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Abstract—Device-to-device (D2D) is a new paradigm that
enhances network performance by offering a wide variety of ad-
vantages over traditional cellular networks, e.g., efficient spectral
usage and extended network coverage. Efficient data dissemina-
tion is indispensable for supporting many D2D applications such
as content distribution and location-aware advertisement. In this
work, we study the problem of multi-copy data dissemination
with probabilistic delay constraint in mobile opportunistic D2D
networks. We first formally formulate the problem and introduce
a centralized heuristic algorithm which aims to discover a graph
for multicasting, in order to meet delay constraint and achieve
low communication cost. While the centralized solution can be
adapted to a distributed implementation, it is inefficient in a
mobile opportunistic D2D network, since it intends to apply a
deterministic transmission strategy in a nondeterministic network
by delivering all data packets via a predetermined route. Based on
such observation, we develop a distributed online algorithm based
on the optimal stopping strategy that makes an efficient decision
on every transmission opportunity. Extensive simulations under
real-world traces and random walk mobility model are carried
out to learn the performance trend of the proposed schemes
under various network settings.

I. INTRODUCTION

To meet a thousand-fold increase in mobile and wireless

traffic volume over the next decade, millimeter-wave commu-

nication has been identified as a promising technology for fu-

ture 5G cellular networks which are responsible for improving

spectrum utilization and energy efficiency. However, it brings

a set of unique technical challenges such as severe path loss

and undesired coverage holes. To this end, device-to-device

(D2D) communication has added a new dimension to improve

network efficiency and reliability. This paper focuses on mo-

bile opportunistic D2D networks that do not depend on any

infrastructure but, instead, exploit opportunistic connections

between mobile devices to enable device-to-device communi-

cation. Mobile opportunistic D2D networks are characterized

by intermittent and nondeterministic connectivity, often due to

interruptible wireless links, sparse network deployment and/or

nodal mobility. It seems that D2D just resembles another

scenario of opportunistic networking discussed in the con-

text of delay/disruption-tolerant networks [1]–[3], sporadically

connected sensor networks [4]–[6], vehicular networks [7]–[9],

and peer-to-peer mobile social networks [10]–[17]. However,

there are a set of new challenges to be addressed, primarily

driven by the emerging D2D-based applications.

D2D networks gain significant value by serving as a supple-

ment and augment to the infrastructure based B2D (i.e., base-

station-to-device) communication by effectively supporting

general communication needs of mobile users (especially for

real-time voice and data delivery). One one hand, D2D helps

discover and update social links that are not captured by

B2D communication. For example, two people may go to

the same downtown amphitheatre around the same time every

weekend for outdoor music shows. But they have never talked

to each other, neither do they have an overlap between their

online social communities. Such relation can be discovered

by D2D, which subsequently suggests a possible social link.

On the other hand, efficient data dissemination with minimal

or no supervision of centralized coordinator is indispensable

for supporting D2D applications, such as video file and large

data file transfer [18]. While data dissemination in D2D is

subject to long delay due to its intermittent connectivity, it

is highly desired not only for its cost benefit but also for its

effectiveness, since the interaction between mobile users is

closely correlated to their social groups and behaviors, offering

great opportunities to deliver data to the target audience.

The contribution of this work is given below. We first in-

troduce a binary transmission vector for the delay-constrained

multi-copy multi-path least-cost multicast problem. Then we

propose a centralized heuristic algorithm which aims to dis-

cover a graph for multicasting, in order to meet delay con-

straint and achieve low communication cost. While the central-

ized solution can be adapted to a distributed implementation,

it is inefficient in a mobile opportunistic network, since it is

not only computationally expensive but also intends to apply

a deterministic transmission strategy in a nondeterministic

network by transmitting all data packets via a predetermined

route. In mobile opportunistic networks, even if the optimal

routing graph can be computed, it is the “best” only on a

statistic basis for a large number of data packets. It is not

necessarily the best solution for every individual transmission.

Based on the above observation, we develop a distributed
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online algorithm based on the optimal stopping strategy that

makes an efficient decision on every transmission opportunity.

We carry out simulations under real-world traces and random

walk mobility model to evaluate the scalability of the proposed

schemes under various network settings.

