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With the surging of smartphone sensing, wireless networking, and mobile social networking techniques,
Mobile Crowd Sensing and Computing (MCSC) has become a promising paradigm for cross-space and large-
scale sensing. MCSC extends the vision of participatory sensing by leveraging both participatory sensory
data from mobile devices (offline) and user-contributed data from mobile social networking services (online).
Further, it explores the complementary roles and presents the fusion/collaboration of machine and human
intelligence in the crowd sensing and computing processes. This article characterizes the unique features and
novel application areas of MCSC and proposes a reference framework for building human-in-the-loop MCSC
systems. We further clarify the complementary nature of human and machine intelligence and envision the
potential of deep-fused human–machine systems. We conclude by discussing the limitations, open issues,
and research opportunities of MCSC.
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1. INTRODUCTION

Successful society and city management relies on efficient monitoring of urban and
community dynamics for decision and policy making. To achieve this, traditional
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sensing techniques (e.g., sensor networks) usually leverage distributed sensors to ac-
quire real-world conditions [Lewis 2005; Stankovic 2008]. However, though there has
been a growing body of studies on sensor networks, commercial sensor network tech-
niques have never been successfully deployed in the real world for several reasons,
such as high installation cost, insufficient spatial coverage, and so on [Liu et al. 2013;
Burke et al. 2006].

Mobile Crowd Sensing and Computing (MCSC) is a large-scale sensing parad-
igm based on the power of user-companioned devices, including mobile phones, smart
vehicles, wearable devices, and so on [Guo et al. 2014]. MCSC allows the increasing
number of mobile phone users to share local knowledge (e.g., local information, ambient
context, noise level, and traffic conditions) acquired by their sensor-enhanced devices,
and the information can be further aggregated in the cloud for large-scale sensing and
community intelligence mining [Zhang et al. 2011]. The mobility of large-scale mobile
users makes MCSC a versatile platform that can often replace static sensing infras-
tructures. A broad range of applications are thus enabled, including traffic planning,
environment monitoring, mobile social recommendation, public safety, and so on.

A formal definition of MCSC is as follows: a new sensing paradigm that empowers
ordinary citizens to contribute data sensed or generated from their mobile devices and
aggregates and fuses the data in the cloud for crowd intelligence extraction and human-
centric service delivery. From the AI perspective, MCSC is founded on a distributed
problem-solving model [Brabham 2008]. In the literature history, the concept of crowd-
powered problem solving has been explored in several research areas. One decade ago,
Surowiecki wrote a book titled The Wisdom of Crowds (or crowd wisdom) [Surowiecki
2005], where a general phenomenon—that the aggregation of data or information from
a group of people often results in better decisions than those made by a single person
from the group—is revealed. It identifies four key qualities that make a crowd smart:
diversity in opinion, independence of thinking, decentralization, and opinion aggrega-
tion. A similar concept to crowd wisdom is collective intelligence [Malone et al. 2009].
Different from the two concepts that focus on the advantages of group decision making,
MCSC is mainly about crowd-powered data collection and processing. In 2005, two se-
nior editors from Wired Magazine, Jeff Howeand and Mark Robinson, coined the term
“crowdsourcing” [Howe 2006]. According to the Merriam-Webster Dictionary,1 crowd-
sourcing is defined as the practice of obtaining needed services or content by soliciting
contributions from a large group of people, and especially from an online community. A
typical example is Wikipedia, where tens of thousands of contributors collaboratively
create the largest encyclopedia of the world. However, compared to MCSC, crowd-
sourcing focuses on the participation of online crowds. The closest concept to MCSC
is participatory sensing, proposed in Burke et al. [2006]. It tasks average citizens and
companioned mobile devices to form participatory sensor networks for local knowledge
gathering and sharing. The definition of participatory sensing emphasized explicit
user participation when it was proposed. In recent years, with the rapid development
of smartphone sensing and mobile Internet techniques, the scope of crowd problem-
solving systems using mobile devices has been broadened. To this end, we extend the
definition of participatory sensing from two aspects and term the new concept MCSC
[Guo et al. 2014]. First, MCSC leverages both sensed data from mobile devices (from
the physical community) and user-contributed data from mobile social network services
(from the online community). In other words, MCSC counts both explicit and implicit
user participation for data collection. Second, MCSC presents the fusion of machine
and human intelligence in both the sensing and computing process. A summary of the
literature history is given in Table I.

1http://www.merriam-webster.com/dictionary/crowdsourcing.
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Table I. The Literature History of Crowd-Powered Problem Solving

Concept Definition and Relationship
Crowd wisdom/collective
intelligence

The aggregation of data or information from a group of people often results
in better decisions than those made by a single person from the group.

Crowdsourcing The practice of obtaining needed services or content by soliciting
contributions from a crowd of people, especially from an online community.

Participatory sensing It tasks average citizens and companioned mobile devices to form
participatory sensor networks for local knowledge gathering and sharing.

Mobile crowd sensing and
computing (MCSC)

An extension to the participatory sensing concept to have user
participation in the whole computing lifecycle: (1) leveraging both offline
mobile sensing and online social media data; (2) addressing the fusion of
human and machine intelligence in both the sensing and computing
process.

MCSC benefits a number of application areas regarding urban/community dynamics
monitoring and beyond. At the same time, numerous and unique research challenges
and open issues arise from the MCSC paradigm. Specifically, the main contributions
of our article are as follows:

—Characterizing the unique features of MCSC, such as grassroots-powered sensing,
human-centric computing, transient network connection, and cross-space crowd-
sourced data processing.

—Reviewing existing applications and techniques on community/urban sensing, in-
cluding environment monitoring, traffic planning, mobile social recommendation,
healthcare, and public safety. Based on these studies, a layered reference framework
to build MCSC systems is proposed.

—Investigating the complementary features of human capabilities and machine intel-
ligence and exploring the collaboration patterns of them in the crowd sensing and
computing process.

—Identifying challenges and future research directions of MCSC. We examine the
challenges such as sensing with human participation, incentive mechanisms, data
selection in transient networks, data quality and data selection, and heterogeneous
crowdsourced data mining. The future research trends and emerging techniques to
address these challenges are also discussed.

The remainder of the article is organized as follows. In Section 2, we character-
ize the unique features of MCSC. Section 3 presents various novel applications en-
abled by MCSC, followed by a conceptual framework of MCSC systems in Section 4.
Section 5 investigates the deep fusion of human and machine intelligence and potential
collaboration patterns. The limitations, challenging issues, and research opportunities
to MCSC are discussed in Section 6. We conclude the article in Section 7.

2. CHARACTERIZING MCSC

In this section, we first characterize the unique features of MCSC and then present its
taxonomy.

2.1. Grassroots-Powered Sensing

Compared to traditional sensor networks, the key difference of MCSC is the involve-
ment of grassroots for large-scale sensing. Specifically, grassroots participation offers
MCSC a number of advantages: (1) MCSC leverages existing sensing and communi-
cation infrastructure, and therefore, its deployment costs are quite low; (2) the inher-
ent mobility of mobile device users provides unprecedented spatiotemporal coverage
compared to static sensor network deployments. A summarization of the differences
between MCSC and traditional sensor networks is given in Table II.
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Table II. Differences Between MCSC and Traditional Sensor Networks

Operators Deployment Cost Coverage Data Quality
Wireless sensor
network (WSN)

Government
agencies, public
institutions

High: Expensive
sensors and
infrastructure to
deploy the network

Limited coverage
with static sensor
nodes

High, sound
level sensors

Mobile crowd
sensing and
computing (MCSC)

Potentially
everyone

Low: Leveraging
existing
infrastructure, i.e.,
broad proliferation
of cellular network
and mobile device
usage

The inherent
mobility of the
phone carriers
provides
unprecedented
spatiotemporal
coverage

Low, suffering
from issues
such as built-
in sensor
performance
and the
trustworthiness
of user-
contributed
data

The involvement of citizens in the sensing loop is the chief feature of participatory
sensing. The same is true for MCSC, but it moves a step further than participatory
sensing and introduces several new features.

—The data generation mode. Compared with participatory sensing, which mainly col-
lects data from the physical space using mobile devices, there are two different data
generation modes in MCSC. (1) Mobile sensing. It typically functions at a context-
based and individual manner, leveraging the rich sensing capabilities from individ-
ual devices [Lane et al. 2010]. It is the data collection method used by participatory
sensing. (2) Mobile social networking (MSN). With the rapid development of mobile
Internet, MSN services [Zhang et al. 2014d] that bridge the gap between online in-
teractions and physical elements (e.g., check-in places, activities [Liu et al. 2012],
and objects [Guo et al. 2013]) are fast growing. The large-scale user-contributed data
opens a new window to understand the dynamics of the city and society, which is
counted as the other data source for MCSC. The combination of participatory mobile
sensing and participatory MSN data is a unique feature of MCSC.

