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Abstract. When users store encrypted data in a cloud environment, it is impor-
tant for users to ask cloud to carry out some computation on the remote data
remotely. ORAM is a good potential approach to carry out this kind of remote
operation. In order to use ORAM for this purpose, we still need to have gar-
bled programs to run on ORAM. Goldwasser et al and Lu-Ostrovsky initiated the
study of garbled RAM machines in their 2013 Crypto papers. Goldwasser et al’s
scheme is based on fully homomorphic encryption schemes and attribute based
encryption schemes for general RAM machines. Lu and Ostrovsky’s scheme is
based on one-time garbled circuits and for each input, one has to design as many
one-time garbled circuits as ORAM CPU running steps. That is, for each execu-
tion of the program, the data owner needs to upload a new program to the cloud to
run on ORAM. Using recent results on indistinguishability obfuscation, this pa-
per designs alternative reusable garbled ORAM programs. The reusable garbled
ORAM CPU constructed in this paper is of constant size while the size of the
garbled ORAM CPUs by Lu and Ostrovsky depends on the number of ORAM
CPU running steps.

1 Introduction

Cloud computing techniques become more and more popular and users begin to store
their private encrypted data in cloud services. In order to take full advantage of the
cloud computing paradigm, it is important to design efficient techniques to carry out
computation over encrypted data in the cloud without downloading the data to a lo-
cal machine. Though computation over encrypted data helps to protect the privacy of
the data, it does not hide the access pattern to data. A natural solution is to use obliv-
ious RAM techniques by Goldreich and Ostrovsky [12] to carry out computation over
encrypted data, which provably hides all access patterns.

In order to use ORAM schemes, a trusted CPU is required. Since users may not trust
the CPU powers at cloud environments, it has been recommended for the user to run
the trusted CPU at client site and to treat the cloud as a large random access memory
storage service. The disadvantage of this approach is the heavy communication over-
head between the client and the cloud. For example, the most efficient ORAM scheme
requires at least O(log2 n) memory accesses for each individual memory access, where
the cloud database contains n unit blocks of data.

Lu and Ostrovsky [24] and Goldwasser et al [13] initiated an alternative approach
to let the cloud run a garbled version of the ORAM CPU. In this approach, the client



machine only needs to submit the garbled ORAM CPU to the cloud and the cloud only
needs to return the encrypted outputs to the client. Thus the communication overhead
could be significantly reduced in case the cloud database size is large. One disadvantage
for Lu and Ostrovsky’s approach [24] is that their garbled RAM CPU is not succinct and
can be used only for one time. For example, if the ORAM CPU runs t-steps for one input
x, then the garbled ORAM CPU for the input x is at the size of O(t). Lu and Ostrovsky
[24] lists it as a tempting open problem to use Goldwasser et al’s [14] reusable garbled
circuits to design reusable garbled RAMs. It should be noted that Goldwasser et al [13]
designed reusable garbled RAM machines using fully homomorphic encryption (FHE)
and Attribute Based Encryption schemes for RAM machines.

In recent years, several indistinguishability obfuscation schemes have been designed
(see, e.g., Jain-Lin-Sahai [18]). By converting the ORAM CPU to an NC1 circuit and
then using obfuscation schemes, this paper designs practical reusable garbled ORAMs
for cloud computation over encrypted data. Our scheme is succinct since the garbled
ORAM CPU program is of constant size. Furthermore, for commonly used cloud ap-
plication programs, they are encrypted and stored in the database server together with
user data. Thus for each execution of the program over the encrypted database (e.g.,
a database search query), the user only needs to submit an encrypted keyword to the
server, where the encrypted keyword is approximately the same size as the keyword. In
a summary, the contributions of this paper are two-folds. First, this paper presents an
alternative garbled ORAM program design which is different from Lu-Ostrovsky [24]
and Goldwasser et al [13]. Secondly, the garbled ORAM programs in this paper are
reusable while the scheme in [24] is not reusable.

