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Abstract—We consider a large-scale of wireless ad hoc networks
whose nodes are distributed randomly in a two-dimensional re-
gion Ω. Given n wireless nodes V , each with transmission range
rn, the wireless networks are often modeled by graph G(V, rn)
in which two nodes are connected if their Euclidean distance is
no more than rn. We show that, for a unit-area square region Ω,
the probability G(V, rn) being k-connected is at least e−e−α

when
nπr2

n ≥ ln n + (2k − 3) ln ln n − 2 ln(k − 1)! + 2α for k > 1 and
n sufficiently large. This result also applies to mobile networks
when the moving of wireless nodes always generates randomly and
uniformly distributed positions. We also conduct extensive simu-
lations to study the practical transmission range to achieve certain
probability of k-connectivity when n is not large enough. The re-
lation between the minimum node degree and the connectivity of
graph G(V, r) is also studied.

I. INTRODUCTION

There are no wired infrastructures or cellular networks in
ad hoc wireless network. Each mobile node has an adjustable
transmission range. Node v can receive the signal from node
u if v is within the transmission range of u. Otherwise, two
nodes communicate by using intermediate nodes to relay the
message. Mobile wireless networking enjoys a great advantage
over the wired networking counterpart because it can be formed
in a spontaneous way for various applications. Many protocols
that take the unique characteristics of wireless ad hoc networks
have been developed. Among them energy efficiency, routing
and MAC layer protocols have attracted most attention. One
of the remaining fundamental and critical issues is fault toler-
ance. To make fault tolerance possible, the network topology
must have multiple disjoint paths to connect any two devices
without sacrificing the spectrum reusing property. Since power
is a scarce resource in wireless networks, it is important to save
the power consumption without losing fault tolerance. The uni-
versal minimum power used by all wireless nodes such that the
network is connected is called the critical power. Determin-
ing the critical power for connectivity was well studied [1], [2],
[3] recently when the nodes are statically distributed. However,
it remains open to study the critical power for mobile wireless
networks.

In this paper, we are interested in finding a critical power,
if possible, at which each node has to transmit to guarantee
the k-connectivity of the network almost surely, i.e., with high
probability. For simplicity, we assume that the wireless de-
vices are distributed in a unit area square (or disk) accord-
ing to some distribution function, e.g., uniform distribution or
Poisson process. Additionally, assuming that the movement of
wireless devices still keeps them the same distribution. Let
G(V, r) be the graph defined on V with edges uv ∈ E iff
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‖uv‖ ≤ r. Here ‖uv‖ is the Euclidean distance between nodes
u and v. Then, we are interested in what is the condition of
rn such that G(V, rn) is k-connected almost surely when V
is uniformly and randomly distributed over Ω. For simplic-
ity, we assume that the geometry domain Ω is a unit square
C. Gupta and Kumar [3] studied the 1-connectivity problem
with Ω being a unit-area disk. We show that if nπ · r2

n ≥
lnn + (2k − 3) ln lnn − 2 ln(k − 1)! + α + 2 ln 8k

2k
√

π
, then

G(V, rn) is k-connected with probability at least e−e−α

as n
goes infinity. Our theoretical value gives us insight on how to
set the transmission radius to achieve the k-connectivity with
certain probability. This result also applies to mobile networks
when the moving of wireless nodes always generates randomly
distributed node positions. We also conduct extensive simula-
tions to study the transmission radius achieving k-connectivity
with certain probability for practical settings.

The remaining of the paper is organized as follows. In Sec-
tion II, we review some previous results studying the transi-
tion phenomena for wireless networks. Section III studies the
critical transmission range for k-connectivity when nodes are
randomly and uniformly distributed in a unit-area square. Our
experimental results presented in IV will verify our theoretical
results. We conclude our paper and discuss possible future re-
search directions in Section V.

II. PRELIMINARIES

Given an event Y , let Pr (Y ) be the probability of Y . We
say a function f(n) → a if limn→∞ f(n) = a.

A. Point Process

A point set process is said to be a random point process, de-
noted by Xn, in a unit square C = [−0.5, 0.5] × [−0.5, 0.5] if it
generates n points uniformly and randomly distributed over C.