—The sensing style. According to Ganti et al. [2011], traditional crowd-powered sensing
spans a wide spectrum regarding the degree of human involvement, where partici-
patory sensing and opportunistic sensing are placing at the two ends. By having two
distinct participatory data contribution modes, the sensing style of MCSC changes
and we can categorize it from a new dimension: user’s awareness to the sensing task.
On one hand, for participatory/opportunistic sensing, data collection is the primary
purpose of the application. As a consequence, the sensing task is explicit to the user
(as he or she is informed). On the other hand, the primary usage of MSN services is
for social interaction, while the data generated along with online interactions is used
implicitly for collective intelligence extraction. In other wards, we can characterize
the sensing style of MCSC at two levels: explicit and implicit.

—Volunteer organization. The participants can be self-organized citizens with varying
levels of organizational involvement, ranging from total strangers to loosely orga-
nized groups of neighbors facing a shared problem to well-organized previously ex-
isting activism groups [Maisonneuve et al. 2010]. Specially, we categorize volunteer
organizations into the following three modes, which work at distinct scales.
(1) Group. This refers to a loosely or opportunistically organized group of neighbors

(i.e., spatially nearby phones) that collaboratively address a shared problem. For
example, in SignalGuru [Koukoumidis et al. 2011], vehicles that are passing
through an intersection can sense and share the traffic signal information and
adjust their driving speed. Movi [Bao and Choudhury 2010] allows the collection
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Table III. Characterizing the Scales of MCSC

Scale
Data

Quality Collaboration
Social Tie
Strength Key Techniques Major App Areas

Group Medium Close Weak or
strong

Opportunistic
connection and
group formation

Local area sensing,
local event replay

Community High Close Medium Community cre-
ation/detection

Scientific research,
community-specific
services

Urban Low Loose Weak Data quality,
trust
maintenance

Urban dynamics
sensing,
environment
monitoring

and replay of a local social event leveraging the local-captured information. In this
mode, people usually form the so-called opportunistic or ad hoc groups [Guo et al.
2013], and the relation among group members can be weak [Koukoumidis et al.
2011] or strong [Bao and Choudhury 2010]. The key techniques include group
formation/identification and management. For instance, we need to partition the
set of mobile devices based on the associated physical or social contexts [Bao and
Choudhury 2010].

(2) Community. According to the Cambridge Advanced Learner’s Dictionary,2 com-
munity is defined as “the people living in one particular area or people who are
considered as a unit because of their common interests, social group or national-
ity.” Community-based MCSC is the crowdsourcing where task takers come from
an existing community or could easily form a new community. The members trust
each other and are more likely to interact with each other during the task execu-
tion process, resulting in high-quality data. For instance, the MIT Owl project3

takes advantage of the sensor-enhanced smartphones (with GPS, directional mi-
crophones, etc.) to assess owl populations in a huge region. Hundreds of amateur
botanists have been reported to use their mobile phones to gather pictures of
plants to study the link between climate change and our ecosystems [Shilton
et al. 2009].

(3) Urban. It targets the applications with a broad appeal, such as urban traffic
dynamics [Chen et al. 2013] and air/noise pollution monitoring [Zheng et al.
2013]. Any citizens (mostly strangers) can participate in the urban-scale sensing
activity. However, compared with the previous two modes, the data contributed
by ordinary users often has low quality (e.g., people may contribute fake data).

We further summarize the characteristics of MCSC at the previous three different
scales in Table III.

2.2. Hybrid Human–Machine Systems

To motivate full-scaled user participation and enhance user experience, MCSC systems
should be developed in a human-centric manner. Particularly, it should address the
following key problems:

—Motivation of human participation. Mobile devices usually have limited resources
(e.g., energy, bandwidth, etc.), and the sensory information from them is often highly
sensitive. To facilitate data sharing among peers, the development of an incentive
model is significant [Guo et al. 2013]. The deployment of a large-scale MCSC system

2http://dictionary.cambridge.org/dictionary/british/.
3http://owlproject.media.mit.edu.
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usually requires a considerable amount of participants, and some of them may drop
out of the collecting loop unless the return on investment is greater than their ex-
pectations. Questions about human motivation have been central in philosophy and
economics. For example, the promise of financial or monetary gain has been an im-
portant incentive method for most actors in markets and traditional organizations.
Interest and entertainment are also important motivators in many situations, even
when there is no prospect of monetary gain [Malone et al. 2009]. In addition, people
could be motivated to participate in an activity by social and ethical reasons, such
as socializing with others, reputation, or recognition by others. Some crowd-sensing
services ask users to contribute their data for service usage. There are also indi-
rect ways to enhance user participation, such as energy conservation and privacy
protection mechanisms in data contribution.

—Fusion of human–machine intelligence. The involvement of human participation in
the sensing and computing process will lead to a mixture of human and machine
intelligence in MCSC. On one hand, when the crowd participates in the loop of
data sensing, human intelligence is embedded in the obtained data (e.g., contribu-
tors can decide what to be captured). On the other hand, based on the wealth of
data that is collected in MCSC systems, both machine intelligence (e.g., machine
learning and data mining techniques) and human intelligence (e.g., cognition, rea-
soning) can be used for data processing (e.g., classification, decision making). By
integrating the intelligence of both crowds and machineries, MCSC allows the cre-
ation of hybrid human–machine systems. However, such human intelligence and
machine intelligence could either be complementary or conflicting, and they show
strength and weakness to distinct computing problems. Therefore, novel approaches
and techniques should be studied to have “optimal” fusion of human and machine
intelligence in MCSC systems. More details will be presented in Section 5.

—User security and privacy. The sharing of personal data (e.g., user location, ambient
sound) in MCSC applications can raise significant concerns about security and user
privacy. To motivate user participation, we should explore new techniques to protect
information security in data contribution. Particularly, the definition of security and
privacy might continue to evolve as MCSC systems mature, which is highlighted by
the fact that even if personal information is not directly obtained by an unwanted
party, much of the information can be inferred from aggregated data. For example,
the fact that an object with an RFID tag can be uniquely identified and tracked back
to its user might bring up many privacy issues [Acampora et al. 2013]. Therefore,
new privacy-preserving approaches need to be developed to ensure that important
information cannot be gleaned from mined patterns [Matatov et al. 2010; Fung et al.
2010; Christin et al. 2011].

2.3. Transient Networking

The success of MCSC relies on leveraging ubiquitous and heterogeneous communi-
cation capabilities to provide transient network connection and effective collection of
mobile sensing data. While different MCSC applications or systems may have various
connection architectures and communication requirements, most of them share the
following characteristics:

—Heterogeneous network connection. Current mobile devices are usually equipped with
multiple wireless communication interfaces and supported via different wireless
technologies. For example, a smartphone can at least have GSM, WiFi, and Blue-
tooth interfaces. While GSM and WiFi interfaces can provide network connectivity
with preexisting communication infrastructure (e.g., via cellular base stations in an
urban area or WiFi access points in a campus building) in relevantly large regions,
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Bluetooth or WiFi can also provide short-range connection among mobile devices
and form self-organized opportunistic networks for data sharing [Conti and Kumar
2010; Guo et al. 2013]. Heterogeneous networks raise new research challenges and
enriched opportunities for MCSC applications by supporting transient networking
services, such as connectivity, collaborative sensing, and data routing/transmission,
for the participants crossing these multiple wireless networks.

—Time-evolving network topology and human mobility. The mobility of mobile devices
and their carriers not only provides a nice coverage for sensing tasks in MCSC
but also brings challenges to communications. Network topology evolves over time,
which makes it hard to find stable routes among mobile devices. Traditional routing
protocols designed for static wireless networks or wired networks cannot handle
highly dynamic topology to fulfill basic communication tasks in MCSC (especially for
pure ad hoc deployment). Fortunately, recent advances in mobile ad hoc networks
and wireless sensor networks provide many low-cost ad hoc routing solutions [Chen
et al. 2011]. In addition, since human mobility plays a major role in governing the
network dynamic and behavior in MCSC, recent research efforts have been devoted to
mobility modeling and new routing schemes based on human mobility [Karamshuk
et al. 2011; Pasquale and Silvestri 2013].

—Disruption tolerance service. In some MCSC applications, the sensing data from each
individual mobile device does not need to be transmitted in real time or guaranteed
to be complete and accurate. Therefore, such MCSC systems can take advantage of
disruption-tolerant networks [Gao and Cao 2011], which only rely on intermittent
network connectivity and have a much lower deployment cost. Note that many mobile
sensing devices cannot be guaranteed to be connected all the time due to poor network
coverage (e.g., poor signal strength due to interference or no signal in a rural area),
energy constraint (e.g., low battery), or user preference (e.g., phone shut off in a
meeting) [Ma et al. 2014]. Thereby, it is possible that the network in MCSC has
a very sparse connection, and disruption-tolerant services should be used. In such
situations, the sensing data is usually stored at local storage and waits for future
transmission opportunities.