We close this section by introducing some notations. We use κ to denote the security
parameter. A function f is said to be negligible in an input parameter κ if there exists
κ0 such that for all κ > κ0, f(κ) < κ−n for all n > 0. For convenience, we write
f(κ) = negl(κ). Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N , are said to be
computationally indistinguishable if for all probabilistic polynomial-time algorithm D,
we have |Pr[D(Xκ, 1

κ) = 1]− Pr[D(Yκ, 1
κ) = 1]| = negl(κ).

The structure of this paper is as follows. Section 2 provides a background discussion
and reviews necessary techniques required for the construction of garbled ORAMs in
this paper. Our main construction of reusable garbled ORAMs is presented in Section
3.

2 Cloud data storage and oblivious RAMs

Cloud storage systems may be interpreted as databases stored at the cloud servers, There
have been extensive research on public and private databases in the literature. In the
public database setting, the database is published and individual users need to retrieve
some entries from the database without letting the database server know which entry it
has retrieved. A straightforward solution is to let users to download the whole database
though it is not practical. To address this challenge, Chor, Goldreich, Kushilevitz, and
Sudan [6] introduced the private information retrieval (PIR) concept in an information
theoretic setting. PIR protocol makes it possible for users to obtain information from a
database without downloading the whole database. At the same time, PIR protocol will



not reveal to the database server which entry the user has retrieved. In an extended PIR
protocol [6], one could have many copies of the identical database without allowing
them to communicate with each other. Chor and Gilboa [5], Ostrovsky and Shoup [26],
and others considered the computational PIR, in which the database is restricted to
perform polynomial time computations. A single database based PIR was constructed
by Kushilevitz and Ostrovsky [22] assuming that certain public-key encryption scheme
exists. Since then, several single database PIR schemes with better bounds have been
proposed and studied. For a brief survey, it is referred to Ostrovsky and Skeith [27].
Though PIR techniques find important applications in many domains, it is not sufficient
to address the challenges in the privacy preserving cloud data distribution systems that
we are facing.

In the private database setting, users upload private databases to a remote database
server while keeping the database private from the remote database administrators. At a
later time, users should be able to search and retrieve entries with certain keyword from
the remote database. Based on the physically shielded Central Processing Unit (CPU)
technique [20], Goldreich and Ostrovsky [12] proposed a theoretical treatment of soft-
ware protection by formulating the problem in the setting of learning a program struc-
ture by observing its execution. Using this new formulation, they reduced this problem
to on-line simulation of any programs on oblivious RAMs (random access machines).
A machine is oblivious if its accesses to memory locations are independent of the input
values with the same running time. We may apply these schemes in the cloud comput-
ing environments (e.g., search over encrypted texts) as follows: the physically shielded
CPU is interpreted as the user at the client side and the memory locations are inter-
preted as the cloud storage. Though the scheme in [11,12,25] is asymptotically efficient
and nearly optimal, it is inefficient in practice with large hidden constants in the big-O
notation and a heavy communication overhead between the client and the server.

In the RAM (random access machine) model, the CPU performs basic arithmetic,
logical, control and input/output operations specified by the instructions. The CPU can
be considered as a stateful processor where the state Σ is determined by the content in
the registers. The registers store program counters, query counters, session information,
cryptographic keys, and other information. Among these registers, there is an accumu-
lator where intermediate arithmetic and logic results are stored. Throughout this paper,
we will assume that CPU could perform the following operations:

1. Perform arithmetic instructions +,−,×, bx/yc. For each arithmetic operation f(x, y),
there are two inputs x and y. The value of x should be already in the accumulator
and y should be a value in the memory cell to be fetched.

2. Generate a random number and put it in the accumulator.
3. Read data from a memory cell to the accumulator and write the value in the accu-

mulator to a memory cell. Note that this kind of operations will include the user
data inputs and outputs if we use some fixed memory cells for user inputs and some
other fixed memory cells for user outputs.