The standard probabilistic model of homogeneous Poisson
process of density n, denoted by Pn, is characterized by the
following properties: (1) The probability that there are exactly

k nodes appearing in any region Ψ of area A is (nA)k

k! · e−nA;
(2) For any region Ψ, the conditional distribution of nodes in Ψ
given that exactly k nodes in the region is joint uniform.

B. Connectivity and Minimum Degree

A graph is called k-vertex connected (k-connected for sim-
plicity) if, for each pair of vertices, there are k mutually ver-
tex disjoint paths (except end-vertices) connecting them. A
k-connected wireless network can sustain the failure of k − 1
nodes. A graph is called k-edge connected if, for each pair of
vertices, there are k mutually edge disjoint paths connecting
them. The vertex connectivity, denoted by κ(G), of a graph
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G is the maximum k such that G is k-vertex connected. The
edge connectivity, denoted by ξ(G), of a graph G is the max-
imum k such that G is k-edge connected. The minimum de-
gree of a graph G is denoted by δ(G) and the maximum degree
of a graph G is denoted by ∆(G). Clearly, for any graph G,
κ(G) ≤ ξ(G) ≤ δ(G) ≤ ∆(G).

A graph property is called monotone increasing if G has such
property then all graphs on the same vertex set containing G as a
subgraph have this property. Let Q be any monotone increasing
property of graphs, for example, the connectivity, the minimum
node degree at least k, and so on. The hitting radius �(V,Q)
is the infimum of all r such that graph G(V, r) has property
Q. For example, �(V, κ ≥ k) is the minimum radius r such
that G(V, r) is at least k vertex connected; �(V, δ ≥ k) is the
minimum radius r at which the graph G(V, r) has the minimum
degree at least k. Obviously, �(V, κ ≥ k) ≥ �(V, δ ≥ k).

C. Literature Review

The connectivity of random graphs, especially the geometric
graphs and its variations, have been considered in the random
graph theory literature [4], in the stochastic geometry literature
[5], [6], [7], [8], [9], and the wireless ad hoc network literature
[3], [10], [11], [12], [13], [14], [15].

Let’s first consider the connectivity problem. Given n nodes
V randomly and independently distributed in a unit-area disk
D, Gupta and Kumar [3] showed that G(V, rn) is connected
almost surely if nπ ·r2

n ≥ lnn+c(n) for any c(n) with c(n) →
∞ as n goes infinity. Independently, Penrose [7] showed that
the longest edge Mn of the minimum spanning tree (EMST) of
n points randomly and uniformly distributed in a unit square
C satisfies that limn→∞ Pr

(
nπM2

n − lnn ≤ α
)

= e−e−α

, for
any real number α. Since the longest edge of EMST is always
the critical power [1], [2], this result is stronger than that in [3]
because it gives the probability that the network is connected.

We then review the results concerning the k-connectivity of
a random graph. It was proved by Penrose [5] that, given
any metric lp with 2 ≤ p ≤ ∞ and any positive integer k,
limn→∞ Pr (�(Xn, κ ≥ k) = �(Xn, δ ≥ k)) = 1. This im-
plies that a graph of G(Xn, r) becomes k-connected almost
surely at the moment it has minimum degree k when r goes
from 0 to ∞. However, this result does not imply that, to
guarantee a graph over n points k-connected almost surely,
we only have to connect every node to its k-nearest neigh-
bors. Xue and Kumar [15] proved that, to guarantee the graph,
connecting each node to its k-nearest neighbors, connected, k
is asymptotically Θ(lnn). Dette and Henze [6] studied the
maximum edge length of this graph connecting every node
to its k nearest neighbors. We conjecture that, given n ran-
dom points V over a unit-area square, to guarantee this k-
nearest neighbor graph k-connected, k should be asymptoti-
cally Θ(lnn + (2k − 1) ln lnn). Penrose gave loose upper
and lower bounds on the hitting radius rn = �(Pn, δ ≥ k) for
homogeneous Poisson point process on a d-dimensional unit
cube. We will show that the transmission radius rn such that
the graph G(V, rn) is k-connected with high probability satis-
fies nπr2

n � lnn + (2k − 3) ln lnn − 2 ln(k − 1)! + 2α.