—High scalability requirement. Since MCSC relies on sensing data from a large volume
of mobile users, the scalability is clearly a basic requirement and key challenge
for underlying communication systems. To achieve sufficient scalability, the MCSC
communication protocols and network architectures are usually highly distributed
and decentralized. Such solutions can also improve the robustness of the overall
MCSC system. In addition, energy-efficient design has to be considered for MCSC
due to the limited power resources of each individual device and the large number of
devices in the system.

2.4. Crowd Data Processing and Intelligence Extraction

The aim of MCSC is to extract high-level intelligence from a large volume of user-
contributed data. Regarding the value of intelligence and its beneficiary, we can classify
it into three distinct dimensions [Guo et al. 2013], namely, user, ambient, and social
awareness.

—User awareness refers to the extraction of personal contexts (e.g., location, activity)
and behavioral patterns (e.g., mobility patterns).

—Ambient awareness is to learn the status (e.g., noise level of a bus stop, traffic dy-
namics of a street) or the semantics (the logical type) of a particular space. The space
can be small (e.g., a restaurant) or large (e.g., a city-wide area).

—Social awareness is about the contexts of a group or a community, such as social
activity type, interpersonal relations, and so on.
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However, data collected from MCSC systems has brought forth numerous new issues
to the effective extraction of such intelligence, for example, its low quality and cross-
space characters.

—Low-quality data. Data quality is usually defined as the degree of how fit the data is
for its intended uses in operations, decision making, and planning. In other words,
low-quality data is user-related data collected regardless of fitness for use. Particu-
larly, the involvement of human participation brings forth critical challenges to the
data quality of MCSC systems. For example, MCSC participants may send incorrect
or low-quality data to the backend server [Zhang et al. 2014c], data contributed by
different people may be redundant or inconsistent [Uddin et al. 2011], and the same
device might be used to record the same activity under distinct sensing conditions
(e.g., sensing ambient noise when placing the mobile phone in a pocket or at hand).
Therefore, data selection is often needed to improve data quality, and we should
explore methods on fault filtering, quality estimation, expert contributor encourage-
ment, and so forth.

—Heterogeneous, cross-space data mining. The mobile crowd data can be collected from
both offline/physical and online/virtual communities. Different communities repre-
sent distinct interaction manners (e.g., comments/transfers online, colocation offline)
and contain different knowledge (e.g., friendship in online communities, movement
patterns in offline communities). Therefore, how to effectively associate and fuse
cross-space data (e.g., how physical events are mirrored in online social networks)
and how to integrate their complementary features (e.g., from pieces of data collected
from different sources to a comprehensive picture of a sensing object [Wang et al.
2014]) become important yet challenging research issues for MCSC.

2.5. The Taxonomy of MCSC

According to the main characters of MCSC, as summarized in Figure 1, a taxonomy is
proposed in this section, which can steer the discussions in the following sections.

Mobile sensing. Both hardware sensors and software sensors are involved in MCSC.
The prior one refers to embedded sensors (e.g., accelerometer, GPS, camera) in mobile
devices, while the latter one counts user-generated data from MSN portals. In terms
of the degree of user involvement in MCSC, we can group the sensing styles as partic-
ipatory sensing, opportunistic sensing, and hybrid sensing (a combination of machine
computation and user control). On the other hand, in terms of user awareness to the
sensing task, we can categorize them as implicit sensing and explicit sensing. Sensing
tasks can work continuously (continuous sensing) or in the event-triggered sensing man-
ner. For the prior case, the relevant sensor works continuously under the parameter
settings (e.g., sampling rate, duration) of a sensing task. However, continuous sensing
on mobile devices may be too energy expensive [Zhang et al. 2014a], and some sensing
tasks are only meaningful under certain sampling contexts (e.g., certain time periods
or places). In such cases, triggers should be defined to capture data in a context-aware
manner [Bao and Choudhury 2010].

Crowd data collection. Regarding the scale of crowd data contribution, it can be small
or large, ranging from a group to a community to the urban scale. The MCSC network
connection can be broadly categorized into three types: infrastructure based, ad hoc,
and hybrid. The first one leverages existing infrastructure (e.g., cellular, 3G, access
points), the second one usually forms opportunistic networks [Conti and Kumar 2010],
while the last one mixes the features of the prior two types. Furthermore, as discussed
in Section 2.2, incentives for user participation used for the crowd sensing can include
monetary, ethical, entertainment, service provision, privacy protection, and so on.
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Fig. 1. A taxonomy graph of MCSC.

Crowdsourced data processing. The involvement of human participation in crowd
sensing brings forth redundant, low-quality, or even fake data to MCSC systems, and
thus data selection is often needed to improve data quality. Meanwhile, MCSC systems
usually use heterogeneous devices, and some of these devices may have limited comput-
ing resources while others have more. It thus results in two different data processing
methods in MCSC: the centralized method transmits all gathered data to a backend
server for processing, whereas the self-supported method endows the device itself with
the ability for data processing [Guo et al. 2013]. Recently, some studies have been try-
ing to balance between them based on hybrid methods [Guo et al. 2013; Miluzzo et al.
2010].

Crowd intelligence extraction and usage. As presented in Section 2.4, there are three
main types of crowd intelligence: user, ambient, and social awareness. The learned
crowd intelligence can be used by authorities, public institutions, and ordinary citizens
in different application domains, for example, public health, urban planning, and envi-
ronmental protection. We further derive the two major purposes of MCSC in application
usage: decision making and visualization and sharing. For decision making, it refers to
making decisions (e.g., object classification/recognition, event prediction/replay, policy
making) or cueing recommendations according to the learned knowledge. For visual-
ization and sharing, the collected information is visualized and shared among citizens.

ACM Computing Surveys, Vol. 48, No. 1, Article 7, Publication date: August 2015.
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3. MCSC-EMPOWERED APPLICATIONS

The development of MCSC has resulted in various novel sensing applications. A selec-
tion of representative applications will be presented and discussed in this section, as
shown in Table IV, V, VI, and VII, respectively.

3.1. Crowd-Powered Environment Monitoring

The participatory and mobile nature of MCSC provides a novel way for environment
monitoring, such as nature preservation and pollution measurement.

Nature preservation. Many scientific studies are based on the large-scale data col-
lected from the real world. During the past few years, people’s mobile devices have been
explored to contribute data for various scientific studies. For example, with the help
of human volunteers, the Great Backyard Bird Count project4 continuously reported
the count of watched birds in the United States. The MIT Owl project, on the other
hand, leveraged the network of sensor-equipped smartphones to study owl populations.
Scientists also took advantage of citizens to collect data to study the impacts of climate
change, such as the link between increasing temperatures and the timing of specific
events of plants (e.g., emergence of the first leaf, fruiting) [Shilton et al. 2009]. We are
sure that the prospect of working with large-scale citizen-generated information for
scientific research and nature preservation is becoming a reality.

Noise pollution measurement. Noise pollution has become a worldwide problem. Stud-
ies have linked noise exposure to a decline in health and in quality of life, citing raised
blood pressure, hearing loss, annoyance, and so on [Stansfeld and Matheson 2003]. In
light of its risks, the European Commission mandates the creation of noise contour
maps to gather information about the exposure.5 However, government efforts are lim-
ited because in most cases the deployed sensing nodes are not able to cover all areas
of the city. This issue is remedied with the emergence of MCSC, where microphones in
smartphones can be used to measure the ambient noise level and the data aggregated
from the volunteers at the city scale can be used to generate a fine-grained noise map.
NoiseTube [Maisonneuve et al. 2010] was a system that could measure personal ex-
posure to environmental noise in users’ daily lives. Shared measurements were used
to create city noise maps. EarPhone [Rana et al. 2010] was also a participatory noise
mapping system that also used mobile phones to determine environmental noise lev-
els (particularly roadside ambient noise). SoundOfTheCity [Ruge et al. 2013] allowed
users to link their feelings and experiences with the measured noise level, for example,
is it in a party or in a crowded street.

Air pollution measurement. The PEIR project [Mun et al. 2009] linked users’ trans-
portation mode (e.g., walking, driving) and its environmental impact (e.g., carbon expo-
sure during daily activities). Mobile phones were also used to gather the information of
on-the-road diesel trucks to study community exposure to urban air pollution [Shilton
et al. 2009]. ExposureSense [Predic et al. 2013] explored the integration of WSN and
participatory sensing paradigms for personal air quality exposure measurement. U-
Air [Zheng et al. 2013] inferred fine-grained air quality information (e.g., PM2.5) of a
city using heterogeneous crowdsourced data, including the air quality data reported by
existing sensing stations, points of interest (POIs), traffic information, and so on. The
BikeNet application [Eisenman et al. 2010] could measure and report the CO2 level
along the path of a cyclist’s activity.