4. Control transfer instructions: “GOTO X”, “IF X = 0 THEN GOTO Y ”, and “IF
X > 0 THEN GOTO Y ”.

5. HALT: terminates the execution of the program.



During the execution of the RAM CPU, each read/write operation to memory cells
could be viewed as a query (op, v, x) where op equals to READ or WRITE, v is the data
identifier and x is the value. Without loss of generality, we always assume that (op, v, x)
is contained in a register that is called an interface register. In the RAM machine model,
the actual programs are stored in the memory cells. Thus RAM CPU can be considered
as a universal machine that reads programs from the memory cell and executes the
instructions step by step. Based on this interpretation, we will not distinguish data and
programs throughout this paper.

In order to protect the memory cell access patterns of the RAM CPU, the client
holds a secret key for a semantically secure probabilistic encryption scheme. The data
and programs uploaded to RAM memory cells are encrypted using the secret key. The
clients stores n blocks of data (vi, xi) where vi is the data identifier or location-index
and xi is the data payload. By default, the data block (vi, xi) is stored at physical
location i in the memory cell. As we have discussed in the previous paragraphs, the
RAM CPU interacts with data stored in the memory cells by issuing commands “READ
(vi, xi)” and “WRITE (vi, xi)”. By default, the RAM machine does not hide the fact
that the CPU has accessed the data stored at the physical position i (by default, it is
(vi, xi)) even if the data payload (vi, xi) itself is encrypted and remains perfectly se-
cure. In order to hide the actual data blocks that the client accessed, the oblivious RAM
(ORAM) machine is introduced where the data block (vi, xi) is no longer stored at the
physical position i. Instead, a random permutation is used to store (vi, xi) at a random
location. In order to hide the event that one data block is accessed for multiple times,
further mechanisms (e.g., a cache) are used. Several commonly used constructions of
oblivious RAMs are presented in next sections. The security for ORAMs is expressed
in the following definition which is based on [12,29,16].

Definition 1. Assume that the client store a sequence of data blocks X = {(v1, x1),
· · ·, (vn, xn)} at the server. Each data block (vi, xi) is located at a physical location
π(i). The client (or the ORAM CPU) issues a sequence of operations (op1, a1, y1), · · ·,
(opm, am, ym) to the server where each (opi, ai, yi) represents a read or write com-
mand. For example, a command (READ, ai, yi) asks the server to read the content at
the physical location ai to the variable yi. The sequence of operations (op1, a1, y1), · · ·,
(opm, am, ym) is called an access pattern A(X) on client data blocks X . An oblivious
RAM machine is secure if for any two data blocks X and Y of equal length, the access
patterns A(X) and A(X) are computationally indistinguishable for any one but the
client who holds the secret key.

The first oblivious RAM simulation was designed by Goldreich [11] using the
“square root” construction. For a RAM machine with n memory cells denoted by an
array R[1..n], an oblivious RAM with a memory array OR[1..n+ 2

√
n] was designed

in [11]. The portion OR[n +
√
n + 1..n + 2

√
n] of size

√
n is used by the ORAM as

the cache space (or a shelter). For the first n+
√
n cells, choose a random permutation

π : {1, · · · , n+
√
n} → {1, · · · , n+

√
n}

and letOR[π(i)] = R[i] = (vi, xi), where we assume thatR[i] contains a dummy value
for n < i ≤ n +

√
n. Each time when the ORAM accesses a data block (vi, xi) from



OR[π(i)] = R[i], it stores this value (vi, xi) in the cache OR[n+
√
n+ 1..n+ 2

√
n].

