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Abstract— Data collection is one of the most important func- The performance of data collection in sensor networks
tions provided by wireless sensor networks. In this paper, we can be characterized by the rate at which sensing data can
study the theoretical limitations of data collection and data be collected and transmitted to the sink node. In particular

aggregation in terms of delay and capacity for a wireless sensor - G
network where n sensors are randomly deployed. We consider the theoretical measures that capture the possibilities an

two different communication scenarios (with or without aggre- limitations of collection processing are delay and caafcit
gation) under physical interference model. For each scenario, we the many-to-one data collection. Tllelay of data collection
first propose a new coIIection. method and anglyze its performance s the time to transmione single snapshao the sink from the
in terms of delay and capacity, then theoretically prove that our  gnan5h0t generated at sensors. Considering the size oindata
method can achieve the optimal order. Particularly, the capacity ; .
of data collection is in order of ©(W) where W is the fixed the sngpshot, we can defidelay rate_as the ratio between the
data-rate on individual links. If each sensor can aggregate its data size and the delay. When multiple snapshots from sensors
receiving packets into a single packet to send, the capacity of are generated continuously, data transport can be pigeime
data collection increases to® (. W). the sense that further snapshot may begin to transportebefor
the sink receiving the prior snapshot. The maximum data rate
at the sink to continuously receive the snapshot data from
For wireless sensor networks, often the ultimate goal $¢nsors is defined as theapacity of data collection. Both
to collect the sensing data from all sensors to a sink nodelay rate and capacity reflect that how fast the sink can
and then perform further analysis at the sink node. Thugllect sensing data from all sensors. Itis critical to ustind
data collection is one of the most common services usedtlie limitations of many-to-one information flows and devise
sensor network applications. In this paper, we study sorf#ficient data collection algorithms to maximize performan
fundamental capacity problems arising from different g/pedf wireless sensor networks. In this paper, we are partigula
of data collection scenarios in wireless sensor networks. Anterested in how delay rate and capacity of data collection
each problem, we will derive the asymptotic upper bound ®fry as the number of sensatsincreases.
transport capacity and present efficient algorithms toeaghi  Gupta and Kumar initiated the research on capacity of
such upper bound with certain constant factor. random wireless networks in the seminal paper [1]. A number
We consider a dense sensor network whersensors are Of following papers studied capacity under different coramu
randomly deployed in a finite geographical region. Eachaendiication scenarios [2]-[4]. Recently, capacity limits cdtal
measures independent field values at regular time inteavals collection in random wireless sensor networks have been
send these values to the sink. The union of all sensing valiggdied in the literature [5]-[11]. In [5], [6], Duarte-Meét al.
from n sensors at particular time is callsdapshatThe task first studied the many-to-one transport capacity in dense an
of data collection is to deliver these snapshots to the sike random sensor networks. But they only considered the sahple
to spatial separation, several sensors can successfigniit case with a single sink under protocol interference model.
at the same time if these transmissions do not cause &syenetal.[7] studied capacity of data collection with multiple
destructive wireless interferences. We assume that assfate Sinks in random networks under protocol interference model
transmission over a link has a fixed data-réitebit/second. Liu et al.[8] recently studied the capacity of a general some-
to-some communication paradigm under protocol interfegen
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CNS-0832120, the National Natural Science Foundation dfia&hnder Grant protocol interference model. El Gamal [9] studied the céapac
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I. INTRODUCTION



vidual link is not fixed as a constari¥’ but depended on ©.m) sinknode s incell (. @)

the level of interference. In this paper, we stuthpacity of
data collection under physical interference model for ramd
sensor networks with a single sink