4http://www.birdsource.org/gbbc/.
5http://ec.europa.eu/environment/noise/directive.htm.
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Table IV. A Summary of Main MCSC Applications and Sensing Modalities

Application
Type Function Typical Applications (Sensors Used)
Environment
monitoring

Nature preservation MIT Owl (GPS, compass, directional microphone)

Noise pollution
measurement

NoiseTube [Maisonneuve et al. 2010], EarPhone [Rana et al. 2010],
SoundOfTheCity [Ruge et al. 2013] (GPS, microphone)

Air pollution
measurement

PEIR [Mun et al. 2009] (GPS)
BikeNet [Eisenman et al. 2010] (GPS, accelerometer, CO2

meter, microphone)

Transportation
and traffic
planning

Traffic dynamics
Real Time Rome [Calabrese et al. 2011] (GPS from citizens,
buses, taxies)
Liu et al. [2009], Wen et al. [2008] (GPS from taxis)

Public transportation

B-Planner [Chen et al. 2013] (GPS, pick-up/drop-off records
from taxis)
Morency et al. [2007] (bus boarding records)
Zhou et al. [2012] (cell tower signals, audio recordings, etc.)

Individual travel
planning

VTrack [Thiagarajan et al. 2009], T-Share [Wolfson et al. 2013],
SmartTrace+ [Costa et al. 2011] (GPS)
SingalGuru [Koukoumidis et al. 2011] (camera)

Road condition
Nericell [Mohan et al. 2008] (GPS, accelerometer, microphone)
PotHole [Eriksson et al. 2008] (GPS, accelerometer)

Urban
dynamics
sensing

Human urban
mobility/behavior
patterns

Noulas et al. [2012] (check-ins, GPS)
UBhave [Lathia et al. 2013] (microphone, Bluetooth)

Urban social
events/structure

Crooks et al. [2013] (tweets)
mHealth [Consulting 2009] (cell tower)
Tang and Liu [2010], Wang et al. [2014] (blogs, check-ins)
FlierMeet [Guo et al. 2015] (images, GPS)

Social functions of
urban regions

Pan et al. [2013] (GPS from taxis)
Karamshuk et al. [2013] (check-ins, tips)

Location
services

Logical localization CrowdSense@Place [Chon et al. 2012] (images, audio clips, GPS)

Interesting location
discovery

GeoLife [Zheng et al. 2011] (GPS trajectories)

Mobile social
recommenda-
tion

Place
recommendation

GeoLife [Zheng et al. 2012] (GPS trajectories)
Ye et al. [2011], Yang et al. [2013] (check-ins)

Itinerary suggestion
Zheng and Xie [2011] (GPS)
Yu et al. [2014] (check-ins)

Service/activity
recommendation

T-Finder [Yuan et al. 2013] (GPS from taxis)
Zhang et al. [2013] (location, activity)

Healthcare Public health
Google [Ferguson et al. 2006] (search query, location)
Wesolowski et al. [2012] (location)

Personal well-being
Neat-o-Games [Fujiki et al. 2008] (accelerometer)
DietSense [Reddy et al. 2007] (camera, microphone, GPS)

Public safety Crime prevention

Lee et al. [2011] (geo-tagged Tweets)
Boston Marathon explosion [Fowler and Schectman 2013]
(images, videos, texts)
iSafe [Ballesteros et al. 2014] (location, reviews)

Disaster relief
Haiti [Bengtsson et al. 2011] (GPS)
Sakaki et al. [2010] (geo-tagged Tweets)
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Table V. A Taxonomy of Major MCSC Applications on User Awareness

Application Sensing Style Network Data
Name and Scale Sampling Incentives Architecture Processing Usage
CrowdSense
@Place
[Chon et al.
2012]

Participatory,
urban

Triggered Service Infrastructure Centralized Decision making
(classification)

GeoLife
[Zheng et al.
2011]

Opportunistic,
urban

Continuous —— Infrastructure Centralized Decision making
(recommenda-
tion)

Neat-o-
Games
[Fujiki et al.
2008]

Opportunistic,
community

Continuous Entertainment Infrastructure Centralized Visualization
and sharing

DietSense
[Reddy et al.
2007]

Participatory,
community

Triggered Service Infrastructure Centralized Decision making
(recommenda-
tion)

Table VI. A Taxonomy of Major MCSC Applications on Ambient Awareness

Application Sensing Style Network Data
Name and Scale Sampling Incentives Architecture Processing Usage
MIT Owl Opportunistic,

community
Continuous Ethical Infrastructure Centralized Decision making

(recognition)
NoiseTube
[Maisonneuve
et al. 2010]

Hybrid, urban Continuous Ethical Infrastructure Centralized Visualization
and sharing

EarPhone
[Rana et al.
2010]

Opportunistic,
urban

Continuous Energy
saving

Infrastructure Hybrid Visualization
and sharing

PEIR [Mun
et al. 2009]

Hybrid,
community

Continuous Ethical &
service

Infrastructure Centralized Visualization
and sharing

BikeNet
[Eisenman
et al. 2010]

Hybrid,
community

Continuous
& triggered

Energy
saving,
privacy
protection

Infrastructure Centralized Decision making
(recommenda-
tion)

Real Time
Rome
[Calabrese
et al. 2011]

Opportunistic,
urban

Continuous —— Infrastructure Centralized Visualization
and sharing

B-Planner
[Chen
et al. 2013]

Opportunistic,
urban

Continuous —— Infrastructure Centralized Decision making
(policy making)

Nericell
[Mohan
et al. 2008]

Opportunistic,
urban

Triggered Energy
saving

Infrastructure Centralized Visualization
and sharing

T-Share
[Wolfson
et al. 2013]

Hybrid, urban Continuous Service Infrastructure Centralized Decision making
(recommenda-
tion)

SingalGuru
[Koukoumidis
et al. 2011]

Opportunistic,
group

Continuous Service Ad hoc Self-
supported

Decision making
(prediction)
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Table VII. A Taxonomy of Major MCSC Applications on Social Awareness

Application Sensing Style Network Data
Name and Scale Sampling Incentives Architecture Processing Usage
TagSense
[Qin et al.
2014]

Participatory,
group

Triggered Privacy
protection,
energy saving

Ad hoc Self-
supported

Visualization
and sharing

MoVi [Bao
and Choud-
hury 2010]

Participatory,
group

Triggered —— Ad hoc Centralized Visualization
and sharing

Sakaki et al.
[2010]

Participatory,
community

Continuous —— Infrastructure Centralized Decision making
(prediction)

Haiti
[Bengtsson
et al. 2011]

Opportunistic,
community

Continuous —— Infrastructure Centralized Decision making
(prediction & pol-
icy making)

iSafe
[Ballesteros
et al. 2014]

Participatory,
group

Continuous —— Infrastructure Centralized Decision making
(prediction)

3.2. Transportation and Traffic Planning

Crowd data in urban areas can be used for traffic forecasting, public transportation
system design, travel planning, and so on.

Traffic dynamics. A number of studies have investigated traffic dynamics using large-
scale data from GPS-equipped vehicles and mobile phones. By using data from buses,
taxies, and mobile phones, the Real Time Rome project [Calabrese et al. 2011] could re-
port real-time urban dynamics. Similarly, a combination of the data from GPS-equipped
taxis and smart card records from buses was used by Liu et al. [2009] for traffic dy-
namics understanding (e.g., hotspot detection). Wen et al. [2008] used GPS-equipped
taxis to analyze traffic congestion changes around the Olympic games in Beijing.

Public transportation. As a shared passenger transport service, it is important to
improve its design (e.g., planning of routes, efficiency in different weather conditions)
and offer real-time information about the transport entities (e.g., buses, trains) to the
general public. B-Planner [Chen et al. 2013] used crowdsourced GPS data and pick-up/
drop-off records from taxis to suggest the planning of night-bus routes. Morency et al.
[2007] investigated the spatiotemporal dynamics (e.g., examining the effects of weather
on transit demand) of public transportation networks based on bus boarding records
in Canada. Considering that the bus arrival time was the primary information to most
travelers, Zhou et al. [2012] utilized the bus passengers’ surrounding environmental
context to estimate the bus arrival time of different bus stations.

