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Abstract— Data collection is one of the most important func-
tions provided by wireless sensor networks. In this paper, we
study the theoretical limitations of data collection and data
aggregation in terms of delay and capacity for a wireless sensor
network where n sensors are randomly deployed. We consider
two different communication scenarios (with or without aggre-
gation) under physical interference model. For each scenario, we
first propose a new collection method and analyze its performance
in terms of delay and capacity, then theoretically prove that our
method can achieve the optimal order. Particularly, the capacity
of data collection is in order of Θ(W ) where W is the fixed
data-rate on individual links. If each sensor can aggregate its
receiving packets into a single packet to send, the capacity of
data collection increases toΘ( n

log n
W ).

I. I NTRODUCTION

For wireless sensor networks, often the ultimate goal is
to collect the sensing data from all sensors to a sink node
and then perform further analysis at the sink node. Thus,
data collection is one of the most common services used in
sensor network applications. In this paper, we study some
fundamental capacity problems arising from different types
of data collection scenarios in wireless sensor networks. For
each problem, we will derive the asymptotic upper bound of
transport capacity and present efficient algorithms to achieve
such upper bound with certain constant factor.

We consider a dense sensor network wheren sensors are
randomly deployed in a finite geographical region. Each sensor
measures independent field values at regular time intervalsand
send these values to the sink. The union of all sensing values
from n sensors at particular time is calledsnapshot. The task
of data collection is to deliver these snapshots to the sinks. Due
to spatial separation, several sensors can successfully transmit
at the same time if these transmissions do not cause any
destructive wireless interferences. We assume that a successful
transmission over a link has a fixed data-rateW bit/second.
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The performance of data collection in sensor networks
can be characterized by the rate at which sensing data can
be collected and transmitted to the sink node. In particular,
the theoretical measures that capture the possibilities and
limitations of collection processing are delay and capacity for
the many-to-one data collection. Thedelayof data collection
is the time to transmitone single snapshotto the sink from the
snapshot generated at sensors. Considering the size of datain
the snapshot, we can definedelay rateas the ratio between the
data size and the delay. When multiple snapshots from sensors
are generated continuously, data transport can be pipelined in
the sense that further snapshot may begin to transport before
the sink receiving the prior snapshot. The maximum data rate
at the sink to continuously receive the snapshot data from
sensors is defined as thecapacity of data collection. Both
delay rate and capacity reflect that how fast the sink can
collect sensing data from all sensors. It is critical to understand
the limitations of many-to-one information flows and devise
efficient data collection algorithms to maximize performance
of wireless sensor networks. In this paper, we are particularly
interested in how delay rate and capacity of data collection
vary as the number of sensorsn increases.

Gupta and Kumar initiated the research on capacity of
random wireless networks in the seminal paper [1]. A number
of following papers studied capacity under different commu-
nication scenarios [2]–[4]. Recently, capacity limits of data
collection in random wireless sensor networks have been
studied in the literature [5]–[11]. In [5], [6], Duarte-Melo et al.
first studied the many-to-one transport capacity in dense and
random sensor networks. But they only considered the simplest
case with a single sink under protocol interference model.
Chenet al. [7] studied capacity of data collection with multiple
sinks in random networks under protocol interference model.
Liu et al. [8] recently studied the capacity of a general some-
to-some communication paradigm under protocol interference
model in random networks where there are multiple randomly
selected sources and destinations. All these works are based on
protocol interference model. El Gamal [9] studied the capacity
of data collection subject to a total average transmitting power
constraint where a node can receive data from multiple source
nodes at a time. Barton and Rong [10], [11] then investigated
data collection capacity under more complex physical layer
models (non-cooperative SINR model and cooperative time
reversal communication model) where the data rate of indi-



vidual link is not fixed as a constantW but depended on
the level of interference. In this paper, we studycapacity of
data collection under physical interference model for random
sensor networks with a single sink.

The major contributions of this paper are as follows. (1)
For sensor networks without data aggregation, we propose a
new data collection method whose delay rate and capacity
under physical interference model are bothΘ(W ) which
match the theoretical upper bounds in order. (2) By using
data aggregation [12], [13] where sensors can cooperate to
aggregate information towards the sink, the communication
overhead is reduced and the capacity is increased. We the-
oretically prove that the delay rate and the capacity of data
aggregation areΘ(

√
n log nW ) and Θ( n

log nW ) respectively.
For both cases, our proposed collection/aggregation methods
achieve the optimal orders (i.e., within a constant factor of
upper bounds).