The rest of the paper is organized as follows: Sec. II dis-

cusses related work. Sec. III formulates the problem. Sec. IV

presents the centralized heuristic algorithm. Sec. V introduces

the distributed online solution. Sec. VI presents large-scale

simulations under real-world mobility traces and random walk

mobility model. Finally, Sec. VII concludes the paper.

II. RELATED WORK

Data dissemination is essentially a multicasting problem.

While there are a handful of studies on multicasting in

mobile opportunistic networks or traditional delay tolerant

networks [19]–[25], they all deal with unconstrained, best-

effort data transmissions. Note that although delay is often

considered as a metric in performance evaluation, none of the

existing solutions formulate the problem with an explicit delay

constraint. On the other hand, a series of approaches have

been developed for single-copy routing in mobile opportunistic

networks [12], [26], [27]. However, those approaches are

vulnerable in mobile opportunistic networks given the non-

deterministic and intermittent connectivity settings, because

they may frequently fail to identify only one single path

that meets delay constraint. Data dissemination in D2D is a

fairly new area with limited existing solutions [28]–[32]. [28]

proposes DataSpotting, a system that explores the feasibility

of offloading cellular traffic via D2D content transfer. [29] de-

velops a compressed hybrid automatic repeat request (HARQ)

mechanism for the reliable multicast services in the cellular

network controlled D2D communication to reduce error proba-

bility and signaling overhead. [30] introduces a multicast D2D

model, and use it to analyze multicast metrics like the coverage

probability, mean number of covered receivers and throughput.

[31] provides a secure data sharing protocol, which merges

the advantages of public key cryptography and symmetric

encryption, to achieve data security in D2D communication.

[32] proposes a social-aware approach for optimizing D2D

communication by exploiting social network layer and phys-

ical wireless network layer. The physical layer D2D network

is captured via the users’ encounter histories. Given the social

relations collected by the base station, an algorithm for opti-

mizing the traffic offloading process in D2D communication is

developed. However, these existing solutions either depend on

frequent intervention of the base-stations or consider different

networking and application settings in mobile opportunistic

D2D networks, and thus not readily applicable in this work.

To utilize the full potentiality of D2D network’s paradigm,

researches on effective data dissemination using minimal or

no B2D communication have thus become an emerging field

to study.

III. PROBLEM FORMULATION

In this section, we formally formulate the problem of delay-

constrained multi-copy multi-path least-cost multicasting in

mobile opportunistic D2D networks.

Assume there are N nodes in the network and they form

k opportunistic links. The delay of each link is a random

variable denoted by Tl, ∀1 ≤ l ≤ k. To formulate the delay-

aware multicast problem, we define a 1×k binary transmission

vector, Ω, for a data delivered from a source s to a given set

of destinations Φ. Each element of the vector is a 0-1 variable

to be optimized. If Ωl = 1, the link l is employed for data

dissemination; otherwise, the communication opportunity will

not be utilized. A transmission strategy, i.e., Ω, induces a total

communication cost (defined as CΩ), a path set (denoted as

Ψd, ∀d ∈ Φ) in which each path is the one from source to d,

and a random variable (denoted as τ id, ∀d ∈ Φ, 1 ≤ i ≤ |Ψd|)
that represents the delay to deliver the data to d through the

ith path in Ψd. Note that, due to nondeterministic connectivity,

it is intrinsically impossible to provide a hard guarantee of

end-to-end delivery delay. Thus, we adopt a probability-based

delay budget in this work to achieve a desired probability to

deliver data within a predefined delay budget.

Therefore the optimization problem is formulated as fol-

lows:

Minimize : CΩ,

S.t. : 1−
∏|Ψd|

i=1 (1 − Pr{τ id ≤ δ}) ≥ γ, ∀d ∈ Φ,
(1)

aiming to minimize overall communication cost and at the

same time reach a desired probability γ to deliver data to each

destination through at lease one path within delay budget δ.