Individual travel planning. In addition to the support for public transportation, it is
also important to support individual travelers, such as suggesting driving routes with
low traffic delays. VTrack [Thiagarajan et al. 2009] was a system that used mobile
phones to accurately estimate the traffic time between different venues. SmartTrace
[Costa et al. 2011] helped identify mobility patterns or a given trajectory’s popular-
ity for transit planning. T-Share [Wolfson et al. 2013] was a taxi ridesharing service
that could generate optimized ridesharing schedules based on crowd-powered data.
Traffic signals inevitably enforce a stop-and-go movement pattern that increases fuel
consumption. SignalGuru [Koukoumidis et al. 2011], a novel software service that
relied solely on a collection of mobile phones to detect and predict the traffic signal
schedule, was developed to enable drivers to adjust speed, avoiding coming to complete
halts.

Road condition. The condition of roads (e.g., volume and speed of traffic flowing, icy or
bumpy roads) is significant to vehicular traffic in our daily lives. Compared to developed
countries, road conditions in the developing world tend to be more varied, with bumpy
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roads and potholes being commonplace even in the heart of cities. Nericell [Mohan et al.
2008] could detect and report road conditions (e.g., potholes) using the built-in sensors
(e.g., accelerometer, GPS) in mobile phones. The information was further integrated
into traffic maps to be shared by the public. A similar application is PotHole [Eriksson
et al. 2008], which can identify holes in streets using the crowdsourced vibration and
position data collected from smartphones.

3.3. Urban Dynamics Sensing

Awareness and understanding of urban dynamics are critical for sustainable urban
development and improving the quality of citizen life in terms of convenience, com-
fort, safety, and security. However, understanding urban dynamics is an increasingly
important challenge. With the recent surge of MCSC, urban dynamics sensing has be-
come possible and has been receiving more attention from many major well-established
companies and academic research societies.

Human urban mobility/behavior patterns. A number of research works have focused
on revealing human mobility and behavior patterns in urban areas. For instance,
Noulas et al. [2012] studied human mobility patterns by analyzing the check-in his-
tories of a large set of LBSN (location-based social network) users. They found that
the rank distance rather than the pure physical distance played a dominant role in
human movement prediction. The UBhave project [Lathia et al. 2013] investigated how
to leverage the mobile crowd sensing data to study, understand, and positively affect
human behaviors. In particular, an application named EmotionSense was developed
under the project to autonomously capture the user’s emotive, behavioral, and social
signals, based on which one’s real-time mood could be identified.

Urban social events/structure. Another research trend is to detect social events or
structures by exploring MCSC data. Crooks et al. [2013] studied the spatial and tem-
poral characteristics of the Twitter feed activity responding to a 5.8-magnitude earth-
quake, which could be used to identify and localize the impact area of the earthquake
event. Several studies have investigated urban social structures based on crowdsourced
data. For example, Tang and Liu [2010] studied the community detection problem of
online social media. Wang et al. [2014] discussed the community discovery and profiling
issues in LBSNs.

Social functions of urban regions. The detailed land use is an integral part of urban
planning, which is normally difficult to obtain. Fortunately, the large-scale data col-
lected from MCSC systems can be used to unveil the social functions of urban regions.
For example, Pan et al. [2013] proposed to classify the social functions of urban land by
exploring the GPS log of taxi cabs. The Geo-Spotting system [Karamshuk et al. 2013]
focused on identifying the optimal placement for new retail stores. Experiments based
on various supervised learning algorithms showed that both geographic and human
mobility features were important to the retail success of a new business.

3.4. Crowd-Sensing-Enabled Location Services

Location remains the most successful and widely used context in everyday usage.
Awareness of user location underpins many popular and emerging mobile applica-
tions, including location search, location-based advertising (disseminating electronic
coupons in a market [Garyfalos and Almeroth 2008]), indoor positioning (using WiFi
signal strength to locate people [Yu et al. 2011]), and so on. However, these stud-
ies mainly rely on individual data, whereas crowd-powered data can spark a variety
of new location-based services. For example, CrowdSense@Place [Chon et al. 2012]
was a framework that exploited opportunistically captured images and audio clips
crowdsourced from smartphones to link place visits with place categories (e.g., store,
restaurant). GeoLife [Zheng et al. 2011] was able to suggest friends based on human
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location history. Crowdsourced user-location histories were also used for discovering
interesting locations, which could help users understand an unfamiliar city within a
short period [Zheng et al. 2012].

3.5. Mobile Social Recommendation

Based on the wealth of data collected from MCSC systems, a number of mobile so-
cial recommendation techniques and services could be enabled, including place/friend
recommendation, itinerary planning, and service/activity suggestion.

Place recommendation. A number of research works have focused on providing per-
sonalized place recommendations by exploring mobile crowd sensing data. One ap-
proach is to leverage the historical location trajectories recorded by mobile devices for
recommendation. For instance, by understanding the location history of different in-
dividuals, GeoLife [Zheng et al. 2011] measured the similarity among users, based on
which a personalized place recommendation service was provided. Another approach
is to exploit user-generated data in LBSNs to recommend venues and friends. For ex-
ample, Ye et al. [2011] developed a place recommendation service based on the data
from FourSquare. They found that the geographical influence among POIs played an
important role in user check-in behaviors, and thereby developed a collaborative rec-
ommendation algorithm that took into account a combination of user preference, social
influence, and geographical influence. Yang et al. [2013] also developed a personalized
place recommendation system by leveraging both user check-ins and user comments
from FourSquare, where they proposed a hybrid preference model that used both place
preferences and user sentiments (learned from user comments).

Itinerary planning. Different from place recommendation, itinerary planning can
recommend travel routes to tourists under given constraints (e.g., time budget, user
preference). For instance, Zheng and Xie [2011] developed a travel recommendation
service that could suggest travel sequences under given spatial constraints. Yu et al.
[2014] developed a travel package recommendation system that helped users make
travel plans by leveraging the data from LBSNs. It could generate personalized travel
packages by considering user preferences, POI characteristics, and temporal-spatial
constraints (such as travel time and start location).

Service/activity suggestion. Another research trend is to provide adaptive service
and activity suggestions to mobile users. For example, T-Finder [Yuan et al. 2013] was
a recommending system that could guide taxi drivers to the places where passengers
could more easily be picked up. Zhang et al. [2013] focused on effectively recommend-
ing groups to users for participating in offline social events and proposed a unified
recommendation model that considered location features, social features, and implicit
patterns simultaneously. GroupMe [Guo et al. 2014c] was a mobile social activity aid
system that facilitated group suggestion in social activity organization (e.g., having a
dinner party, sporting together), leveraging a combination of mobile sensing and social
graph mining techniques.

3.6. Healthcare

With the advent of the era of an aging society, healthcare is becoming a more and
more important challenge. Based on the wealth of data collected from MCSC systems,
a number of health monitoring and management services could be enabled.

Public health monitoring. MCSC can facilitate the monitoring of disease outbreaks.
For instance, by mining health-related search queries (which can be localized by their
IP address), Google researchers can estimate the level of influenza-like illnesses in
America [Ferguson et al. 2006]. Similar to influenza, malaria is another public health
concern, and human movements may impact its transmission. Wesolowski et al. [2012]
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reported the use of large-scale mobile phone location data and malaria prevalence
information from Kenya to study their implicit links.

Personal well-being management. MCSC also facilitates personal well-being manage-
ment by logging user daily activity trajectories. For example, Neat-o-Games detected
human movement information (e.g., how much a user walked in the past hour) and
shared it in an online group race game to motivate more exercises [Fujiki et al. 2008].
Dietary patterns have been recognized as contributing factors to many chronic dis-
eases. The DietSense system [Reddy et al. 2007] allowed people to photograph and
share their dietary choices and get suggestions from online experts for weight loss.

3.7. Public Safety

Public safety refers to the detection of or protection from social or natural events (e.g.,
crimes, disasters) that could endanger the safety of average citizens.

Crime prevention and investigation. Recently, user-contributed data has been used
for crime prevention [Sheth 2009]. For instance, Ballesteros et al. [2014] showed that
data collected by geo-social networks bears relations with crimes and proposed iSafe,
which is able to evaluate the safety of users based on their spatial and temporal dimen-
sions. Similarly, by analyzing the large number of geo-tagged Twitter messages posted
from mobile devices, Lee et al. [2011] proposed a method to detect unusually crowded
places (e.g., a terrorist activity). The spread of technology from security cameras to
smartphones in every pocket has proved helpful to criminal investigations. It has been
reported that, during the Boston Marathon explosion event in April 2013, photos and
videos shot by onlookers after the explosion were used as evidence in the investigation
by the FBI [Fowler and Schectman 2013].

Disaster management and relief . Mobile-phone-based participatory sensing systems
can also be used for assisting in disaster relief [Consulting 2009]. A powerful demon-
stration of MCSC to disasters came after the January 2010 earthquake in Haiti
[Bengtsson et al. 2011]. By analyzing large-scale mobile phone user data on pre- and
postearthquake movement behaviors, they built a model that could predict community
responses to future disasters. Similarly, it was reported in Sakaki et al. [2010] that
Twitter could give a near-real-time report of earthquakes of a region by analyzing
geo-tagged user posts.