II. PRELIMINARIES

A. Network Model

We consider a sensor network which includesn wireless
sensor nodesV = {v1, v1, · · · , vn} and a single sink nodes.
Here, we assume that both sensor nodes and the sink node
are uniformly deployed in a square region with side-length
a =

√
n, by use of Poisson distribution with density1. At

regular time intervals, each sensor node measures the field
value at its position and transmits the value to the sink node.
We adopt a fixed data-rate channel model where each wireless
node can transmit atW bits/second over a common wireless
channel. Under such channel model, we assume that every
node has a fixed transmission power. Then a fixed transmission
ranger can be defined such that a nodevi can successfully
receive the signal sent by nodevj only if the distance between
them is less or equal tor. We also assume that all packets
have unit sizeb bits. The time is slotted into time slots with
t = b/W seconds. Thus, only one packet can be transmitted
in a time slot between two neighboring nodes.

As in the literature, we consider the interference modeled
by physical interference modelin our analysis. In physical
interference model, nodevj can correctly receive the signal
from the sendervi if and only if, given a constantη > 0, the
SINR

Pi · l(||vi − vj ||)
B · N0 +

∑

k∈I Pk · l(||vk − vj ||)
≥ η.

Here ||vi − vj || is the Euclidean distance betweenvi and
vj , l(x) is the transmission loss during a path of lengthx,
B is the channel bandwidth,N0 > 0 is the background
Gaussian noise,I is the set of actively transmitting nodes
when nodevi is transmitting, andPk is nodevk’s transmission
power. In this paper, we consider the attenuation function
l(x) = min{1, x−β} whereβ > 2 is the path loss exponent.
Hereafter, we assume that each sensor uses the same transmis-
sion powerP , and allN0, β andη are fixed constants. Notice
that values ofP , N0, η, and transmission ranger should satisfy
that P ·r−β

BN0
≥ η. Thus,r ≤ ( P

B·N0·η )1/β .
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Fig. 1. Grid partition of the sensor network:a
2 cells with cell size ofd×d.

B. Capacity and Delay

We now formally define delay and capacity of data collec-
tion. Recall that each sensor at regular time intervals generates
a field value withb bits and wants to transport it to the sink.
We call the union of all values from alln sensors at particular
sampling time asnapshotof the sensing data. The goal of
data collection is to collect these snapshots from all sensors
as quick as possible.

Definition 1: The delay of data collection∆ is the time
transpired between the time a snapshot is taken by the sensors
and the time the sink has all data of this snapshot.

Definition 2: Thedelay rateof data collectionΓ is the ratio
between the data size of one snapshotn · b and the delay∆.

On the other hand, the data transport can be pipelined in
the sense that further snapshots may begin to transport before
the sink receiving the prior snapshots. Therefore, we need to
define a new data rate of data collection under pipelining.

Definition 3: The usage rateof data collectionU is the
number of time slots needed at the sink between completely
receiving one snapshot and completely receiving next snap-
shot.

Thus, the time used by the sink to successfully receive a
snapshot isT = U × t. Due to pipelining,T ≤ ∆. Clearly,
small usage rate andT are desired.

Definition 4: The capacityof data collectionC is the ratio
between the size of data in one snapshot and the time to receive
such a snap shot (i.e.,nb

T ) at the sink.
Thus, the capacityC is the maximum data rate at the

sink to continuously receive the snapshot data from sensors.
Clearly,C is at least as large as the delay rateΓ, and usually
substantially larger. In this paper, we analyze both delay rate
and capacity for data collection in random sensor networks.

III. D ATA COLLECTION WITHOUT AGGREGATION

In this section, we consider data collection without aggre-
gation where each data packet generated from a sensor needs
to individually reach the sinks. We first construct a data
collection scheme whose delay rate isΩ(W ), and then prove
that it is order-optimal. Our data collection scheme is based
on the following grid partition method.



A. Our Partition Method

We first introduce a grid partition method which is essential
for our data collection methods and their theoretical analysis.
As shown in Fig. 1, the network (e.g., thea × a square) is
divided intom2 micro cells of the sized× d. Herem = a/d.
We assign each cell a coordinate(i, j), where i and j are
between1 and m, to indicate its position atjth row andith
column.