For each new query of a data block (vj , xj), ORAM checks all values in OR[n+
√
n+

1..n+ 2
√
n] to see whether (vj , xj) has been cached there already. If the data block is

found, ORAM only needs to make a dummy access to another cell OR[π(n+ l)] where
l is the counter. That is, this is the l-th dummy memory cell access. If the data block
is not found, ORAM loads the data block (vj , xj) from OR[π(j)] directly. After

√
n

memory cell accesses, ORAM needs to re-shuffle data blocks in the memory cells using
an oblivious sorting process.

Goldreich [11] used Batcher’s sorting network which takes O(n log2 n) memory
cell accesses. Thus the amortized memory access isO(

√
n log2 n) which is significantly

larger. In a summary, each memory access of the RAM is translated toO(log n) square-
root ORAM memory accesses (without re-shuffling) and amortizedO(

√
n log2 n) ORAM

memory accesses (including re-shuffling cost).

Hierarchical ORAM. Goldreich and Ostrovsky [12] introduced a more efficient hierar-
chical construction of oblivious RAM machines. In this approach, a tree is constructed.
Each tree node is called a bucket which contains log n cells. Each level of the tree is
called a buffer. The first buffer (including T1,1 and T1,2) at the root level is used as the
cache space (or a shelter) as in the “square root” approach. The i-th level buffer has
2i nodes. Each bucket will hold only one data block on average. At the beginning, the
tree has L = log n levels and the data blocks in R[1..n] of the original RAM are stored
in the nodes TL,1, · · · , TL,2L where 2L = n. Recent works by Pinkas-Reiman [29] and
Goodrich-Mitzenmacher [16] show that if cuckoo hashing [28] is used, then each bucket
(that is, the tree node Ti,j) only needs to contain 4 memory cells to guarantee that the i-
level can hold 2i data blocks. Note that in the i-th buffer, we have 4 ·2i memory spaces.
This is sufficient to store 2i RAM’s data blocks and 2i dummy values using the cuckoo
hashing. In Goodrich-Mitzenmacher [16] simulation, a further O(log n)-size cache Q
and a shared stash are included to improve the performance.

To query the data block (vi, xi) that were supposed to be stored at R[i] of the origi-
nal RAM machine, the ORAM first scans the cache Q, the shared stash, and the entire
first level buffer (that is, the buckets T1,1 and T1,2) to check whether (vi, xi) has al-
ready been accessed or not. If the data block (vi, xi) is found, ORAM continues to read
a dummy node from each buffer. If (vi, xi) is not found in the cache, ORAM checks
whether T2,h1(i) or T2,h2(i) contains (vi, xi). Similarly, if the data block (vi, xi) is found
at the second buffer, ORAM continues to read one dummy node from each lower buffer.
If (vi, xi) is not found in the second buffer, it continues to look for it in lower buffers.
After the cache or the i-th buffer is full, oblivious sorting is used to move the cache to
the second buffer or to move the i-th buffer to the (i + 1)-th buffer. The randomized
Shell sorting algorithm [15] could be used to sort the buffers with O(n log n) memory
cell accesses.

In the hierarchical ORAM simulation, each RAM memory access is replaced by
O(log n) ORAM memory accesses. For the randomized Shell sorting algorithm based
re-shuffling of level i, it takes O(2i log 2i) memory accesses. Thus the amortized mem-
ory access is O(log2 n). Note that it is still quite slow to re-shuffle a level of the tree.
For example, it takes O(n log n) memory accesses to re-shuffle the lowest level.