4. CONCEPTUAL FRAMEWORK FOR MCSC

Based on the elaboration of MCSC characters and applications, we propose a reference
architecture to illustrate the key functional blocks and explain the key techniques of
MCSC. It is intended to be the starting point that advances this new research area.
Figure 2 shows the proposed architecture, which consists of five layers: crowd sensing,
data transmission, data collection, crowd data processing, and applications.

(1) Crowd sensing. This layer involves heterogeneous data sources for mobile
crowd sensing, including the sensory information from mobile devices and user-
contributed data from mobile Internet applications. Considering the significance of
security and privacy issues in MCSC, it is important that participants be able to
determine what kind of information to publish and whom to share with. To this end,
access control becomes an important function of the participatory sensing clients.

(2) Data transmission. In MCSC, sensed data from mobile devices should be shipped
to the backend server for further processing. MCSC applications should make data
uploading tolerant of transient networking environments and inevitable network
interruptions. Therefore, data forwarding and routing protocols become significant
for data transmission. If the network infrastructure is not available, the data should
be transmitted to the destination in a pure opportunistic networking manner [Conti
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Fig. 2. A reference architecture for MCSC.

and Kumar 2010]. The cooperation of heterogeneous networking nodes to enhance
the performance of data transmission is also important to this layer [Guo et al.
2013].

(3) Data collection infrastructure. This layer gathers data from selected sensor nodes
and provides privacy-preserving mechanisms for data contributors. The following
components are involved:
(a) Task allocation. It can analyze a sensing task from an application requester

and assign it to a selected number of human nodes in terms of specified re-
quirements, such as sampling contexts (e.g., time, location), device capability,
user willingness, and the given budget (e.g., monetary cost, time limit).

(b) Sensor gateways. It provides a standard approach (e.g., the web service tech-
niques used in the SenseWeb [Kansal et al. 2007]) to facilitate data collection
from various crowdsensing sources; that is, sensor gateways serve all the top-
level components (e.g., data processing and applications) by supplying a unified
interface.

(c) Data anonymization. One major concern when sharing personal data is privacy.
In addition to the access control function at local stakeholders, this component
also supports privacy protection by providing anonymization mechanisms be-
fore data is published.
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(d) Incentive mechanism. This component provides strategies for incentives and
reputation to data contributors.

(e) Big data storage. The collected data in MCSC systems has two characters: large
scale and multimodality. First, the volume of data to be stored and managed
is so large and complex (e.g., collecting pollution information at the city scale)
that it becomes more and more inefficient to process using existing data man-
agement and processing approaches and tools. Second, the characteristics and
attributes of different types of sensors usually vary a lot, leading to big dif-
ferences in the accuracy of crowd sensing. Therefore, in order to boost further
processing (e.g., learning and reasoning), the raw data collected from different
sensors must be first transformed and represented in a unified manner, for
example, based on the same vocabulary or ontology [Zhang et al. 2011].

(4) Crowd data processing. It aims to extract high-level intelligence from the raw
sensory data by leveraging a wide variety of machine-learning and logic-based in-
ference techniques. In other words, the focus of crowd data processing is to discover
frequent data patterns to obtain the three dimensions of crowd intelligence at an
integrated level.
(a) Data processing architecture. Instead of a purely centralized or self-supported

method (see Section 2.5), we advocate the hybrid data processing architecture
and propose the Hybrid Data Processing (HDP) solution. In HDP, some of
the data processing tasks are allowed to execute on mobile devices to fulfill
local perception (e.g., analyzing individual behavior on a smartphone), and
after that, local results will be transmitted to servers for further processing.
By adopting such a hybrid data processing approach, the communication cost
between clients and servers can be notably cut down, and the resilience of the
entire network will be enhanced.

(b) Data quality maintenance. The data from different contributors has distinct
quality and creditability and is often redundant. Therefore, quality measure-
ment and data selection metrics are needed to preprocess the data and elimi-
nate the data with low quality.

(c) Cross-space feature association/fusion. The mobile crowd data can be collected
from both offline and online spaces. This component studies approaches for
cross-space data association and complementary feature fusion [Guo et al.
2014b].

(d) Crowd intelligence extraction. It aims to extract the three types of crowd intel-
ligence, that is, user awareness, ambient awareness, and social awareness, by
applying various data processing techniques.

(5) Applications. This layer consists of different types of applications and services that
could be enabled by MCSC. Associated key functions include data visualization,
user interface, and so on. Visualization (e.g., mapping, animation, graphing) dis-
plays the crowd computing results in a legible format to the users. User interface
is designed for the interaction between humans and machines. Both of them facil-
itate decision making and knowledge sharing to users (e.g., government officials,
citizens, service providers).

5. TOWARDS HYBRID HUMAN–MACHINE SYSTEMS

Research on the combination of human and machine intelligence has a long history. In
1950, Alan Turing proposed that “The idea behind digital computers may be explained
by saying that these machines are intended to carry out any operations which could be
done by a human computer” [Turing 1950]. He also put forward the so-called Turing
test to examine the intelligence of an agent. It represents that human intelligence and
machine intelligence have been interlinked since the very beginning of AI research.
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Similarly, Licklider [1960] also presented the idea that humans and computers can
work together in complementary roles. Recently, there have been studies about
having humans in the loop in cyber-physical systems [Schirner et al. 2013], which
can measure the cognitive activity of a human through body and brain sensors and
then use the “inferred” intent for physical environment controlling. Without using
any intrusive sensors, MCSC employs the sensing capabilities from the companioned
devices (e.g., smartphones, wearable devices) of humans as well as the computing
ability of humans. It aims to solve the large-scale sensing and computing problems by
having humans in the loop. The reason is that human and machine intelligence often
show distinct strengths and weaknesses in MCSC systems.

—Human intelligence (HI). Knowledge, cognition, perception, and social interaction
are general abilities of human beings. With these, humans can have deep context
and understanding of the sensing tasks. However, they are limited in memory and
speed. Also, people vary in quality, and they often introduce errors or low-quality
data in MCSC.

—Machine intelligence (MI). Machines are powerful in large-scale storage and comput-
ing. Advanced data mining and machine-learning algorithms also enable automatic
knowledge discovery and event/society understanding. However, there are still nu-
merous problems that cannot be well addressed by machines.

By combining the intelligence of crowds and computing machinery, MCSC allows
the creation of hybrid human–machine systems. These hybrid systems enable appli-
cations and experiences that neither crowds nor machines could support alone. As far
back as Ivan Sutherland’s [1964] Sketchpad, human–computer interaction has been
structured around a tradeoff between user control and system automation. The same is
true for MCSC, where we should investigate how to design the MCSC system by mixing
human and machine intelligence—a question that has not yet been solved. More specif-
ically, with advanced digital technologies, the Internet of Things, and mobile social net-
works, we are living in a merging world consisting of cyber, physical, and social spaces
[Wang 2010]. The problems to solve and the tasks to complete in such a hyperspace
are much more complex and may require both human and machine intelligence for
achieving better efficiency and effectiveness, which raises new research challenges and
opportunities.

Figure 3 gives a description of our vision on the potential combination of human and
machine intelligence in MCSC systems. Specifically, according to the MCSC framework
shown in Figure 2, there are four functional layers: crowd sensing, data transmission,
data collection, and crowd data processing. While the data collection layer mainly de-
pends on machine intelligence, the combination of human and machine intelligence can
take complementary roles in terms of their distinct abilities over the other three layers.
For example, in the crowd sensing layer, people can understand and execute the tasks
using their knowledge and cognition abilities. Machines, nevertheless, can decompose
complex tasks and allocate them to proper human nodes and further provide platforms
for information sharing (e.g., user-contributed data in MSNs). In the data transmission
layer, user movement and interaction facilitate the development of hybrid networking
protocols (e.g., a combination of opportunistic networking and infrastructure-based
networking) in MCSC. In the data processing layer, the introduction of human cogni-
tion and expert knowledge can attain higher efficiency and accuracy than pure machine
processing (e.g., classification, reasoning), especially for the situations that are difficult
to tackle by existing machine intelligence techniques.

