÞðV Þhas a thickness

of two.

Proof. We prove that LDelð1ÞðV Þ has thickness two or, in

other words, its edges can be partitioned in two planar

graphs. Call a triangle 4xyz of LDelð1ÞðV Þ big if the

radius of diskðu; v; wÞ is at least one, and small otherwise.

A Gabriel edge can be thought as a small triangle, as if

one of its endpoints is duplicated. Put all the Gabriel

edges and the edges of small triangles in the graph G1

and all the edges of the big triangles in G2, possibly

putting an edge in both G1 and G2 if it is shared by a

small triangle and a big triangle. In the following, we

show that both G1 and G2 are planar. More precisely, we

prove that any intersection of two edges of LDelð1ÞðV Þ
involves a big triangle and a small triangle, or a big

triangle and a Gabriel edge.

LI ET AL.: LOCALIZED DELAUNAY TRIANGULATION WITH APPLICATION IN AD HOC WIRELESS NETWORKS 1045

Fig. 6. All or four edges of two triangles intersect.

Fig. 7. Subcase 3.1 is impossible.



First, we show that the edges of two big triangles

cannot intersect. Assume for a contradiction that 4uvw

and 4xyz are big triangles which intersect. We must be

in Subcase 3.2 of the proof of Lemma 3. Rename the

vertices of the triangles such that the following situation

holds: u is inside diskðx; y; zÞ, v is outside diskðx; y; zÞ,
and the edges uv and xy intersect in the point v0. Then,

kuxk > 1 and kuyk > 1. Using the triangle inequality in

4xv0v and 4uv0y, we obtain that kvxk < 1 and, similarly,

kvyk < 1. Then, kquk ¼ kqvk � 1. Let x0 and y0 be the two

points such that xx0y0y is a rectangle with kxx0k ¼
kyy0k ¼ 1 such that u and x0 are on the same side of the

line xy. Let p be the point inside xx0y0y such that

kpxk ¼ kpyk ¼ 1. Note that umust be inside the rectangle

xx0y0y. Indeed, otherwise, 1 ¼ kxx0k � kuv0k < 1. As

kuv0k < 1, u is inside the triangle 4x0y0p or in the interior

of the edge x0y0 because u cannot be inside the triangle

4xx0p (otherwise, kuxk � maxðkx0xk; kpxkÞ ¼ 1, which is

impossible); similarly, u cannot be inside the triangle

4yy0p and the triangle 4xyp. Let q be the center of

diskðu; v; wÞ. Let c be the midpoint of segment uv. Thus,

cq is a perpendicular bisector of segment uv. Then, cmust

be between points u and v0. Indeed, otherwise, either x or

y is on the same side of cq with u, which contradicts to

kuxk > 1 � kvxk and kuyk > 1 � kvyk. We show that

there is no place to put the circumcenter q. Fig. 8

illustrates the proof that follows. The closed infinite area

inside an angle ffp1p2p3, also referred to as a sector, is

denoted by ffp1p2p3. In addition, sector ffp1p2p3p4 denotes
the intersection of two sectors ffp1p2p3 and p2p3p4. First,

point q cannot be inside the sector ffu00yv00. Otherwise,

kqyk < maxðkquk; kqvkÞ because y is inside the triangle

4quv. Thus, y is inside diskðu; v; wÞ. Then, triangle 4uvw

should not exist, as v can see y inside diskðu; v; wÞ.
Symmetry implies that also q cannot be inside the sector

ffu000xv000. Second, point q cannot be inside the sector

ffuvyu00. Otherwise, segment qc intersects yv, which

implies that kvyk > kuyk > 1. It contradicts to 1 � kvyk.
Similarly, point q also cannot be inside the sector u000xvu0.

Third, point q cannot be inside the triangle 4xyv.

Otherwise, kqvk � maxðkvxk; kvykÞ < 1. It contradicts to

that triangle4uvw is big. Fourth, point q cannot be inside

the sector ffp0x0xv000. Indeed, the segment qv0 cannot

intersect the segment xx0. Otherwise, kqxk � kqv0k �

kqvk and the triangle 4uvw should not exist, as v can
see x inside diskðu; v; wÞ. Symmetryalso implies thatpoint

q cannot be inside the sector ffv00yy0p0. Fifth, q cannot be

inside the sector ffp0y0x0p00 and the segment qv0 intersects the

segment x0x. Otherwise, let q0 be the intersection point of

qv0 and x0x. Since the biggest edge of 4x0y0p has length 1,

kquk < 1. Then, from kq0v0k � kxx0k ¼ 1, we have

kquk � kqq0k þ kq0uk < kqq0k þ 1 � kqq0k þ kq0v0k
¼ kqv0k � kqvk;

contradicting the fact that kquk ¼ kqvk. Thus, q must be

inside the rectangle xx0y0y. Note kqxk > kquk � 1 and

kqyk > kquk � 1. Therefore, if q is inside the rectangle

xx0y0y, it is inside the triangle 4x0y0p. Since the biggest

edge of 4x0y0p has length 1, kquk < 1, a contradiction. In

conclusion, two big triangles cannot intersect.

Now, we show that the edges of two small triangles

cannot intersect, and that the edges of a small triangle

cannot intersect a Gabriel edge. Fig. 8 illustrates the
proof that follows. As shown above, we can assume that

u is inside diskðx; y; zÞ and v is outside diskðx; y; zÞ.
Moreover, kuxk > 1 and kuyk > 1. Let v0 be the intersec-

tion of the segment uv with the boundary of diskðx; y; zÞ.
Let q be the center of diskðx; y; zÞ. Since kqyk ¼ kqxk < 1,

u cannot be inside the triangle 4qxy and, therefore, the

segment uv0 intersects either the segment xq or the

segment yq. By symmetry, we assume that uv0 and qy

intersect in point p. We have that kqv0k ¼ kqyk and that

kuyk > 1. Using triangle inequality for 4qpv0 and 4upq,

we have kqyk þ kuv0k > kqv0k þ kyuk. It deduces that

kuv0k > 1 and, therefore kuvk > 1, a contradiction. This

completes the proof of the theorem. tu
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