The major contributions of this paper are as follows. (1) ~ Tl
For sensor networks without data aggregation, we propose a 3 e A
new data collection method whose delay rate and capacity S &% |
under physical interference model are bat{1W) which : Tolecle
match the theoretical upper bounds in order. (2) By using el
data aggregation [12], [13] where sensors can cooperate to
aggregate information towards the sink, the communication d 3 e .
overhead is reduced and the capacity is increased. We the- (0,0) (m, 0)
oretically prove that the delay rate and the capacity of data ) - ) ) )
aggregation are®( mlogn nW) and @(lognw) respectively. Fig. 1. Grid partition of the sensor network? cells with cell size ofd x d.
For both cases, our proposed collection/aggregation rdsetho
achieve the optimal orders (i.e., within a constant factbr
upper bounds).
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B. Capacity and Delay

We now formally define delay and capacity of data collec-
[l. PRELIMINARIES tion. Recall that each sensor at regular time intervals igees
A. Network Model a field value withb bits and wants to transport it to the sink.
) o _ We call the union of all values from atl sensors at particular
We consider a sensor network which includeswireless sampling time asnapshotof the sensing data. The goal of

sensor node$” = {vy,v1,--- ,v,} and a single sink node. a4 collection is to collect these snapshots from all s&nso
Here, we assume that both sensor nodes and the sink ngg‘ﬁuick as possible.

are uniformly deployed in a square region with side-length

a = +/n, by use of Poisson distribution with density At nqpired between the time a snapshot is taken by the sensor
regular time intervals, each sensor node measures the flgllgj the time the sink has all data of this snapshot
value at its position and transmits the value to the sink node Definition 2: Thedelay rateof data collectior” is th'e ratio

We adopt a fixed data-rate channel model where each Wirelﬁﬁ?ween the data size of one snapshob and the delayA
node can transmit di/ bits/second over a common wireless On the other hand, the data transport can be pipeliﬁed in

channel. Under such channel model, we assume that EVRI¥ sense that further shapshots may begin to transpontebefo

node has a fixed trgnsmission power. Then a fixed transmissmg sink receiving the prior snapshots. Therefore, we need t
ranger can be defined such that a nodecan successfully define a new data rate of data collection under pipelining.

receive the signal sent by nodgonly if the distance between = 5 ¢ w00 2. The usage rateof data collection’ is the

them is less or equal to. We also assume that all paCkeuﬁumber of time slots needed at the sink between completely

have unit sizeb bits. The time is slotted into time slots with o -
...receiving one snapshot and completely receiving next snap-
t = b/W seconds. Thus, only one packet can be transmﬂtg ot g P P y 9 P

in a time slot between two neighboring nodes.

As in the literature, we consider the interference model%g]
by physical interference modeh our analysis. In physical
interference model, node; can correctly receive the signal
from the sendep; if and only if, given a constant > 0, the
SINR

Definition 1: The delay of data collectionA is the time

Thus, the time used by the sink to successfully receive a
apshot isI" = U x t. Due to pipelining,7” < A. Clearly,
small usage rate anfl are desired.

Definition 4: The capacityof data collectionC' is the ratio
between the size of data in one snapshot and the time to eeceiv

Py 1(||vi — ;1)) such a snap shot (i.e%) at the sink.
X ' > 1. Thus, the capacityC' is the maximum data rate at the
B No+ Sper P Wlox — 03] pacity’

sink to continuously receive the snapshot data from sensors
Here ||v; — v;|| is the Euclidean distance between and Clearly, C is at least as large as the delay r&teand usually
v;, l(z) is the transmission loss during a path of length substantially larger. In this paper, we analyze both detag r
B is the channel bandwidth)Ny > 0 is the background and capacity for data collection in random sensor networks.
Gaussian noise] is the set of actively transmitting nodes
when nodey; is transmitting, and®;, is nodeu;,’s transmission l1l. DATA COLLECTION WITHOUT AGGREGATION
power. In this paper, we consider the attenuation function|n this section, we consider data collection without aggre-
I(z) = min{1,z~"} where3 > 2 is the path loss exponent.gation where each data packet generated from a sensor needs
Hereafter, we assume that each sensor uses the same transgifdividually reach the sinks. We first construct a data
sion powerP, and allNo, 3 andn are fixed constants. Notice collection scheme whose delay rate(iglV’), and then prove
that values of”, Ny, , and transmission rangeshould satisfy that it is order-optimal. Our data collection scheme is Hase

that PETJ\;: > . Thus,r < (#}n)l/ﬁ. on the following grid partition method.