IV. CENTRALIZED HEURISTIC ALGORITHM

While the problem formulated above appears simple, it is

nontrivial to be solved, since the nondeterministic network

setting dramatically increases the complexity to derive Ψd

and Pr{τ id ≤ δ}, resulting in the NP-hardness of the prob-

lem. More specifically, compared with single-copy single-path

transmission, multi-copy multi-path transmission introduces

new challenges. Since multiple copies are transmitted via

different paths to each destination and such paths to each des-

tination may overlap, it becomes extremely difficult to derive

the end-to-end delays under the dependent transmissions of

redundant copies.

In order to overcome the challenges introduced above, we

design an efficient and scalable heuristic solution to convert the

correlated copies into independent transmissions, in order to

estimate the end-to-end delays. More specifically, we introduce

a centralized heuristic algorithm which aims to discover a

graph for multicasting (denoted by G), in order to meet the

constraint in Eq. (1) and achieves low communication cost.

G can be considered as an approximation of the optimal Ω
yielded from problem formulation.

Initially, the graph G includes the source node only and

all destinations are put into the set Φ. The algorithm runs in

iterations. Each iteration includes the following steps.
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Fig. 1: An example of the centralized heuristic algorithm.

• First, it computes the paths from every destination in Φ to

the current graph, which satisfy the constraint in Eq. (1)

and at the same time introduce the least additional cost

(e.g., the fewest links in addition to the current graph).

How to efficiently determine these paths is to be discussed

below.

• Second, the above step essentially creates |Φ| hypo-

thetical new graphs, each augmenting the current graph

by multiple paths. A metric, named extensibility, is

computed to describe the goodness of each hypotheti-

cal graph. The destination that results in the smallest

extensibility is chosen. It is removed from Φ, and the

corresponding hypothetical graph replaces the current

graph.

• The above steps repeat until Φ is empty.

Fig. 1 shows an example of augmenting the graph under

the algorithm, until it covers all destinations. The algorithmic

details are elaborated below.

A. Delay-Constrained Least-Cost Multi-Path Construction

Our delay-constrained least-cost multi-path construction is

based on a state diagram. Each state is a vector with N
elements, i.e., S = [s1, s2, ..., sN ], where si = −1 signifies

Node i has not received the data packet, si = 0 indicates

Node i is carrying the data packet but has never transmitted

it to another node, and si = 1 means Node i has received the

data packet and forwarded it.

Fig. 2 illustrates an example of the state diagram for a

network with four nodes. Without loss of generality, we let

Node 1 be the data issuer. Thus the initial state is S =
[0,−1,−1, ...,−1]. The state transits, as depicted by an arrow

in the diagram, when the data packet is transmitted from one

node to another, e.g., from Node i to Node j. Such a state

transition is denoted by Lij . Note that, different from single-

copy single-path data transmission where Lij is possible only

if si = 0 and sj = −1, i.e., Node i is carrying the data packet

but has never transmitted it while Node j has not received the

data packet, in multi-copy multi-path data transmission, data

packet may be delivered to Node j even Node j has already

received it.

The state diagram (including the states and transitions)

forms a tree structure. The initial state is the root of the tree.

A state can be in two status, i.e., active or terminated, as

defined below.

Fig. 2: The state diagram shows all possible transmissions of

a data packet in a network with four nodes. Without loss of

generality, we let Node 1 be the data issuer.

Definition 1. An active state is a state that allows further

transitions.

The data packet will be further transmitted under an active

state. An active state must have a 0 element, i.e., si = 0,

which is also called an active element.

Definition 2. Node i is an active element of an active state if

and only if si = 0.

Fig. 2 depicts active states only. Each active state may

remain active or be terminated.

Definition 3. An active state becomes a terminated state if the

data packet is delivered to the destination.

Fig. 2 depicts all possible transmissions of a data in a

network. Our goal is not to execute all such transmissions

which lead to high communication overhead, but instead to

perform selective transmissions to minimize communication

cost. To this end, we have introduced a transmission matrix,

X , where Xij = 1 signifies that Node i will send the data

packet to Node j, when the former meets the latter with si = 0
and sj = −1 or 1; or the transmission will not be performed

otherwise.

With X as the variable to be optimized, we now analyze

the probability to reach each state. Since the state diagram

forms a tree structure, there is a unique path from the root

(i.e., the initial state) to a given state S = [s1, s2, ..., sN ].
Let LS denote the path from the root to S, which consists of

a sequence of transmissions {LUS
1
US

2
, LUS

2
US

3
, ..., LUS

K−1
US

K
},

where {US
1 , US

2 , ..., US
K} are the set of nodes involved in the

transmissions in sequence. For example, the path from the root

to State S14[1, 0, 1, 1] includes such links as L13, L34, and L42.