III. FAULT TOLERANCE BY K-CONNECTIVITY

In this section we concentrate on the hitting radius for the k-
connectivity for n points randomly and uniformly distributed
in a unit square C. For convenience, instead of the random
point process Xn, we consider a homogeneous Poisson point
process Pn of rate n on C. Same as [5], we let E(k, n, r) de-
note the expected number of points of Pn with degree k in
a graph of G(Pn, r). Let D(x, r) be the disk centered at x
with radius r. Given a point x, let vr(x) be the area of the
intersection of D(x, r) with C. Additionally, let φn,r,k(x) =
(n · vr(x))k · e−n·vr(x)

k! . Here φn,r,k(x) is the probability that
point x has degree k. Then, it was known [5] that E(k, n, r) =
n

∫
C φn,r,k(x)dx. Penrose [5] (Theorem 1.2) proved that:

Theorem 1: Let α be any real number. Given any metric lp
on C with 1 < p ≤ ∞ and any integer k ≥ 0, and rn satisfying
limn→∞ E(k, n, rn) = e−α, then we have

lim
n→∞

Pr (�(Pn, δ ≥ k + 1) ≤ rn) = e−e−α

.

The same theorem is true when the random point process is
used instead of the homogeneous Poisson point process. The
remainder of this section is devoted to estimate the value rn.
Penrose [5] agreed that rn is not so easy to find because of
the dominance of complicated boundary effects. The estimated
radius rn also makes G(Pn, rn) k-connected with probability
e−e−α

since Penrose [5] proved that, almost surely, �(Xn, κ ≥
k) = �(Xn, δ ≥ k) and �(Pn, κ ≥ k) = �(Pn, δ ≥ k) as n
goes to infinity.

A. Lower Bound

We first study the asymptotic lower bound for the hitting ra-
dius rn for the (k + 1)-connectivity. Obviously, vr(x) ≤ πr2

for any point x inside the unit-area square C. Since φn,r,k(x) is
a monotone increasing function of vr(x), we have φn,r,k(x) =

(n · vr(x))k e−n·vr(x)

k! < (n · πr2)k e−n·πr2

k! . This implies

E(k, n, r) = n
∫

C φn,r,k(x)dx < n(n · πr2)k e−n·πr2

k! .
We estimate r when vr(x) = πr2 is used as the area mea-

surement. Let y = πr2. From limn→∞ E(k, n, rn) = e−α, we
have e−α = limn→∞ n(n · y)k e−n·y

k! . We will relax the con-
dition by ignoring the condition of n going infinity. In other
words, we consider that e−α = n(n · y)k e−n·y

k! . It implies that,
by taking ln on both sides,

−α = ln n + k ln n + k ln y − ny − ln(k!).

Dividing both side by k and rearranging, we have n
k y − ln y =

k+1
k lnn − 1

k ln(k!) + α
k . Let z = n

k y. We have

z − ln z = ln k − ln n +
k + 1

k
ln n −

1
k

ln(k!) +
α

k

=
1
k

ln n + ln k −
1
k

ln(k!) +
α

k
.

When z = ln z + t, then z > t + ln t, where t > 0. Thus,

z >
1
k

ln n + ln k −
1
k

ln(k!) +
α

k
+ ln

(
1
k

ln n + ln k −
1
k

ln(k!) +
α

k

)

>
1
k

ln n + ln k −
1
k

ln(k!) +
α

k
+ ln(

1
k

ln n).
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Consequently, substituting back z = n
kπr

2, we have n
kπr

2 >
ln n
k + ln k − 1

k ln(k!) + α
k − ln k + ln lnn, which implies

nπr2 > ln n + k ln ln n − ln k! + α.

Notice that the function (n · y)k e−n·y

k! achieves the maximum
value when y = k

n . It is monotone decreasing for y > k
n and

monotone increasing for y < k
n . We always assume that k is a

fixed constant throughout this paper. Then we have
Theorem 2: Given n wireless nodes V randomly and uni-

formly distributed in a unit-area square. If we want the graph
G(V, rn) to be (k + 1)-connected with probability at least
e−e−α

, we need nπr2 > lnn + k ln lnn − ln k! + α.

Penrose [5] gave the same bound for rn such that G(V, rn)
is (k + 1)-connected asymptotically for the toroidal model.