A. Our Partition Method

(/2L a/21))

We first introduce a grid partition method which is essential
for our data collection methods and their theoretical asialy i
As shown in Fig. 1, the network (e.g., thex a square) is
divided intomm? micro cells of the sizel x d. Herem = a/d. wg)
We assign each cell a coordinag j), wherei and j are
betweenl andm, to indicate its position ajth row andith

/1 00) (01

=1

column.

The following lemma gives a guidance of the cell size. |

Lemma 1: [14] Given n random nodes in a/n x /n L
square, dividing the square into micro cells of the size ‘
\/3 bg” x \/3logn, every micro cell is occupied with prob- Fig. 2. Grid partition of interference blocks with size bfx L.
ability at leastl — 1.
Therefore, if we setl = /3logn (i.e.,m = L) every

3logn
micro cell has at least one node with high probability (thBased on physical interference model, its SINR is
probability converges to one as— o0).
We then derive the upper bound of the number of nodes P-ir) )
inside a single cell. B - No + > ai blocks (i,5) except(0,0) £+ 1(di.;)

Lemma 2:Given n random nodes in a/n x /n square, Here,d; ; is the distance from the sender in blogk;) to the

dividing the square into micro cells of the sizg3logn x T . . .
J3Togn, the maximum number of nodes in any cell Jeceiver in block(0,0). By a simple geometric calculation,

: - _3logn dij = /(iL —d)? + (jJL — 2d)2. Remember = \/I5logn
Ologn) with probability at least noe thus bothr andd; ; are larger tharl. Therefore, we need to

Proof: The proof is straightforward from results of thederiveL such that
balls into bins problenj15] and thus ignored here. [ ]
In order to make the whole network connected, the transmis- pP.r=5
sion ranger need to be equal or larger thafbd so that any 5. N, + S P ((iL —d)? + (L — 2d)2)=5/2 =1
. . L ; 0 (4,4)/(0,0)
two nodes from two neighboring cells are inside each other's
transmission range. Hereafter, we set v/5d = /15logn.  In other words, we need

B. Our Data Collection Scheme Z ((GL — d)? + (L —2d)*)~7/? < i _ BNo
I . . - P
As shown in Fig. 1, we can consider data collection of nodes (i.5)/(0,0) g
from four different directions (i.e., quadrants) to theksin ice that:
located in cell(p, q). For the purpose of analysis, we onl)/\lo ice that:
concentrate on the direction which has the largest number of

T 2 L 2\—3/2
sensorse.g, the shaded rectangle in Fig. 1, since the sink can Z (L —d)” + (GL —2d)7)

perform collection on each direction in turn and it only adds (5.4)/(0,0)
constantt in the analysis. Furthermore, here we only consider < > (6L —2id)* + (L — 2jd)*) 7/
the worst case wherg = ¢ = m, that is, the sink is in the (4,9)/(0,0)
upper right corner of the field. = (L—2d)" Z (i2 + j2)~P/2.
For our collection scheme, we first divide the field into big (4,4)/(0,0)

blocks with sizeL x L as shown in Fig. 2. We call these

blocksinterference blockand L interference distanceThus, Instead of considering interference from all blocks j)
the number of interference blocksﬂ%%]. We label each block around (0,0), we relax it to 4 times the interference from
with (4, ) wherei and j are the indexes of the block as inblocks in the right up direction.

Fig. 2. In our collection scheme, we schedule data trangoniss

in parallel at all blocks but make sure that there is only one Z ((iL —d)* + (L — 2d)2)*5/2

sensor in each interference block transferring at any tifoe. (4,5)/(0,0)

avoid mte_rference from' senders in other mterfgrenceldslpc < (L—2d)°° Z (i +j2)*ﬁ/2

we need interference distanéelarger than certain value.