Each link introduces a transmission delay. The total delay to

reach the state is
∑K−1

i=1 TUS
i US

i+1
. In single-copy single-path

data transmission, since only one path to each destination is

selected, once the distribution of any individual opportunistic

link delay (i.e., TUS
i US

i+1
) is known, the distribution of a path

delay can be derived by convolution. Thus once the path to d
is determined, Pr{LS ≤ δ} can be calculated accordingly.

However, in multi-copy multi-path data transmission, it is

difficult to derive the probability to reach each state, because

one link may be shared by different state transitions. In order

to eliminate the dependence of multiple paths to the same

destination, we apply edge splitting process [22] to derive



independent delivery probability.
We are interested in terminated states. A state S can be

terminated if and only if the following two conditions are

satisfied. First, the transmission matrix is configured such that

XUS
i US

i+1
= 1, ∀1 ≤ i ≤ K−1, forming a valid path from the

root to State S. Second, the last node on the path (i.e., Node

US
K) is the destination while others along the path (i.e., Nodes

US
i , ∀1 ≤ i ≤ K − 1) are not. Therefore the probability that

State S is terminated is

PS(X) =

K−1∏
i=1

XUS
i US

i+1
× Pr{

K−1∑
i=1

TUS
i US

i+1
≤ δ}. (2)

After the conversion from the dependent links to the in-

depent ones, the states are uncorrelated, therefore the total

probability to reach a terminated state, i.e., the probability to

deliver the data packet to the destination through at least one

path is P (X) = 1−
∏

|ΨS |(1−PS(X)), where |ΨS | is the set

of paths from the root to State S. With proper manipulation,

we arrive at the following formula:

P (X) = 1−
∏
|ΨS|

(1−
K−1∏
i=1

XUS
i US

i+1
×Pr{

K−1∑
i=1

TUS
i US

i+1
≤ δ}).

(3)
The communication cost in a wireless network is often

proportional to the number of transmissions. The more the

transmissions, the higher the consumption of energy and

storage space. It is out the scope of this work to define the

best cost function. We simply let C(X) be the total number

of transmissions involved in the delivery of a data packet. Let

D(S) denote the depth of State S in the diagram. Obviously,

D(S) represents the number of transmissions (i.e., the cost)

needed to transit from the initial state to S. Note that, the cost

of D(S) is incurred as long as State S is reached. Thus C(X)
is given below:

C(X) =
∑
S

D(S)PS(X). (4)

Thus, Eq. (1) can be reformulated as:

Minimize : C(X),
S.t. : P (X) ≥ γ.

(5)

P (X) and C(X) are obtained via Eqs. (3) and (4), and then

plugged into Eq. (5). A branch and bound algorithm [33] is

adopted here to discover the optimal transmission matrix X ,

in order to minimize C(X) while ensuring P (X) ≥ γ.

B. Best Hypothetical Graph Based on Extensibility

The above step establishes the delay-constrained least-cost

multi-path to each node in Φ. If the paths do not exist for

a destination, it is marked unreachable. It essentially creates

up to |Φ| hypothetical new graphs, denoted by {Gd|∀d ∈ Φ}.

Next we introduce a metric, named extensibility, to choose the

best hypothetical graph added to the current graph G.
Each node d in Φ induces a hypothetical graph. Its exten-

sibility is defined as

EXd =
1

|Φ| − 1

∑
i∈Φ,i6=d

Ci
Gd

, (6)

b

1

s

a
2

v d

Fig. 3: To discover the delay-constrained least-cost path from

a node in Φ to the current graph G, a virtual node v is created

and connected to every node in G via a virtual edge with a

cost of zero.

which is intrinsically the average least cost from the remaining

destinations to the hypothetical graph Gd.

To solve the above least cost problem between a node and

a graph, we create a virtual node v and connect it to every

node in G via a virtual edge (as shown in Fig. 3). Each virtual

edge has a cost of zero. Thus the least cost between v and a

node d in Φ is equivalent to the least cost path from d to

the multicast graph G, where we can apply a shortest path

algorithm to solve the problem.