The following lemma gives a guidance of the cell size.
Lemma 1: [14] Given n random nodes in a

√
n × √

n
square, dividing the square into micro cells of the size√

3 log n ×
√

3 log n, every micro cell is occupied with prob-
ability at least1 − 1

n2 .

Therefore, if we setd =
√

3 log n (i.e., m =
√

n
3 log n ), every

micro cell has at least one node with high probability (the
probability converges to one asn −→ ∞).

We then derive the upper bound of the number of nodes
inside a single cell.

Lemma 2:Given n random nodes in a
√

n × √
n square,

dividing the square into micro cells of the size
√

3 log n ×√
3 log n, the maximum number of nodes in any cell is

O(log n) with probability at least1 − 3 log n
n .

Proof: The proof is straightforward from results of the
balls into bins problem[15] and thus ignored here.

In order to make the whole network connected, the transmis-
sion ranger need to be equal or larger than

√
5d so that any

two nodes from two neighboring cells are inside each other’s
transmission range. Hereafter, we setr =

√
5d =

√
15 log n.

B. Our Data Collection Scheme

As shown in Fig. 1, we can consider data collection of nodes
from four different directions (i.e., quadrants) to the sink s
located in cell(p, q). For the purpose of analysis, we only
concentrate on the direction which has the largest number of
sensors,e.g., the shaded rectangle in Fig. 1, since the sink can
perform collection on each direction in turn and it only addsa
constant4 in the analysis. Furthermore, here we only consider
the worst case wherep = q = m, that is, the sink is in the
upper right corner of the field.

For our collection scheme, we first divide the field into big
blocks with sizeL × L as shown in Fig. 2. We call these
blocks interference blocksandL interference distance. Thus,
the number of interference blocks is⌈ a2

L2 ⌉. We label each block
with (i, j) where i and j are the indexes of the block as in
Fig. 2. In our collection scheme, we schedule data transmission
in parallel at all blocks but make sure that there is only one
sensor in each interference block transferring at any time.To
avoid interference from senders in other interference blocks,
we need interference distanceL larger than certain value.

Next, we derive the lower bound of interference distance
such that all simultaneous transmissions as shown in Fig. 2 can
be successfully received. Here, we consider the SINR at the
receiver in interference block(0, 0) (which is in the center of
the field) since it has the minimum SINR among all receivers.

ijd

L

(0,1)(0,0)

(1,0)

(i,j)

(a/2L,a/2L)

d

Fig. 2. Grid partition of interference blocks with size ofL × L.

Based on physical interference model, its SINR is

P · l(r)
B · N0 +

∑

all blocks(i,j) except(0,0) P · l(di,j)
.

Here,di,j is the distance from the sender in block(i, j) to the
receiver in block(0, 0). By a simple geometric calculation,
di,j =

√

(iL − d)2 + (jL − 2d)2. Rememberr =
√

15 log n
thus bothr anddi,j are larger than1. Therefore, we need to
deriveL such that

P · r−β

B · N0 +
∑

(i,j)/(0,0) P · ((iL − d)2 + (jL − 2d)2)−β/2
≥ η.

In other words, we need

∑

(i,j)/(0,0)

((iL − d)2 + (jL − 2d)2)−β/2 ≤ r−β

η
− BN0

P
.

Notice that:
∑

(i,j)/(0,0)

((iL − d)2 + (jL − 2d)2)−β/2

≤
∑

(i,j)/(0,0)

((iL − 2id)2 + (jL − 2jd)2)−β/2

= (L − 2d)−β
∑

(i,j)/(0,0)

(i2 + j2)−β/2.

Instead of considering interference from all blocks(i, j)
around (0, 0), we relax it to 4 times the interference from
blocks in the right up direction.

∑

(i,j)/(0,0)

((iL − d)2 + (jL − 2d)2)−β/2

≤ (L − 2d)−β
∑

(i,j)/(0,0)

(i2 + j2)−β/2

≤ 4(L − 2d)−β
∑

(i≥0,j≥0)/(0,0)

(i2 + j2)−β/2

= 4(L − 2d)−β(
∑

(i≥1,j≥1)

(i2 + j2)−β/2 + 2
∑

(i≥1,j=0)

i−β).
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Fig. 3. Our collection method: [Phase I] each node send its data to its upper cell; [Phase II] each node in the top row send itsdata to its right cell.