Unconditionally secure ORAM. The ORAM models that we have discussed in the
previous paragraphs use oracles (or cryptographic pseudorandom functions) to shuffle
the memory cells of the original RAM. If we use flipped coins to shuffle the memory
cells, then we need to keep a track of the flipped coins. Recently, Damgård et al [7] and
Ajtai [1] achieved this by storing the flipped coins in the additional memory cells. Using
these recorded flipped coins, one can construct ORAMs without the use of random
oracles. Note that the approach in Ajtai [1] has a small probability that ORAMs will
fail on some inputs. The approach in [7] does not have this issue. Furthermore, Ajtai
[1] showed that the shielded CPU requirements in the ORAM model could be dropped.
From a first reading, the reader may interpret Ajtai’s ORAM as a obfuscated program
or a reusable garbled circuit. Thus there is a “conflict” with the impossibility results
for code obfuscation [1]. However, it should be noted Ajtai’s ORAMs behave more
like oblivious Turing machines (see, Pippenger and Fischer [30]) where the focus is on
hiding memory access pattern instead of content confidentiality. Furthermore, it should
be noted that the ORAM model requires memory cells to be encrypted while the code
obfuscation scheme does not require encrypted memory cells3.
ORAM with O(

√
n) local storage. In the previous paragraphs, we discussed ORAM

construction with constant local storage. The cost of this restriction is the external stor-
age expansion and communication overhead. For example, in Pinkas and Reinman’s
construction [29], we need to use 8n to 12n-bits storage size for n-bits data and each
data access requires O(log2 n) round trips to the external storage. In Goldreich and
Ostrovsky’s [12] hierarchical construction, one needs O(n log n)-unit data storage for
n-unit data and each data access requires O(log3 n) round trips to the external stor-
age. By requiring O(

√
n)-unit storage at client side. Boneh, et al [4] introduced an

ORAM/OS (ORAM based oblivious storage) scheme that only requires around 5 round
trips for each data access and the external storage size is slightly large than n-unit. In the
construction of [4], it uses the square root algorithm by converting the

√
n-unit cache

to a hierarchy tree and by keeping a map copy (only addresses but not data part) of the
hierarchy tree at the client side. The construction in [4] is a hybrid construction of the
square root algorithm [11] and the optimized Hierarchical algorithm [29].

2.1 Techniques for efficient ORAMs

Cuckoo hashing and the randomized data-oblivious Shell sorting algorithm are used to
improved the ORAM performance. Cuckoo hashing was introduced by Pagh and Rodler
[28] as a hash table with a worst case constant lookup time. In order to store n elements
from the domain U , we use two tables (i.e., arrays) T1[1..n] and T2[1..n], each of them
can store n elements. We also use two hash functions h1, h2 : U → {1, · · · , n}. Each
element x ∈ U is stored in either T [h1(x)] or T [h2(x)], but never in both. It is clear
that for each x, the position of x could be found in 2 steps.

In order to insert an element into the arrays, the following process is taken: if
T1[h1(x)] is empty, place it here and stop. If T1[h1(x)] is not empty, then let y =
T1[h1(x)] and store x here. If T2[h2(y)] is empty, place y here and stop. If T2[h2(y)] is
not empty, then let z = T2[h2(y)], store y here, and continue to insert z into the arrays.

3 The first author would like to thank Ajtai for pointing out this fact to the authors.



If the insertion process does not stop after a pre-defined maximum number of steps,
choose two new hash functions to start from the beginning.

To improve the robustness of cuckoo hashing, Kirsch et al [21] used a stash as
an additional space to hold elements that would cause failures for the cuckoo hashing
process. With a stash, the process fails if the stash itself overflows.

The randomized and data-oblivious version of Shellsort algorithm [32] was intro-
duced by Goodrich [15]. It runs in O(n log n) time and succeeds with a very high
probability. For an unsorted array T [1..n] of n elements, the Shellsort algorithm works
by choosing an offset sequence (o1, · · · , op) with oi < n. For each i < p and j ≤ oi,
sort the sub-array T [j, j + oi, j + 2oi, · · ·] using insertion-sort. Note that Leighton and
Plaxton [23] also studied randomized data-oblivious sorting algorithms with average
O(n log n) time complexity.

Note that in the data-dependent insertion sort, one starts from the second element,
insert the scanned element in the correct position and then do the same for the third
element and so on. The performance of the Shellsort algorithm depends on the choice of
the offset sequence. For example, Pratt [31] chooses the offset sequence as all products
of powers of 2 and 3 to obtain a worst-case running time of O(n log2 n).