4,7)/(0,0
Next, we derive the lower bound of interference distance 7; DO o on-p)2
such that all simultaneous transmissions as shown in Fign2 c < 4L -2d) Z (@ +757)
be successfully received. Here, we consider the SINR at the (120,520)/(0,0)
receiver in interference blocf), 0) (which is in the center of = 4(L—2d)~7( Y (+;3)72+2 > P

the field) since it has the minimum SINR among all receivers. (i>1,7>1) (i>1,j=0)



(m,m) (m,m) (m,m) (m,m)

oo | | oL | | 00— | | 00 | |
(a) Phase I, 1st time slot (b) Phase I, 2nd time slot (c) Phadest time slot (d) Phase IlI, 2nd time slot

Fig. 3. Our collection method: [Phase 1] each node send it ttaits upper cell; [Phase Il] each node in the top row sendata to its right cell.

Notice that fori > 1, 5 > 1 and g > 2, ( 15 2)5/2 In each phase, the data transmissions in all interfereruak$l
(1 + 4 L))8/2 < L&+ j%)_ Then we have are performed in parallel.
Z (GL — d)? + (L — 2d)%)~7/2 C. Analysis of Delay Rate
(i,7)/(0,0) Now we analysis the delay rate of our data collection
N on-B 2, 2\—B/2 .3y Scheme above. We Qeflne the time needed for the two phases
< A(L-2d) (‘>Z> (@ +57) +2 ‘>Z_ i) asT; andT>, respectively.
(21,521) L1 (:21,7=0) By Lemma 2, the number of nodes in each cell is at most
< 4(L—2d)7P( Z — (= + ) +2 Z i~#) O(logn). Every node needs one time-stab send one packet
- BB Jﬁ . . . .
(i>1 j>1) (i>1,j=0) to its neighbor in the next cell. To avoid interference, gver
interference block can only have one node send a packet to its
= 4(L—-2d)" 2[3 Z B 2g Z B + 22 upper neighbor in every time slotduring Phase I. In Fig. 3,
izl =17 i1 bold lines show the interference blocks. Remember $hist a
= A(L-—2d)7" ZZ constanta, thus the number of cells in the interference block
2’3 ! = is (£)?2 = o And the packet in the lowest rowi.¢. cell
5 1 L (0, k)) has to walkm cells to reach nodes in the highest cell
< 4L -2d) (5 +2) i in the rectangle. Hence,
i>1
L
o T, < (=)*xtxO(logn) x
d
< S(L-2d)” (26 - +2) (since Z

IN

- O(ﬁlogn)m:O(tlogn),/m:gn = O(ty/nlogn).
Therefore, if22 (L —2d) =% (53 +2) < = — 8o 'we can

sure that the SINR at the receiver in the center is at Igast In the beginning of Phase Il, all data are already at cells of

This can be satisfied by setting the top row. The sinls lies on the same row with these cells.
(3—2) 5 BN We now estimatel, needed for sending all data to Each
327 7 07 4 2d. cell in the top row has at mostO(logn) nodes’ data and
m(1+20) * 7 P the number of cells in each interference blocKsisSimilarly,
Rememberr < (54 )”ﬁ this makes sure we can findWe can get
. (B—2) -8
such suitablel.. We can further select = (m (5 - T, < L x t x mO(logn) x m < m20(tlogn) = O(nt).
BNo))=7 4 2d. Sincer = v/5d, d _ o _
Therefore, the total time needed to collédtits information
L _ 3 2(8-2) ' (v/5d)~" ~ BNy )),% 19 from every sensor in the field to the sinkd% + 75 = O(nt).
d (1 + 28) nd—" Pd—8 Thus, the total delay\..; for the sink to receive a complete
3.206-2) 5-8/2 BNydf.  _. snapshot is at mos?(nt). Consequently, the total delay rate
(1 + 29) ' n TP )7F 2. of this collection scheme is
When n — oo, this ratio goes to a constant, denoted by TCoot = nb - Q(Kb) = QW)
«. After having interference blocks, we can now present our Acol nt
collection algorithm which is quite simple and straightfard. It has been proved that the upper bound of delay rate or