Notice that for i > 1, j > 1 and β > 2, ( 1
i2+j2 )β/2 ≤

( 1
4 ( 1

i2 + 1
j2 ))β/2 ≤ 1

2β ( 1
iβ + 1

jβ ). Then we have
∑

(i,j)/(0,0)

((iL − d)2 + (jL − 2d)2)−β/2

≤ 4(L − 2d)−β(
∑

(i≥1,j≥1)

(i2 + j2)−β/2 + 2
∑

(i≥1,j=0)

i−β)

≤ 4(L − 2d)−β(
∑

(i≥1,j≥1)

1

2β
(

1

iβ
+

1

jβ
) + 2

∑

(i≥1,j=0)

i−β)

= 4(L − 2d)−β(
1

2β

∑

i≥1

1

iβ
+

1

2β

∑

j≥1

1

jβ
+ 2

∑

i≥1

i−β)

= 4(L − 2d)−β(
1

2β−1
+ 2)

∑

i≥1

i−β

≤ 4(L − 2d)−β(
1

2β−1
+ 2)

∑

i≥1

i−2

≤ 2π

3
(L − 2d)−β(

1

2β−1
+ 2) (since

∞
∑

i=1

i−2 =
π

6
).

Therefore, if 2π
3 (L− 2d)−β( 1

2β−1 + 2) ≤ r−β

η − BN0

P , we can
sure that the SINR at the receiver in the center is at leastη.
This can be satisfied by setting

L ≥ (
3 · 2(β−2)

π(1 + 2β)
· (r−β

η
− BN0

P
))−

1
β + 2d.

Rememberr ≤ ( P
B·N0·η )1/β , this makes sure we can find

such suitableL. We can further selectL = ( 3·2(β−2)

π(1+2β)
· ( r−β

η −
BN0

P ))−
1
β + 2d. Sincer =

√
5d,

L

d
= (

3 · 2(β−2)

π(1 + 2β)
· ( (

√
5d)−β

ηd−β
− BN0

Pd−β
))−

1
β + 2

= (
3 · 2(β−2)

π(1 + 2β)
· (5−β/2

η
− BN0d

β

P
))−

1
β + 2.

When n → ∞, this ratio goes to a constant, denoted by
α. After having interference blocks, we can now present our
collection algorithm which is quite simple and straightforward.
It has two phases. In Phase I, every sensor sends its data up
to the highest cell in its column (in theath row) as shown in
Fig. 3(a) and Fig. 3(b), and in Phase II, all data is sent via cells
in theath row to the sink as shown in Fig. 3(c) and Fig. 3(d).

In each phase, the data transmissions in all interference blocks
are performed in parallel.

C. Analysis of Delay Rate

Now we analysis the delay rate of our data collection
scheme above. We define the time needed for the two phases
asT1 andT2, respectively.

By Lemma 2, the number of nodes in each cell is at most
O(log n). Every node needs one time-slott to send one packet
to its neighbor in the next cell. To avoid interference, every
interference block can only have one node send a packet to its
upper neighbor in every time slott during Phase I. In Fig. 3,
bold lines show the interference blocks. Remember thatL

d is a
constantα, thus the number of cells in the interference block
is (L

d )2 = α2. And the packet in the lowest row (i.e. cell
(0, k)) has to walkm cells to reach nodes in the highest cell
in the rectangle. Hence,

T1 ≤ (
L

d
)2 × t × O(log n) × m

≤ O(t log n)m = O(t log n)

√

n

3 log n
= O(t

√

n log n).

In the beginning of Phase II, all data are already at cells of
the top row. The sinks lies on the same row with these cells.
We now estimateT2 needed for sending all data tos. Each
cell in the top row has at mostmO(log n) nodes’ data and
the number of cells in each interference block isL

d . Similarly,
we can get

T2 ≤ L

d
× t × mO(log n) × m ≤ m2O(t log n) = O(nt).

Therefore, the total time needed to collectb-bits information
from every sensor in the field to the sink isT1 +T2 = O(nt).
Thus, the total delay∆col for the sink to receive a complete
snapshot is at mostO(nt). Consequently, the total delay rate
of this collection scheme is

Γcol =
nb

∆col
= Ω(

nb

nt
) = Ω(W ).