The hypothetical graph with the lowest extensibility is

selected, since it minimizes the average cost for future destina-

tions to join the graph. Accordingly, G is replaced by Gd with

minimum EXd, and the corresponding d is removed from Φ.

The algorithm repeats the above process until all destina-

tions have been added into the graph, i.e., Φ = ∅.

V. DISTRIBUTED ONLINE ALGORITHM

While the above algorithm can be implemented by each

individual node, it is intrinsically centralized (requiring global

information), and thus unpractical for real world implemen-

tation. However, it offers useful insights for the development

of a distributed data transmission strategy. In particular, the

essence of the centralized algorithm is to determine multiple

end-to-end paths from source to each destination by striking

the balance between cost and delivery probability. This insight

stimulates us to develop a distributed scheme to establish

“virtual paths” from source to each destination which can

significantly reduce the computation complexity and also

effectively guide the transmission of a data packet to each

destination with a required delivery probability.

The proposed algorithm consists of two components, which

respectively establish an approximate multicast transmission

strategy based on “virtual path” for each destination and make

appropriate online routing decisions based on optimal stopping

rule as outlined below.

A. Approximate Multicast Transmission Strategy

We propose to establish an approximate multicast trans-

mission strategy to guide the transmission of a data packet



to the destination with low computation complexity. Briefly,

each node discovers a set of opportunistic links with its direct

neighbors and maintains the corresponding delay distributions

in order to construct an approximate network graph, including

its direct neighbors and virtual paths which denote multi-hop

paths from the neighbors to the destination. Compared with the

centralized approach, where each node maintains the complete

paths to each destination, in the distributed approach the source

node only maintains the delay distributions and costs of virtual

paths. In our implementation, we adopt discrete time slots to

construct approximate delay distributions, where a slot is ∆
minutes. The delay distribution of a direct link between Nodes

i and j can be represented by a vector [P 1
ij , P

2
ij , ..., P

K
ij ],

where P k
ij is the probability that their inter-meeting time is

greater than (k−1)∆ and less than k∆. Such an approximate

delay distribution can be built via a trivial online learning

algorithm according to historical inter-meeting times. The

nodes exchange such information when they meet, to learn

the remote opportunistic links up to a certain number of hops.

Without loss of generality, let’s consider a destination d. When

Node i meets Node j, it intends to learn a set of available paths

from Node j to d. More specifically, it builds a network graph

which includes the direct link between Node i and Node j,

the direct links from Nodes i and j to d, and virtual paths

that represent multi-hop paths from Nodes i and j to d. Let

Lk
ij denote a link between Node i and Node j, where k is an

index. L0
ij indicates the direct link, and Lk

ij(k > 0) represents

the kth virtual link. Lk
ij is associated with a cost Ck

ij and a

delay T k
ij . The overall delay of path i → j → d is T 0

ij + T k
jd.

Its delay distribution can be calculated as the convolution of

[P 1
ij , P

2
ij , ..., P

K
ij ] and [P 1

jd, P
2
jd, ..., P

K
jd ]. The overall cost of

path i → j → d is 1 + Ck
jd.

So far, the source has maintained multiple paths via each

of different next hop relay nodes. We assume that the source

delivers a data packet to destination d, ∀d ∈ Φ, and selects

paths via next hop relay node i among path set P i
d, ∀d ∈ Φ.

The path selection is then formulated as follows:

Minimize :
m∑
i=1

|P i
d|∑

k=1

xk
i c

k
i ,

S.t. : 1− 1
m

m∑
i=1

|P i
d|∏

k=1

(1 − xk
i p

k
i ) ≥ γ, ∀d ∈ Φ,

(7)

where xk
i indicates whether or not the data packet is delivered

by the kth path via the next hop relay node i. cki denotes

the cost of the kth path. pki denotes the probability from the

source through the kth path of the next hop relay node i to

destination d. m is the number of next hop relay nodes. The

constraint ensures that, the delivery probability that the data

packet is delivered to each destination by at least one of the

paths within a given delay budget is not less than γ.

The problem is NP-hard. We propose a heuristic approach.