B. Upper Bound

In this section, we continue to study the upper bound of the
transmission radius to achieve the same (k + 1)-connectivity
with probability at least e−e−α

. Again, we derive the upper
bound from n

∫
C φn,r,k(x)dx = e−α.
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Fig. 1. The area vr(x) for a point x.

We partition the unit square to three regions: the region I
is [−0.5 + r, 0.5 − r] × [−0.5 + r, 0.5 − r], the region III is
four corners, and the remaining is the region II. See Figure 1.
We compute the area vr(x) for point x located in these three re-
gions separately. Obviously, for any x in region I, vr(x) = πr2.
For a point x in region II, assume its distance to the boundary
is 0 ≤ x ≤ r, then vr(x) = πr2 − r2 cos−1(x

r ) + x
√
r2 − x2.

It is easy to show that πr2

2 + πr
2 · x ≤ vr(x) ≤ πr2

2 + 2r · x.
Let r� be the solution of n

∫
C φn,r,k(x)dx = e−α. Let Ω

be any subregion of C. Let w(x) be any function such that
w(x) ≤ v(x) and is monotone increasing of r. Let ϕn,r,k(x) =
(n · w(x))k · e−n·w(x)

k! . Thus, ϕn,r,k(x) ≤ φn,r,k(x). Let r′ be
the solution of n

∫
Ω ϕn,r,k(x)dx = e−α. Then r� ≤ r′. This

is because w(x), vr(x) are monotone increasing functions of
r, and (ny)k e−ny

k! is monotone increasing function when y ≤
k/n. Thus, to bound the transmission radius r from above so
that the graph G(V, r) is (k + 1)-connected, we use the lower
bound of vr(x) and we also only compute the integral for region
I and region II. Obviously, for region I, we have

∫

I

(nvr(x))k e
−nvr(x)

k!
dx = (n · πr2)k · e

−n·πr2

k!
· (1 − 2r)2.

The integral over region II is 4 times of the integral over the
rectangle region near the boundary, with length 1−2r and width

r. Let the distance of a point x to the boundary be x. Notice
that vr(x) > πr2

2 + πr
2 x. Let y = πr2

2 + πr
2 x. We have

∫

II

(n · vr(x))k e−n·vr(x)

k!
dx = 4(1 − 2r)

∫ r

x=0
(nvr(x))k e−nvr(x)

k!
dx >

8(1 − 2r)
π · k! · r

∫ πr2

y= πr2
2

(ny)k
e

−ny
dy =

8(1 − 2r)
πrn

(e−t/2
k∑

j=0

tj

j!2j
− e

−t
k∑

j=0

tj

j!
).

Here t = nπr2. The last equation comes from
∫
zke−zdz =

−e−zk!
∑k

j=0
zj

j! . Then �(Pn, κ ≥ k) is bounded from above
by the solution of the following equation.

e
−α =nt

k e−t

k!
(1 − 2r)2 + n

8(1 − 2r)
πrn

(e−t/2
k∑

j=0

(t/2)j

j!
− e

−t
k∑

j=0

tj

j!
)

<n · t
k e−t

k!
+

8
πr

k · e
−t/2 (t/2)k

k!
.

The inequality comes from e−t/2 (t/2)j

j! < e−t/2 (t/2)j+1

(j+1)! for

j < t/2. Here we assume that k < t/2. Notice, t = nπr2 ≥
lnn asymptotically from our lower bound analysis. The rest of
the section is devoted to approximate r using above inequality.

Let A = n · tk e−t

k! and B = 8
πrk · e−t/2 (t/2)k

k! . Thus, B
A =

8k
2k

√
π

et/2
√

nt
. Then, by taking ln on both sides of the inequality,

we have −α < lnA + ln(1 + B
A ) = lnn + k ln t − t − ln k! +

ln(1 + 8k
2k

√
π

et/2
√

nt
). Thus, we have

t < ln n + k ln t − ln k! + α + ln(1 +
8ket/2

2k
√

πnt
). (1)

Notice that ln(1+x) < x for any 1 > x > 0 and ln(1+x) �
lnx for x sufficiently larger than one. We solve inequality (1)
by recursion. Due to space limit, we omit the recursion here. It
is easy to show that the final solution of t is bounded by solution
of the following equality when n goes to infinity

t = ln n − 2 ln k! + 2α + 2 ln
8k
√

π
+ (2k − 1) ln t.