It has been proved that the upper bound of delay rate or
capacity of data collection isW [5], [6]. It is obvious that
the sink cannot receive at rate faster thanW sinceW is the
fixed transmission rate of individual link. Therefore, the delay
rate of our collection scheme achieves the order of the upper



bound, and the delay rate of data collection isΘ(W ). Notice
that for each individual sensor the lowest achievable delayrate
of our method isΘ(W/n) which also meets the upper bound.

D. Capacity of Data Collection

Next, we consider the situation with pipelining. It is clear
the upper bound of capacity is stillW . Since our above scheme
already reaches the upper bound, the pipelining operation can
only improve the capacity within a constant factor.

With pipelining, in Phase I, the sensor can begin to transfer
the data to its up-cell from next snapshot after sensors in
its interference block finish their transmission of previous
snapshot. Whenever the cells in the top row receivem · b
data (every cell in the top row receives a data from its
lower cell), Phase II can begin at the top row. We consider
the improvements of pipelining on both phases. With the
pipelining, the timeT ′

1 for the highest cell to receive a new
set ofm · b data in Phase I is

T ′
1 ≤ (

L

d
)2 × t × O(log n) = O(t log n).

And the timeT ′
2 for the sink to receive a new set ofa · b data

in Phase II is

T ′
2 ≤ L

d
× t × m = O(t

√

n

log n
).

Therefore, the total time for sink to receivem · b data isT ′
1 +

T ′
2 = O(t

√

n
log n ). Thus, the capacity of our method with

pipelining is still

Ccol =
m · b

T ′
1 + T ′

2

= Ω(W ).

This also meets the upper boundW in order.
In summary, we have the following theorem:
Theorem 1:Under physical interference model, the delay

rateΓ and the capacityC of data collection in random sensor
networks with a single sink are bothΘ(W ).

IV. DATA COLLECTION WITH AGGREGATION

In this section, we investigate a different data collection
scenario where each sensor can aggregate its received data
(multiple packets) into a single packet. For example, if thesink
just wants to know the maximal temperature in the deployed
field, then each sensor can send out the maximal sensing value
towards the sink instead of all values which it receives from
other sensors. Here, we study bothdelay rateandcapacityof
data aggregation with a single sink. The definitions of delay
rate and capacity are similar to those of data collection in
Section II. Notice that when the sink receives the maximal
value (justb bits) of a snapshot of the field (n sensors), we
still count the size of all values from that snapshot as the size
of the received data. Thus, delay rate isnb

∆ and capacity isnb
T .

There is not much work on capacity of data aggregation in
wireless sensor networks, except for [12] and [13]. Giridhar
and Kumar [12] investigated a more general aggregation prob-
lem in random sensor network where a symmetric function of
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Fig. 4. Our aggregation method: [Phase II] each selected nodeaggregates
data to its upper cell; [Phase III] each selected node in the top row aggregates
data to its right cell.

the sensor measurements is used for data aggregation. Mosci-
broda [13] then further studied the aggregation capacity for
arbitrarily deployed networks under both protocol interference
model and physical interference model.

A. Analysis of Delay Rate

We again assume that the sinks is located in cell(m,m).
Our aggregation scheme has three phases and uses the same
partition method in Section III.

First, each micro cell chooses a sensor which collects
data from all the other sensors in the same micro cell and
aggregates into one packet. Based on Lemma 2, each micro
cell has at mostO(log n) nodes. Assume thatT ′′

1 is the
time needed to collect data inside each cell. Because of the
interference distanceR, T ′′

1 is at most(L
d )2 · O(log n) · t.

Second, every selected node waits for all data in the same
snapshot from cells, which are below its own cell and within
the same column, and then aggregates them with its value into
a single packet and sends it to its upper cell. See Fig. 4(a).
At the end of this phase, all value has been aggregated at the
top row where the sink sits. The time needed for this phase
T ′′

2 is bounded from above bym × t × (L
d ) = Θ(

√

n
log n t),

since everyL
d columns only one node can transmit due to

interference, as shown in Fig. 4(a).
Third, as shown in Fig. 4(b), the information is aggregated

via cells one by one in the top row. The time neededT ′′
3 is at

mostm × t = Θ(
√

n
log n t).

Therefore, the total delay∆agg ≤ T ′′
1 + T ′′

2 + T ′′
3 =

O(
√

n
log n t). The delay rate is

Γagg =
nb

∆agg
= Ω(

√

n log n · W ).