The weight for the next hop relay node i to deliver a data

packets to all the destinations is

wi = 1−
1

|Φ|

|Φ|∑
d=1

|P i
d|∑

k=1

xk
i p

k
i

|P i
d|

(8)

which indicates the probability that a data packet cannot be

delivered to the destinations via the next hop relay node i
within a given delay budget. Φ is the destination set. P i

d is the

set of paths via next hop relay node i to destination d. Then the

next hop relay node is chosen by the following requirement:

m∏
i=1

wxi

i ≤ 1− γ (9)

where xi indicates whether or not the data packet is delivered

by the next relay node i. We apply 0-1 knapsack algorithm to

determine the optimal next hop relay nodes. The source thus

employs the heuristic algorithm to compute a transmission

strategy based on the selected next hop relay nodes, in a

distributed manner according to its best-known knowledge.

B. Online Dynamic Routing

The above algorithm can be implemented in a distributed

manner according to its best-known knowledge of the network.

However, such algorithm is essentially an offline solution. It

intends to discover an optimal routing strategy based on the

network graph, and transmits data according to the strategy.

This approach is well accepted in conventional, deterministic

networks. However, it is inefficient in a mobile opportunistic

network, since it intends to apply a deterministic transmission

strategy in a nondeterministic network by transmitting all data

packets via a predetermined route. In mobile opportunistic

D2D networks, the optimal routing strategy is the “best” only

on a statistic basis when we consider a large number of

data packets. It is not necessarily the best solution for every

individual transmission.

For example, assume that under the optimal routing strategy,

Node i should transmit data packets to Node j, which is

the statistically optimal strategy. But when Node i intends to

transmit a particular packet, it might not be able to establish

a link with Node j within a delay budget. Therefore, the

transmission would fail if it is determined to wait for Node j.

Instead, it is obviously favorable to deliver the packet via other

nodes it meets opportunistically. In general, Node i may meet

a sequence of nodes, similar to a stochastic process. It must

make an adaptive, online decision on which communication

opportunity should be exploited to deliver the data packet, in

order to achieve the optimization goal given in Eq. (1).

Based on the above observation, we propose a distributed

online algorithm based on optimal stopping theory.

1) Analysis: Since we are concerned about the problem of

delivering a data packet within a delay budget, we propose a

distributed approach based on the stopping rule problem with

finite horizon. A stopping rule problem has a finite horizon

if there is a known upper bound on the number of stages at

which one may stop.



We define Vǫ the cost if the data packet is delivered by one

node with remaining delay budget (δ− ǫ). We note that {Vǫ}
are in fact a sequence of i.i.d. random variables. Thus we

denote the probability density function (pdf) of Vǫ as f(v).
We denote Yǫ = 1 − 1/Vǫ as the return node i can obtain

if it deliveres a multicast data to one node at time ǫ. More

specifically, Yǫ = Vǫ · gǫ, where gǫ is the discounted factor

capturing the essential idea that further delivery is at the cost

of the decrease in the delay budget. We assume Yδ = 0 and

Y∞ = 0, which means that node i wins nothing if it waits

until the delay budget expires or forever.

For the delay-constrained least-cost multicasting problem,

node i will obtain Yǫ if it deliveres a multicast data to one node

at time ǫ. Node i may decide to stop at time ǫ or to continue to

meet other nodes. Therefore, the delay-constrained least-cost

multicasting problem can be considered as an optimal stopping

problem with an objective to find the optimal stopping time

that maximizes the expected return, i.e.

ǫ∗ , argmax
ǫ

[E(Yǫ)], Y
∗ , sup

τ
[E(Yǫ)]. (10)

We define Zǫ as the maximum return node i can obtain if it

delivers a data packet at time ǫ. At ǫ, we compare the return

for stopping, namely Yǫ, with the return we expect to be able

to get by continuing and using the optimal rule for time slots

ǫ+ 1 through δ, which at time slot ǫ is E(Zǫ+1(Yǫ+1)), i.e.