It has two phases. In Phase |, every sensor sends its datecapacity of data collection i$V [5], [6]. It is obvious that
to the highest cell in its column (in theth row) as shown in the sink cannot receive at rate faster tH&hsince W is the
Fig. 3(a) and Fig. 3(b), and in Phase I, all data is sent vila cefixed transmission rate of individual link. Therefore, theay
in the ath row to the sink as shown in Fig. 3(c) and Fig. 3(d)ate of our collection scheme achieves the order of the upper



(m,m) (m,m)

bound, and the delay rate of data collectiorbi§i’). Notice T TR T e e i e e e e v e
that for each individual sensor the lowest achievable dedty AR H AR DR BENBARHE s [t
of our method i9(WW/n) which also meets the upper bound. [ e - s PE DR B EW A TR e e A b

D. Capacity of Data Collection

Next, we consider the situation with pipelining. It is clear
the upper bound of capacity is still. Since our above scheme KL 3| BE
already reaches the upper bound, the pipelining operation ¢ 4= e
only improve the capacity within a constant factor. OO

With pipelining, in Phase I, the sensor can begin to transfer (a) Phase I (b) Phase Il
the data to its up-cell from next snapshot after sensors Fl@ 4. Our aggregation method: [Phase |l] each selected agdesgates
its interference block finish their transmission of pre@oudata to its upper cell; [Phase 1l1] each selected node indhedw aggregates
shapshot. Whenever the cells in the top row receive b data to its right cell
data (every cell in the top row receives a data from its
lower cell), Phase Il can begin at the top row. We consider
the improvements of pipelining on both phases. With t
pipelining, the timeT] for the highest cell to receive a new
set ofm - b data in Phase | is

(0,0

e sensor measurements is used for data aggregation.-Mosci

roda [13] then further studied the aggregation capacity fo
arbitrarily deployed networks under both protocol intesfece
model and physical interference model.

L
/ N2 _
s (d) xtx O(logn) = O(tlogn). A. Analysis of Delay Rate

And the timeT} for the sink to receive a new set of b data ~ We again assume that the sinks located in cell(m, m).

in Phase Il is Our aggregation scheme has three phases and uses the same
I n partition method in Section IlI.
T; < 7% txm=O0(t 1Ogn)- First, each micro cell chooses a sensor which collects

data from all the other sensors in the same micro cell and
Therefore, the total time for sink to receiwe- b data isT] + aggregates into one packet. Based on Lemma 2, each micro

Ty = O(t,/+2-). Thus, the capacity of our method withcell has at mostO(logn) nodes. Assume thaly’ is the

1
pipelining is ;ﬁ(f fcime needed to collect da'_ca inside ezzch cell. Because of the
interference distanc®, 77’ is at most(£)? - O(logn) - ¢.
Cool = _m-b Qw). Second, every selected node waits for all data in the same
T+ T3 snapshot from cells, which are below its own cell and within
This also meets the upper boufid in order. the same column, and then aggregates them with its value into
In summary, we have the following theorem: a single packet and sends it to its upper cell. See Fig. 4(a).

Theorem 1:Under physical interference model, the delaf the end of this phase, all value has been aggregated at the
ratel" and the capacity’ of data collection in random sensortoP row where the sink sits. The time Qeeded for this phase
networks with a single sink are both(1W). T3 is bounded from above byr x ¢ x (3) = O(, /1),

since every% columns only one node can transmit due to
interference, as shown in Fig. 4(a).