There have recently been a few studies that try to leverage the complementary
strengths of human and machine intelligence in MCSC. On one hand, crowdsourcing
applications derive values by letting participants perform tasks that request a certain
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Fig. 3. MCSC: Hybrid human–machine systems.

level of human cognition and cannot be mimicked by computers [Marcus et al. 2011].
For example, DietSense [Reddy et al. 2007] used both automatic image processing
techniques and manual image review, due to the complexity or ambiguity of the recog-
nition tasks. Similarly, to obtain the minimum number of verification tasks, CrowdER
[Wang et al. 2012] developed a two-tiered hybrid human–machine approach for creat-
ing batched tasks, where machines are used to do an initial, coarse pass over all the
data, and people are used to verify only the most likely matching pairs. On the other
hand, machine intelligence is important and often employed for assisting humans in
their decision making and future prediction. For instance, Kamar et al. [2012] investi-
gated how machine-learning techniques can be utilized to explore the complementary
capabilities of humans and machineries to fulfill crowdsourcing tasks, for example,
providing guidance on recruiting participants and assigning tasks based on certain
metrics so that the utilities of large-scale crowdsourcing tasks can be optimized.

Although there have been pioneering studies and applications on combining human
and machine intelligence, it is believed that research in this field is still in its infant
stage. There are many challenging issues such as how to take the best of machine
intelligence, the best of human intelligence, and the best of human–computer inter-
faces to create “blended” human–computer systems with unprecedented capabilities.
Specifically, human and machine intelligence can be combined within or across the
three layers of MCSC systems in different patterns. We present a vision on the po-
tential combination patterns of human intelligence and machine intelligence in MCSC
systems in Figure 4. Three potential patterns, sequential, parallel, and iterative, are
identified, but there should be more to be explored.

Given a complex crowd sensing task, for example, machines can decompose it into a
set of subtasks and allocate them to proper human nodes in the data collection layer.
Afterward, people can understand and execute the subtasks using their knowledge and
cognition abilities in the crowd sensing layer. While this example belongs to sequential
combination, human and machine intelligence can also be combined in a parallel man-
ner. Still taking the accomplishment of a complex crowd sensing task as an example,
human nodes and machines (e.g., static sensing nodes) might have complementary
sensing abilities and need to work in a parallel way to fully capture the required
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Fig. 4. Potential combination patterns of human and machine intelligence in MCSC systems.

information. Similarly, the aforementioned DietSense system [Reddy et al. 2007] also
adopted the parallel combination approach, which uses both automatic image process-
ing techniques and manual image review in recognition tasks. Furthermore, human
and machine intelligence can be combined iteratively as well. For instance, in the data
processing layer, humans and machines can work iteratively to achieve higher effi-
ciency and accuracy, especially in case of situations that are difficult to be tackled by
existing machine intelligence techniques.

In addition to the vision in Figure 4 and the previous studies, we have two more
suggestions for the design of MCSC systems. First, the combination of human and
machine intelligence should be “application centric,” which means that we should cre-
ate systems that dynamically trade off human and machine intelligence in terms of
application needs. Second, an investigation of formal models and design patterns for
crowd computing systems should be studied, which may make use of multidisciplinary
knowledge, including social science, management, computer science, and so on.

6. LIMITATIONS, CHALLENGES, AND OPPORTUNITIES

We have presented the unique characters and potential of MCSC. However, translating
the MCSC vision into a practical system entails a range of challenges. In this section,
we will give a summary of the key technical challenges and research opportunities of
this emerging research area.

6.1. Sensing with Human Participation

Compared with traditional static, centrally controlled sensor networks, the involve-
ment of mobile human volunteers in gathering, analyzing, and sharing local knowledge
in an interactive sensing infrastructure leads to a number of new challenges.

(1) Task allocation and data sampling. In MCSC, a swarm of highly volatile mobile
sensors can potentially provide coverage where no static sensing infrastructure is
available. Nevertheless, because of a potentially large population of mobile nodes,
a sensing task must identify which node(s) may accept a task. A set of criteria
should be considered in filtering irrelevant nodes, such as the specification of a
required region (e.g., a particular street) and time window, acceptance conditions
(e.g., for a traffic-condition capture task, only the phones out of users’ pockets and
with good illumination conditions can satisfy requirements), device capabilities,

ACM Computing Surveys, Vol. 48, No. 1, Article 7, Publication date: August 2015.



7:22 B. Guo et al.

and termination conditions (e.g., sampling period). Some preliminary studies on
these issues have already been initiated. For example, in Cornelius et al. [2008],
a task description language called AnonyTL was proposed to specify the sample
context for a sensing task. Reddy et al. [2010] proposed a recruitment framework
to identify well-suited participants for data collections based on spatial-temporal
availability and participation habits. Similarly, Zhang et al. [2014b] proposed a
participant selection framework named CrowdRecruiter, which operates on top
of the energy-efficient Piggyback Crowdsensing (PCS) task model and minimizes
incentive payments by selecting a small number of participants while still satis-
fying probabilistic coverage constraints. However, improving the efficiency of the
decision-making process in task assignment and data sampling necessitates fur-
ther efforts. Successful approaches to task assignment in online crowdsourcing
markets can be explored [Ho and Vaughan 2012].

(2) Human grouping. Interactions among volunteers are necessary during the sensing
process but absent in most existing crowd sensing systems. For example, Vukovic
[2009] claimed that one of the research challenges in crowd sensing is “designing
a mechanism for virtual team formation, incorporating not only skill-set, but also
discovered social networks.” Lane [2012] also believed that crowdsourcing misses
automated methods to identify and characterize user communities. The interaction
among users also enhances the data quality in MCSC. Therefore, grouping users
and facilitating the interaction among them should be a challenge of MCSC. Key
techniques to address this include community creation approaches, dynamic group
formation metrics, social networking methods, and so on. For example, to identify
the people who are involved in the same social event, MoVi [Bao and Choudhury
2010] proposed a multidimensional sensing approach, where a combination of vi-
sual and acoustic ambience of phones was used.

(3) Coverage, reliability, and scalability. MCSC is akin to the event coverage in conven-
tional sensor networks. To design and deploy successful MCSC systems, the relation
between the event coverage and the number of participants should be studied. Pos-
sible issues involve spatial-temporal coverage, the impact of user skills/preferences
to task coverage, and so on. For example, Chon et al. [2013] found that the amount
of people’s place visits follows a power-law distribution. A generative model of lo-
cation coverage was developed based on user population and city characteristics,
which can be used to predict how many participants are sufficient to achieve a
certain level of coverage.

6.2. Incentive Mechanisms

Incentive is another challenge to the human involvement in MCSC. While sensing
devices are usually possessed and administrated by a single authority in traditional
sensor networks, they belong to different individuals with diverse interests in MCSC.
In order to sense, process, and collect the desired data, participants have to make either
implicit efforts (e.g., energy and monetary costs) or explicit efforts (e.g., give some input
or assessments). Without strong incentives, individuals may not be willing to partici-
pate in the sensing task with the cost because of their own limited resources. Therefore,
an efficient incentive mechanism is essential for the success of MCSC applications [Luo
et al. 2014]. Similar to other crowdsourcing systems [Quinn and Bederson 2011; Yuen
et al. 2011], broadly two types of incentives can be used in MCSC applications: intrinsic
incentives or financial incentives.

Intrinsic incentives include interest (where the volunteers are willing to help when
they think the task is interesting and important), enjoyment (making the MCSC task
an entertainment activity, such as a game), and social/ethical (where the participa-
tors are attracted by the chance of receiving public recognition). While these intrinsic
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incentives work well in certain types of MCSC applications (e.g., environment moni-
toring, location services), financial incentives are probably the easiest way to motivate
user participation in almost all types of MCSC applications. In MCSC systems with
financial incentives, the financial rewards to their participates for performing sensing
or communication tasks could be money, virtual cash, or credits (which are redeemable
for later services or online goods). However, once money is involved, the participants
are more likely to deceive the system to get more financial gains. Therefore, how to
provide valuable incentive mechanisms that enable honest contributions in MCSC be-
comes a critical challenge. Recently, several game theory approaches [Yang et al. 2012;
Lee and Hoh 2010; Huangfu et al. 2013] have been proposed for MCSC to motivate
and reward truthful contributions. These game theory methods are typically based on
auction mechanisms but are rather complex to implement in a fully distributed and
time-evolving system. Therefore, for a highly dynamic MCSC system, there is still
a need for new incentive and pricing mechanisms to attract, encourage, and reward
truthful and high-quality sensing data contributors.

6.3. Data Delivery in Transient Networks

How to ship the sensed data from distributed participants to the backend server is
another challenge due to a variety of MCSC characteristics, such as the low bandwidth
of wireless communication, frequent network partitioning caused by human mobility,
and large number of energy-constrained devices. While this is a well-known research
challenge in both wireless sensor networks and general mobile systems, MCSC adds
new requirements on scalability. In particular, the following four research issues need
to be addressed for MCSC:

(1) Robust data delivery among highly mobile devices. Though many data forwarding
and routing protocols have been developed for mobile ad hoc networks and mobile
opportunistic networks in the past decade, it is still a hard problem to achieve
robust and reliable data delivery with a large amount of mobile devices without
infrastructure. Recently there have been emerging social-based approaches [Zhu
et al. 2013], which attempt to exploit social behaviors of participants to make
better forwarding and routing decisions, though the research results are mostly
obtained from simulation environments and the large-scale, real-world deployment
is a necessity to validate the usefulness of such approaches.