For Goodrich’s randomized data oblivious Shellsort [15], let T [1..n] be the array
that we want to sort and assume that n is a power of 2. Set the offset sequence oi =
n/2i for i = 1, · · · , log n. For each offset oi, the array T is partitioned into regions
T [1..oi], T [oi + 1..2oi], · · ·. A compare-exchange operation on two regions T1 and T2

is defined as follows: let π : {1, · · · , oi} → {1, · · · , oi} be a random permutation. For
j = 1, · · · , oi, compare and exchange the values T1[j] and T2[π(j)] according to their
order. Note that if we take the permutation π as the identity permutation, then this is the
same as the Shellsort. The Goodrich’s randomized data oblivious Shellsort can now be
described as follows. For each oi = n/2i starting from i = 1, do

– divide T into regions T1, T2, · · ·, Tn/oi ;
– do a shaker pass on T1, T2, · · · , Tn/oi , where increasing sequence and decreasing

sequence of adjacent-regions are compared.
• Region compare-exchange Ti and Ti+1, for i = 1, 2, · · ·, n/oi − 1
• Region compare-exchange Ti+1 and Ti, for i = n/oi − 1, · · ·, 2, 1.

– do an extended brick pass on T1, T2, · · · , Tn/oi , where regions that are 3 offsets
apart, 2 offsets apart, odd-even adjacent, and even-odd adjacent are compared.
• Region compare-exchange Ti and Ti+3, for i = 1, 2, · · ·, n/oi − 3
• Region compare-exchange Ti and Ti+2, for i = 1, 2, · · ·, n/oi − 2
• Region compare-exchange Ti and Ti+1, for even i = 2, · · · , n/oi − 1
• Region compare-exchange Ti and Ti+1, for odd i = 1, · · · , n/oi − 1

3 Reusable garbled ORAMs

Lu and Ostrovsky [24] showed how to design one-time non-reusable garbled ORAMs
by constructing t pairs of garbled circuits (OiORAM ,OiCPU ) for i = 1, · · · , t, where t
is the maximum runtime of the ORAM, OiORAM simulates the ith-step memory read-
/write command, and OiCPU simulates the ith-step shielded CPU operation. Gentry et
al [10] showed that in order to prove the security for the garbled RAM scheme in [24],



an additoinal circularity assumption is required. Gentry et al [10] then proposed two
new constructions to avoid this additional assumption. In this section, we present our
construction of practical reusable garbled ORAMs which is based on secure Indistin-
guishability obfuscation schemes.

3.1 Constrained peseudo random functions

In order to avoid the circularity assumption, Gentry et al [10] used a concept of revoca-
ble PRFs: Let G : {0, 1}s → {0, 1}2s be a pseudorandom generator and we can write
G0(x) to denote the left half of the output G(x) and G1(x) to denote the right half of
the outputG(x). That is,G(x) = G0(x)||G1(x). For any key k ∈ {0, 1}s and input x ∈
{0, 1}n, the pseudorandom fucntion is defined as Fk(x) = Gx[n−1](· · · (Gx[0](k)) · · ·).

A constrained (or revocable) pseudorandom function is defined in such a way that
given the description of a constrained pseudorandom function, one cannot compute
the output of the pseudorandom function for some excluded inputs. This can be easily
achieved using GGM-pseudorandom functions. For example, if we want to exclude the
input 0n, instead of giving out the key k, we can give the following description of the
pseudorandom function

Fk : {G1(k), G0(G1(k)), · · · , G1(G0(G0(· · · (G0(k)) · · ·)))}.

Goldwasser et al [13] designed reusable garbled RAMs using fully homomorphic
encryption (FHE) schemes and attribute based encryption (ABE) schemes for RAMs.
As we have mentioned in previous sections, these schemes are neither efficient nor
secure against active adversaries.