Zǫ = max{Yǫ, E(Zǫ+1(Yǫ+1))} (11)

From Eq. (11), we can see that E(Zǫ+1(Yǫ+1)) serves as a

threshold in the sense that if Yǫ is above the threshold, it is

optimal for the node to deliver the data packet. We define the

threshold at time slot ǫ as

ρ∗ǫ = E(Zǫ+1(Yǫ+1)), (12)

Then we can obtain the optimal stopping strategy of the delay-

constrained least-cost multicasting problem as follows.

Theorem 1. For the delay-constrained least-cost multicasting

problem, it is optimal for the node to deliver the data packet

if the following condition is satisfied at ǫ,

ǫ∗ = inf
ǫ
{ǫ > 0 : Yǫ ≥ ρǫ} (13)

Theorem 2. For the delay-constrained least-cost multicasting

problem, the threshold of the optimal stopping strategy is given

by:

ρ∗δ = 0 (14)

ρ∗δ−1 = gT

∫ Vmax

Vd

vf(v)dv (15)

...

ρ∗ǫ∗ = gǫ+1

∫ Vmax

ρ∗
ǫ+1

gǫ+1

vf(v)dv + ρ∗ǫ+1

∫ ρ∗ǫ+1

gǫ+1

Vd

f(v)dv (16)

Proof. We know that Yδ = 0, then according to Eq. (12), we

get ρ∗δ = 0. Then we have Yδ ≥ ρ∗δ . According to Eq. (12),

we can obtain ρ∗T−1 as

ρ∗δ−1 = E[Zδ] = E[Yδ],

= gδE[Vδ] = gδ
∫ Vmax

Vd
vf(v)dv

(17)

Combining Eqs. (14) and (15), we can next compute

{ρ∗ǫ}
δ−2
ǫ=0 by the backward induction as

ρ∗ǫ = E[max{Yǫ, ρ
∗
ǫ+1}] = E[max{gǫVǫ, ρ

∗
ǫ+1}] =

gǫ+1

∫ Vmax

ρ∗
ǫ+1

gǫ+1

vf(v)dv + ρ∗ǫ+1

∫ ρ∗ǫ+1

gǫ+1

Vd

f(v)dv
(18)

2) Protocol Design: To facilitate our discussion, we assume

that each multicast data packet is associated with a descriptive

metadata, which includes a source (i.e. s), a set of multicast

destinations (i.e. Φ) and a sequence number (i.e. m).

After the packet is created by the source, it will be transmit-

ted to a set of intermediate nodes based on the routing scheme

to be introduced below. Each node carries a responsibility to

deliver the packet to a subset of destinations. For example,

let’s assume Node i currently holds a multicast packet. It

is responsible to deliver the packet to a set of destinations,

Φi ⊆ Φ. Initially, Φi = Φ if Node i is the source, and

Φi = ∅ for all other nodes. Let Gi(Φi) denote the approximate

multicast graph at Node i that intends to cover the destinations

in Φi. It is composed by the paths of the selected next hop

relay nodes according to the algorithm discussed in Sec. V-A.

The cost of the graph is denoted by CGi(Φi),τ , which is the

sum of costs of all the paths via the selected next hop relay

nodes, where τ is the current time slot.

We assume only two nodes meet at one time slot, if multiple

nodes meet at one time slot, we assume an underlying medium

access control protocol (e.g., IEEE 802.11) that randomly

selects one node as the sender and another as the receiver.

We consider Node i meets Node j at time slot τ , if the data

packet is not delivered to Node j, then at the next time slot

τ+1, the cost of Node i to deliver the data packet will become

CGi(Φi),τ+1. On the other hand, if the data packet is delivered

to Node j in time slot τ , two copies of the data packet are

generated, each of which takes partial responsibility to deliver

the data packet to the whole or partial destinations. When

Node i meets Node j at time slot τ , the former instructs

the latter to compute a multicast graph, aiming to cover

the destination set Φi. Node j may or may not be able to

cover the entire Φi. Let Gj(Φj) denote the approximate graph

constructed by Node j, where Φj ⊆ Φi. The cost of the two

approximate graphs at time slot τ is CGi(Φi),τ and CGj(Φj),τ

respectively.

According to Theorem 1, Node i transmits the packet to

Node j, if and only if the following condition is satisfied:

1

CGi(Φi),τ + CGj(Φj),τ
≥

1

CGi(Φi),τ+1
. (19)



The above condition indicates that the cost can be reduced by

splitting the delivery responsibilities between Nodes i and j.