(2) Tradeoffs between communication and processing via localized analytics. In many
MCSC applications, certain localized analytics are performed on raw sensing data
at the individual device level. By doing so, MCSC systems can consume less net-
work bandwidth than directly transmitting raw sensor readings. The challenge is
how to make a balance between the energy cost on local computing and the data
transmission cost [Xiong et al. 2014].

(3) Distributed caching and replication schemes. In order to make the storing and re-
trieving of MCSC data effective, efficient, and robust in a large-scale mobile system,
it is essential to develop new distributed data caching and replication schemes. Such
schemes should be integrated with the data processing and management issues we
discuss next.

(4) Hybrid networking protocols. The coexistence of heterogeneous network connec-
tions is a basic feature of MCSC. Combining the complementary merits of hetero-
geneous networks provides opportunities to develop improved networking protocols
for MCSC. Pioneering studies on this have been done in Guo et al. [2013] and Ding
and Xiao [2010].

ACM Computing Surveys, Vol. 48, No. 1, Article 7, Publication date: August 2015.



7:24 B. Guo et al.

6.4. Data Redundancy, Quality, and Inconsistency

In MCSC, there can be multiple participants involved in the same sensing activity, for
example, sensing the traffic information in an intersection. One of the issues caused by
multiparticipant sensing is data redundancy. In other words, to accomplish a particular
sensing task, it is important to smartly select data from multiple available contributors.
Note that for the same task, nearby mobile sensing devices may have various sensing
qualities, which could be caused by the mobility of devices and the differences in energy
levels or communication channels. Certain quality estimation and prediction methods
are thus necessary to evaluate the quality of sensing data, and statistical processing
can be used to identify outliers. For example, in Movi [Bao and Choudhury 2010],
a view selection module was developed to select videos of high quality, leveraging
multidimensional sensing to obtain the “best view” of the recorded event, for example,
accelerometer readings for selecting stable images and light intensity to deprioritize
darker pictures.

Another potential issue caused by “redundant” sensing is data inconsistency. For
example, due to the differences in sensing and computing capabilities, a set of collocated
smartphones running the same algorithm (e.g., sound-based social context recognition)
and sensing the same event can obtain different inference results (e.g., a party or a
meeting), thereby causing the problem of inconsistency. To handle such problems, a
collaborative method was put forward in Miluzzo et al. [2010]. Furthermore, a more
complex issue is the inconsistence of semantics derived from multimodal sensory data
(e.g., audio clips, images, videos, texts). For example, while both the audio and video
data can be used to predict the social context of a user, the inference results can be
different. Further studies should be done to address the inconsistency caused by the
multimodel data contributed by crowds.

6.5. Cross-Space, Heterogeneous Crowdsourced Data Mining

The strength of MCSC relies on the usage of crowdsourced data from both physical
and virtual societies. The development of the Internet of Things and mobile Internet
bridges the gap between the physical space and the cyber space. For the same sensing
object (e.g., a social gathering in a street corner), it will interact with both spaces and
leave fragmented data in each space, making the information obtained from different
communities (online or offline) differ. For instance, we can learn social relationships
from online social networks and infer group activities and interaction behaviors us-
ing mobile phone sensing in the real world. Obviously, the complementary nature
of heterogeneous communities will bring new opportunities to develop new human-
centric services. Therefore, we should integrate the information from heterogeneous
data sources to attain a comprehensive picture about the sensing object. A typical ex-
ample is the Social Contact Manager, which is a system that leverages a combination
of the data collected from the web and smartphones to enable intelligent social contact
information management and associative search [Guo et al. 2014].

As people live and traverse among different communities, the properties (social,
geographical, thematic) of distinct social networks are thus interweaved and highly
associated. For instance, more and more evidence shows that when we want to model
the behavior of a person, the best predictor is often not based on the person himself or
herself, but rather on his or her social links [Cho et al. 2011]. Meanwhile, the correlation
between human social ties and geographic coincidences has also been investigated
in Eaglea et al. [2007] and Guo et al. [2014a]. The event-based social network [Liu
et al. 2012] is an emerging mobile social network that connects online and offline
social activities. By exploring a set of features that connect the physical and the cyber
space, our recent work [Du et al. 2014] proposes an approach to predict the activity
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attendance behaviors of users in Douban.6 To deeply understand the sensing object
and predict its behaviors, it is crucial to study the correlation among the properties
learned from different social communities. Further discussions about heterogeneous
community sensing and association have been presented in Guo et al. [2014b].

In short, with the increase in the large-scale, interlinked data collected from het-
erogeneous communities, advanced techniques on complex network modeling, data
mining, data association and aggregation, and semantic fusion will become more and
more important.

6.6. Trust, Security, and Privacy

The involvement of human participation in crowd sensing also brings forth certain
trust issues. MCSC participants are likely to provide incorrect or even fake data to the
system. For example, incorrect recordings might be collected when mobile devices are
improperly placed by the participants; for example, one may put his or her phone in
the pocket when assigned with a noise sensing task. Meanwhile, for their own ben-
efit, malicious users may intentionally pollute the sensing data. The lack of control
mechanisms to guarantee source validity and data accuracy can lead to information
credibility issues. Thereby, we have to develop trust preservation and abnormal detec-
tion technologies to ensure the quality of the obtained data. For example, Huang et al.
[2010] proposed a reputation system based on the Gompertz function, which is able to
estimate the trustworthiness of the collected data.

To motivate user participation, an MCSC system must be capable of providing effec-
tive privacy protection mechanisms so that participants can conveniently and safely
share high-quality data using their devices. The following two ways are promising:

(1) Local versus remote data processing. One possible way to preserve privacy is to
upload the processed data rather than the original raw data (as the HDP solution
presented in Section 5). For example, in case an MCSC application needs to collect
the environmental noise using microphones, by leveraging some phone-based noise
identification methodologies, we might only need to upload the obtained results (i.e.,
noise level) rather than the raw audio files to the cloud. While such an approach
avoids the disclosure of people’s conversation, phone-based algorithms would incur
severe energy consumption. Meanwhile, it’s more efficient to process audio files
in the cloud than locally on the phone, but this requires implementing privacy-
preserving data mining techniques for remote processing.

(2) Privacy-aware sensing model and architecture. To effectively preserve the privacy
of a huge amount of MCSC participants, not only methodology efforts but also
systematic studies are needed. In other words, a privacy-aware architecture should
be provided to support the development of MCSC applications. One such effort is
the AnonySense architecture proposed in Cornelius et al. [2008], which supported
the development of privacy-aware applications based on crowd sensing.

7. CONCLUSIONS

We have presented MCSC, a cross-space, heterogeneous, crowdsourced sensing
paradigm for large-scale sensing and computing. Layered on participatory sensing, it
presents two unique features. First, it leverages both sensed data from mobile devices
and user-contributed data from mobile social networking services. Second, it propels the
fusion of machine and human intelligence in both sensing and the computing process.
We clarify the main characters of MCSC by having humans in the loop for large-
scale sensing and computing, including human-powered sensing, human-centered

6http://www.douban.com/.
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computing, transient networking, and crowd data processing and intelligence extrac-
tion. MCSC will enhance or nurture numerous application areas, such as environment
monitoring, intelligent transportation, urban sensing, mobile social recommendation,
and so on. We have made a summary and comparison of existing projects/studies over
a derived taxonomy of MCSC. Based on the reviewing of existing systems and the
identified characters, we have proposed a reference framework for developing MCSC
systems. The success of MCSC relies on the deep fusion of human–machine intelli-
gence, so we discuss the potential techniques and approaches that can be leveraged.
We finally identify several key challenging areas and research opportunities of MCSC.

Over the longer term, MCSC is able to stimulate basic research across a number of
areas, of which there are several we consider crucial. First, we are living in a world con-
sisting of cyber, physical, and social spaces, and each sensing object leaves fragmented,
incomplete data in the three spaces. It is thus important to explore approaches for ag-
gregating and fusing the cross-space, complementary data for urban/society dynamics
understanding. Second, we should study the fusion of human and machine intelligence
in the whole crowd sensing life cycle, from pervasive sensing, human-enhanced data
transmission to cross-space data processing. Third, some of the ethical factors, such as
inventiveness and user privacy, should be the fundamental building blocks of MCSC.
Finally, the success of MCSC relies on the usage of multidisciplinary knowledge, in-
cluding social science, cognitive science, economics, computing science, and so on. This
should be considered in the design of MCSC techniques and systems.
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