Thus we can bound t by the following approximationinfinity

t = ln n + (2k − 1) ln ln n − 2 ln k! + 2α + 2 ln
8k

2k
√

π
.

Theorem 3: Given n wireless nodes V randomly and uni-
formly distributed in a unit square. If rn satisfies

nπr2 > ln n + (2k − 1) ln ln n − 2 ln k! + 2α + 2 ln
8k

2k
√

π
,

G(V, rn) is (k + 1)-connected with probability at least e−e−α

.
For example, if we want G(V, rn) to be (k + 1)-connected

with probability at least e−1/ ln n > 1 − 1
ln n , the transmission

radius rn should satisfy nπr2 > lnn + (2k + 1) ln lnn −
2 ln k! + 2 ln 8k

2k
√

π
. Similarly, to make G(V, rn) (k + 1)-

connected with probability ≥ e−1/n > 1− 1
n , we need nπr2 >

3 lnn + (2k − 1) ln lnn − 2 ln k! + 2 ln 8k
2k

√
π

.
The above analysis of the asymptotic upper bound of the rn

can also be used to derive a tighter lower bound on the rn. To
analyze the lower bound, we have to use vr(x) ≤ πr2

2 + 2r · x
to estimate the area vr(x) for point x near the boundary. In
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addition, we have to compute the integral in all three regions.
To simplify the analysis, for point x in region III, we use
vr(x) ≤ πr2

2 + 2r · x to estimate vr(x). Similarly, the lower
bound on t is at least the solution of the following equation

e−α = n · tk
e−t

k!
· (1 − 2r)2 +

2
r
(e−

t
2

k∑

j=0

tj

2jj!
− e−t

k∑

j=0

tj

j!
).

By tedious computing, we can compute the asymptotic lower
bound as t > lnn + (2k − 1) ln lnn − 2 ln k! + 2α.

IV. EXPERIMENTS

A. System Model

Assume the wireless nodes are distributed in a unit square
C = [−0.5, 0.5]×[−0.5, 0.5]. As shown by previous results, the
random point process Xn and the homogeneous Poisson point
process Pn have the same connectivity behavior asymptoti-
cally. For the simplicity of conducting simulations, we choose
n points randomly and uniformly distributed in C. One of the
major steps in conducting the simulations is to compute the
connectivity of an induced unit disk graph G(V, rn). A sim-
ple method is to compute how many disjoint paths connecting
a pair of nodes using BFS. Its complexity is O(n2m), where
m is the number of edges. There is an O(min(m,n3/2)m1/2)
algorithm [16] using unit-flow.

B. Results

TRANSITION PHENOMENA: A graph property of G(V, r)
is said to satisfy a transition phenomena if there is a radius
r0 such that G(V, r) almost surely does not have this property
when r < r0 and G(V, r) almost surely has this property when
r > r0. It was already shown that the property that G(V, r)
has the minimum node degree k satisfies a transition phenom-
ena; additionally, the graph G(V, r) is k-connected satisfies a
transition phenomena. Our simulations shown in Figure 2 and
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Fig. 2. Transition phenomena of a graph being k-connected.

Figure 3 confirm the theoretical results. We found that the tran-
sition becomes faster when the number of nodes increases. For
testing the transition phenomena of the connectivity, we test
n = 50 and n = 100 two cases. We test 0.1 ≤ r ≤ 0.9 using
interval 0.02, i.e., total 40 different transmission radii. Given a
transmission radius r and the number of nodes n, we generate
500 sets of random n points. We compute the connectivity of
each graph G(V, r) and summarize how many is k-connected
for k = 1, 2, 3 and 4. For testing the transition phenomena of
the min-degree, we test n = 100, 200, 300, and 400. Other
settings are same as the test for connectivity transition.
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Fig. 3. Transition phenomena of a graph has minimum degree k.