If Node i does transmit the packet to Node j, it updates its

destination set to be

Φi , Φi − Φj . (20)

Node i stops transmitting the multicast packet when either

Φi = ∅ or the delay budget expires.

VI. SIMULATION RESULTS

We have carried out extensive simulations to evaluate the

proposed algorithms under various network settings. The simu-

lation codes are extracted from our prototype implementation,

and the simulation results are obtained under real-world traces

and random walk mobility model. Each simulation is repeated

100 times with a random source node and a fixed number of

randomly selected destinations for statistical convergence. We

set the desired delivery probability 0.8.

A. Simulation under DieselNet Trace

We have evaluated our proposed schemes under several real-

world traces. DieselNet testbed comprises 33 buses, serving

an area of approximately 150 square miles. Our simulation

is based on the trace data obtained in 2008 [34]. The results

under other traces show similiar trend, thus are not shown due

to space limit. Fig. 4 shows the simulation results of different

schemes. We can see that Epidemic outperformes others. On

the other hand, Direct Delivery performs the worst, since data

packet is delivered only when two nodes meet. The proposed

distributed algorithm performs better than Centralized and

Social-Aware [22].

The performance of the proposed distributed online al-

gorithm under different delay budgets is shown in Fig. 5.

With the increase of delay budget, the average cost increases

accordingly. This is because increasing delay budget results in

more aggressively attempted transmissions, including longer

paths, thus leading to higher average cost. At the same time,

the delivery ratio and delay naturally increase with larger delay

budget. However, when the delay budget is sufficiently large,

the overall cost decreases. It is because there are more options

of data delivery paths. As a result, the algorithm is able to

choose the ones with lower cost. In addition, higher probability

threshold γ generally results in higher cost, delay and average

delivery ratio, because it enforces the nodes to adopt more

aggressive approaches for data delivery. However, we would

like to point out that the success rate (i.e., the fraction of

multicast jobs that meet the delay requirements) decreases

when γ increases as shown in Fig. 5d. This is because it

becomes more difficult to achieve the constraint in Eq. (1),

when γ is large.

Fig. 6 illustrates the results when we vary the size of

destination set. In general, it is more challenging to achieve a

delay-constrained multicasting for a larger destination set, thus

leading to higher cost and longer delay. At the same time, the

average delivery ratio and success rate both decrease.
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(d) Success rate vs. delivery ratio.

Fig. 5: Simulation results with different delay constraints under

DieselNet trace.
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Fig. 4: Performance comparison under DieselNet trace.
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Fig. 6: Simulation results under different sizes of destination set under DieselNet trace.

B. Simulation under Random Walk Mobility Model

We have also carried out extensive simulations under ran-

dom walk mobility model, which enables convenient study

of performance trend with the variation of several network

parameters. More specifically, the network is deployed in an

area of 20 × 20. The network consists of 100 nodes and the

generation rate of data packet is 0.02 (one packet per 50 time

units).

As illustrated in Fig. 7a, with the increase of number of

nodes in the network, the delivery ratio grows, because the

nodes have more opportunities to meet each other and deliver

their packets. The impact of traffic load is shown in Fig. 7b.

While the delivery ratio keeps stable at the beginning under

all schemes, it starts to drop when the generation rate exceeds

0.03. In general, with a higher packet generation rate, the

overall traffic load increases, resulting in more frequent data

overflow and consequently lower delivery ratio. Fig. 7c shows

that a higher delivery ratio is achieved with the increase of

queue size, because more packets can be kept in the queue

until they are delivered.

VII. CONCLUSIONS

In this paper we have studied the problem of multi-copy data

dissemination with probabilistic delay constraint in mobile

opportunistic D2D networks. We have formally formulated

the problem and introduced a centralized heuristic algorithm

which aims to discover a network graph for multicasting, in

order to meet delay constraint and achieve low communication

cost. We have developed a distributed online algorithm based

on the optimal stopping strategy. Simulation results based

on real-world traces and random walk mobility model have

proved the effectiveness of our proposed schemes and have

shown that the overall performance depends on a variety of

network parameters.
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