3.2 Garbled Circuits (GC)

We first briefly review the formal definition of garbled circuits and related concepts.

Definition 2. A functional encryption scheme FE for a class of functions {Fn}n∈N
is a tuple of probabilistic polynomial time algorithms (FE.Setup, FE.KeyGen, FE.Enc,
FE.Dec) with the following properties

– (fmpk, fmsk) = FE.Setup(1κ) outputs a master public key fmpk and a master
secret key fmsk on the security parameter κ.

– fskf = FE.KeyGen(fmsk, f) outputs a secret key for a function f .
– c = FE.Enc(fmpk, x) outputs a ciphertext for x.
– y = FE.Dec(fskf , c) outputs the value y which should equal f(x).

The functional encryption scheme is correct if y 6= f(x) with a negligible probability.

The security of functional encryption scheme requires that an adversary learns noth-
ing about the input x other than the output f(x).

Definition 3. (FE security) Let FE be a functional encryption scheme for a family of
functions F = {Fn}n∈N . For a pair of probabilistic polynomial time algorithms A =



(A0, A1) and a probabilistic polynomial time simulator S, define two experiments:

ExprealFE,A(1κ) :

(fmpk, fmsk)← FE.Setup(1κ)
(f, stateA)← A1(fmpk)
fskf ← FE.KeyGen(fmsk, f)
(x, state′A)← A2(stateA, fskf )
c← FE.Enc(fmk, x)
output(state′A, c)

ExpidealFE,A,S(1κ) :

(fmpk, fmsk)← FE.Setup(1κ)
(f, stateA)← A1(fmpk)
fskf ← FE.KeyGen(fmsk, f)
(x, state′A)← A2(stateA, fskf )
c̄← S(fmpk, fskf , f, f(x), 1|x|)
output(state′A, c̄)

The scheme is said to be (single-key) secure in the full simulation security model if
there exists a probabilistic polynomial time simulator S such that for all pairs of proba-
bilistic polynomial time adversaries (A0, A1), the outcomes of the two experiments are
computationally indistinguishable.

Definition 4. Let C = {Cn}n∈N be a family of circuits such that Cn is a set of boolean
circuits that take n-bit inputs. A garbling scheme for C is a tuple of probabilistic poly-
nomial time algorithms GC = (GC.Garble, GC.Enc, GC.Eval) with

– (Γ, sk) = GC.Garble(1κ, C) outputs a garbled circuit Γ and a secret key sk.
– cx = GC.Enc(sk, x) outputs an encoding cx for an input x ∈ {0, 1}n.
– y = GC.Eval(Γ, cx) outputs y = C(x).

The garbling scheme GC is correct if the probability that GC.Eval(Γ, cx) 6= C(x) is neg-
ligible. The garbling scheme GC is efficient if the size of Γ is bounded by a polynomial
and the run-time of c = GC.Enc(sk, x) is also bounded by a polynomial.

The security of garbling schemes is defined in terms of input and circuit privacy in
the literature. The following definition captures the intuition that the adversary learns
zero information about the circuit and input given one evaluation of the garbled circuit.

Definition 5. (Privacy for one-time garbling schemes) A garbling scheme GC for a
family of circuits C is said to be input and circuit private if there exists a probabilis-
tic polynomial time simulator SimGarble such that for all probabilistic polynomial time
adversaries A and D and all large κ, we have∣∣∣Pr[D(α, x, C,Υ, c) = 1|REAL]− Pr[D(α, x, C, Υ̃, c̃) = 1|SIM]

∣∣∣ = negl(κ)

where REAL and SIM are the following events

REAL : (x,C, α) = A(1κ); (Υ, sk) = GS.Garble(1κ, C); c = GS.Enc(sk, x)

SIM : (x,C, α) = A(1κ); (Υ̃, c̃) = SimGarble(1
κ, C(x), 1|C|, 1|x|).