Next, we prove that this delay rate is order-optimal. Notice
that for one snapshot the data aggregation is completed when
the sink has the aggregated value of all data in the snapshot.
Let Tcomplete denote the time that all data of one snapshot
are aggregated in the sink andTfarthest be the time needed
for the value of the farthest node reaching the sink. Since to
compute the aggregated value, all values from the snapshot are
needed,Tfarthest ≤ Tcomplete. Based on the network model,



the farthest node from the sink locates on one corner of the
field. We denote the distance between the farthest node and
the sink asR. It is easy to show that the minimum value of
R is

√
2a
2 (when the sink is in the center of the field),i.e.

R ≥
√

2n
2 . The data in the farthest node needs at leastR

r time
slots to reach the sink,for the transmission range isr. Hence,

Tfarthest ≥
R

r
· t =

R

r
· b

W
≥

√
2n
2

r
· b

W
=

√

n

30 log n
· b

W
.

Consequently, we have

Tcomplete ≥ Tfarthest ≥
√

n

30 log n
· b

W
.

Therefore, the delay rate of data aggregation is at most

nb

Tcomplete
≤ nb

√

n
30 log n · b

W

= Θ(
√

n log n · W ).

In summary, our data aggregation algorithm can achieve the
upper bound of delay rateΘ(

√
n log n · W ).

B. Capacity of Data Aggregation

We now describe our aggregation algorithm with pipelining.
In the above algorithm, until the sink receives the aggregated
value for all data in the previous snapshot, sensors begin to
send data in the next snapshot. However, with pipelining, a
sensor can start sending (or aggregating) data in the next
snapshot before the aggregated value of the previous snapshot
reaches the sink. Actually, it can initiate sending if the aggre-
gated data of the previous snapshot are far away enough. Thus,
all three phases in the algorithm can perform in pipelining.

At the beginning of each snapshot, each micro cell will
choose a node to collect data from all the other nodes in the
same micro cell and aggregates into one packet. The time
required is(L

d )2 · O(log n) · t = O(t log n).
For Phase II and Phase III if the aggregated values in

previous snapshot are one interference block ahead (above or
right in Fig. 4), the values from next snapshot can be sent or
aggregated. The time difference between such two snapshots
is bounded by(L

d )2 ·t. This is much smaller than the time used
for aggregation of data in a cell (O(t log n)). Thus, in a cell,
when the aggregation of data from one snapshot finishes, the
aggregation values of previous snapshot are already far away
from this cell and can not cause any interference with current
transmissions originated from this cell.

Therefore, everyO(t log n) the sink can collect one snap-
shot data with pipelining. Then the capacity of our data
aggregation method is nb

O(t log n) = Ω( n
log nW ).

Next, we prove that the upper bound of data aggregation
with pipelining is O( n

log nW ). In other words, our schemes
achieves the order of the optimal. Becausen sensors are
randomly distributed in the

√
n × √

n square, if we divide
the region into disks with radiusL2 = α

√
3 log n/2, every

such disk has average3πα2 log n
4 sensors. Due to Pigeonhole

principle, there exists some disks that haveΘ(log n) sensors.
Now letD be such a disk. When one sensor inD sends its data

packet to a destination, all of the otherΘ(log n) sensors cannot
send their data. The aggregation of theseΘ(log n) sensors
will cost at leastΘ(log nt), i.e., Tagg ≥ Θ(log nt). Thus, the
capacityCagg is less than or equal toO( n

log nW ) for sure.
In summary, we have the following theorem for data aggre-

gation.
Theorem 2:Under physical interference model, the delay

rate Γ and the capacityC of data aggregation in random
sensor networks with a single sink areΘ(

√
n log nW ) and

Θ( n
log nW ) respectively.

Notice that for data collection the delay rate and the capacity
are in the same order (Theorem 1), i.e., the pipelining can
only improve constant factor of the data rate. However, for
data aggregation, it is very interesting to see that pipelining
can increase the data rate in order ofΘ(

√

n
log3 n

).

V. CONCLUSION

In this paper, we study the theoretical limitations of data
collection in terms of delay and capacity for random sensor
networks. For communication scenarios with or without aggre-
gation, we prove that the asymptotical upper bound of delay
rate and capacity, and propose a collection method to achieve
the upper bound within a constant fact. These results can lead
to better network planning and performance for data collection
in wireless sensor network applications. For future work, it is
interesting to study (1) data collection capacity with multiple
sinks under physical inference model and (2) data collection
capacity for arbitrary networks.
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