In this section, we investigate a different data collection Third, as shown in Fig. 4(b), the information is aggregated
scenario where each sensor can aggregate its received gafaells one by one in the top row. The time need&dis at
(multiple packets) into a single packet. For example, ifgm  mosts, x ¢ = ©( )
just wants to know the maximal temperature in the deployed . . .

{‘ield, then each sensor can send out tphe maximal sensir?g \)//alu-(la—herffore’ the total dela_ﬁ“” s T+ T+ T35 =
towards the sink instead of all values which it receives frof @t)' The delay rate is

other sensors. Here, we study baldlay rateand capacityof nb

data aggregation with a single sink. The definitions of delay Logg = N Q(y/nlogn - W).

rate and capacity are similar to those of data collection in agg

Section Il. Notice that when the sink receives the maximal Next, we prove that this delay rate is order-optimal. Notice
value (justb bits) of a snapshot of the field:(sensors), we that for one snapshot the data aggregation is completed when
still count the size of all values from that snapshot as the sithe sink has the aggregated value of all data in the snapshot.
of the received data. Thus, delay rat%%and capacity i#’. Let T,omplete denote the time that all data of one snapshot

There is not much work on capacity of data aggregation are aggregated in the sink afi¢},,:ncs: be the time needed
wireless sensor networks, except for [12] and [13]. Giridhdor the value of the farthest node reaching the sink. Since to
and Kumar [12] investigated a more general aggregation-prailmmpute the aggregated value, all values from the snapshot a
lem in random sensor network where a symmetric function oteded,Ttorthest < Teompiete. Based on the network model,

IV. DATA COLLECTION WITH AGGREGATION




the farthest node from the sink locates on one corner of thacket to a destination, all of the oth@flog n) sensors cannot
field. We denote the distance between the farthest node aethd their data. The aggregation of th€3@ogn) sensors
the sink asR. It is easy to show that the minimum value ofwill cost at leastO(log nt), i.e., T4 > O(lognt). Thus, the
R is @ (when the sink is in the center of the field)e. capacityC,,, is less than or equal t@(-2—-W) for sure.

logn

R > Y22 The data in the farthest node needs at Idagime  In summary, we have the following theorem for data aggre-

slots to reach the sink,for the transmission range islence, gation. o
Theorem 2:Under physical interference model, the delay

R b _ Y™ b n b rate " and the capacityC of data aggregation in random
Tfarthestzi't:*‘izi'iz s . . .
r r W r W 30logn W sensor networks with a single sink a&yy/nlogni¥) and
O(—2-W) respectively.

Consequently, we have log n . :

g Y Notice that for data collection the delay rate and the capaci
T > T, > n_ b are in the same order (Theorem 1), i.e., the pipelining can
complete = Zfarthest = Al 301ogn W' only improve constant factor of the data rate. However, for

data aggregation, it is very interesting to see that pipedin
can increase the data rate in order@f, / —%—).

log® n

Therefore, the delay rate of data aggregation is at most

nb nb —
Teomplete = [t = 6(ynlogn-W). V. CONCLUSION
¢ In this paper, we study the theoretical limitations of data
In summary, our data aggregation algorithm can achieve th§llection in terms of delay and capacity for random sensor
upper bound of delay rat®(y/nlogn - W). networks. For communication scenarios with or without aggr
B. Capacity of Data Aggregation gation, we prove that the asymptotical upper bound of dellay
. ) . .. rate and capacity, and propose a collection method to aehiev
We now describe our aggregation algorithm with pipeliningne ypper bound within a constant fact. These results cah lea
In the above algorithm, until the sink receives the aggeiaty, petter network planning and performance for data cotiact
value for all data in the previous snapshot, sensors beginifQyireless sensor network applications. For future works i
send data in the next snapshot. However, with pipelining,i@eresting to study (1) data collection capacity with ripkt
sensor can start sending (or aggregating) data in the ngfiys under physical inference model and (2) data collactio
shapshot before the aggregated value of the previous mp%‘&pacity for arbitrary networks.
reaches the sink. Actually, it can initiate sending if thgrag
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