CONNECTIVITY AND MINIMUM DEGREE: Penrose [5]
showed that the hitting radii for k-connectivity and for achiev-
ing minimum degree k are asymptotically same.We conduct ex-
tensive simulations on various number of points n = 50, 100,
200, 300, 400 and 500. Given n, k, and α, we select r accord-
ing to the bound given in Theorem 3. Here the connectivity
k = 1, 2 and α ∈ {0, ln lnn, lnn}. Thus, there are total 36
cases. For each case, we generate 500 random point sets. Our
simulations illustrated by Figure 4 show that the probability that
G(V, r) is k-connected when its minimum degree is k is already
sufficiently close to one when n is at the order of 50, especially
when α is set as lnn.
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Fig. 4. The probability of a graph with minimal degree k is k-connected. Left
figure is for k = 1 and right figure is for k = 2.

CONNECTIVITY FOR SMALL POINT SET: Theoretically,
we derived an asymptotic bound of r for n points randomly
and uniformly distributed in a unit square such that G(V, r) is
k-connected with certain probability. We have to admit that
the result holds only when n is large enough compared with
k!. We first conduct simulations to measure the gap between
the theoretical probability and the actual statistical probabil-
ity of G(V, r) being k-connected. Typically, we set nπr2 =
lnn+(2k− 1) ln lnn− 2 ln k! + 2α+2 ln 8k

2k
√

π
. Then test all

54 cases of n = 50, 100, 200, 300, 400, and 500, k = 1, 2, 3,
and 4, α = 0, ln lnn, and lnn. The corresponding theoretical
k-connectivity probabilities for them are 1

e , 1 − 1
ln n , and 1 − 1

n
when α = 0, ln lnn, and lnn respectively. The actual prob-
ability is computed over 500 different random point sets. The
left figures in Figure 5 illustrate our simulation results. It is not
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surprising that the probability found by simulations is smaller
than the theoretical analysis (the upper blue curves). Notice
the theoretical range r is not always monotone increasing of k
when n is a small value. This is the reason some curves cross
each other in our figures. The right figures in Figure 5 illustrate
our simulation results for the probability that G(V, r) has min-
imum degree k compared with the theoretical analysis. Notice,
as expected, the gap for min-degree is smaller than that for the
k-connectivity.
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Fig. 5. Left: Probability G(V, r) is k-connected if r is set theoretically. Right:
Probability G(V, r) has minimum degree k if r is set theoretically.

PRACTICAL TRANSMISSION RANGES: Since the asymp-
totic bound of the transmission range rn for n points randomly
and uniformly distributed in a unit square such that G(V, rn)
is k-connected with certain probability holds only when n is
large enough compared with k!, we need study what is the ac-
tual transmission range required to achieve the k-connectivity
with certain probability. It is possible to analyze more accu-
rately what is the theoretical requirement for rn when n is not
large enough. However, the analysis is much more complicated.
We leave this tight analysis as possible future work. Alterna-
tively, we conduct simulations to find that practical transmis-
sion ranges when n is not large enough. It is not surprising that
the actual required range is larger than the theoretical bound.
However, we found that the actual transmission range takes a
similar decreasing pattern as the theoretical result when n goes
infinity. See Figure 6.

V. CONCLUSION

We consider a large-scale of wireless ad hoc networks whose
nodes are distributed in a unit square. As fault-tolerance is im-
perative for wireless networks, we showed that, to make the
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Fig. 6. Practical range that G(V, r) is k-connected with probabilities 1/e and
1 − 1/n respectively.

graph G(V, rn) (k + 1)-connected almost surely, the transmis-
sion range rn should satisfy nπ · r2

n ≥ lnn+(2k−1) ln lnn−
2 ln(k−1)!+c(n) for any c(n) with c(n) → ∞ as n goes to in-
finity. Our result holds also in mobile networks when the move-
ment of nodes are also random. We also conducted extensive
simulations to study the relations between the minimum node
degree and the connectivity of the network. Practical transmis-
sion ranges were also studied by simulations when n is small.
We found that, although it is different from the theoretical anal-
ysis, it has the same decreasing pattern as our theoretical anal-
ysis. We leave an accurate theoretical analysis of the transmis-
sion range to achieve k-connectivity, minimum degree k when
n is small. Another possible future work is the analysis of k-
connectivity when we apply some other node distributions or
considering node/link failures.
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