The reusable garbling schemes for circuits have the same syntax as one-time gar-
bling schemes. In order to differentiate them, we use RGC to denote reusable circuit gar-
bling schemes. The following privacy definition for reusable garbled circuits is adapted
from Goldwasser et al [14].



Definition 6. (Private reusable garbling circuits) Let RGC be a reusable garbling scheme
for a family of circuits C = {Cn}n∈N and C ∈ Cn be a circuit with n-bits input. For
a pair of probabilistic polynomial time algorithms A = (A0, A1) and a probabilistic
polynomial time simulator S = (S0, S1), define two experiments:

ExprealRGC,A(1κ) :

(C, stateA)← A0(1κ)
(sk,Υ)← RGC.Garble(1κ, C)

α← A
RGC.Enc(sk,·)
1 (M,Υ, stateA)

ExpidealRGC,A,S(1κ) :

(C, stateA)← A0(1κ)

(Υ̃, stateS)← S0(1κ, C)

α← A
O(·,C)[[stateS ]]
1 (M, Υ̃, stateA)

In the above experiments, O(·, C)[[stateS ]] is an oracle that on input x from A1, runs
S1 with inputs 1|x|, C(x), and the latest state of S; it returns the output of S1 (storing
the new simulator state for the next invocation). The garbling scheme RGC is said to
be private with reusability if there exists a probabilistic polynomial time simulator S
such that for all pairs of probabilistic polynomial time adversaries A = (A0, A1), the
following two distributions are computationally indistinguishable:{

ExprealRGC,A(1κ)
}
κ∈N =c

{
ExpidealRGC,A,S(1κ)

}
κ∈N (1)

3.3 Indistinguishability obfuscation and reusable garbled circuits

Jain, Lin, and Sahai [18] proved the following results.

Theorem 1. (Jain, Lin, and Sahai [18]) Let τ be arbitrary constants greater than 0,
and δ, ε in (0, 1). Assume sub-exponential security of the following assumptions, where
κ is the security parameter, p is a κ-bit prime, and the parameters l, k, n below are
large enough polynomials in κ:

– the LWE assumption overZp with subexponential modulus-to-noise ratio 2k
ε

, where
k is the dimension of the LWE secret,

– the LPN assumption over Zp with polynomially many LPN samples and error rate
1/lδ , where l is the dimension of the LPN secret,

– the existence of a Boolean PRG in NC0 with stretch n1+τ ,
– the SXDH assumption on asymmetric bilinear groups of a order p.

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size
circuits exists.

The functional encryption scheme for circuits C ∈ NC1 is defined as follows.
Choose two standard public-key encryption key pairs (puk1, prk1) and (puk2, prk2)
in the key generation process of the Functional Encryption scheme. The encryption of
an input x consists of two ciphertexts of x under the two public keys puk1 and puk2

together with a statistically simulation sound non-interactive zero knowledge (NIZK)
proof that both ciphertexts encrypt the same message. The secret key skC for the circuit
C is an indistinguishability obfuscation of a program that first checks the NIZK proof
and, if the proof is valid, it uses one of the two secret keys prk1 and prk2 to decrypt x
and then computes and outputs C(x).



A reusable garbled circuit C for a circuit C ∈ NC1 can be constructed using the
approach presented in Goldwasser et al [14]. That is, we use the techniques “from FE
to reusable garbled circuits” in [14]. The owner of circuit C chooses a secret key sk

for an ideal cipher to encrypt the circuit C as E.Encsk(C). Let UE(sk, x) ∈ NC1 be a
universal circuit that first uses sk to decrypt E.Encsk(C) to the circuit C and then runs
C on x. Let skUE

be the secret key of the functional encryption scheme for UE . The
reusable garbled circuit C is the functioanl encryption scheme secret key skUE

. The
secret key is (sk, puk1, puk2). The input to C consists of the two cipher texts of (sk, x)
under the two public keys puk1, puk2 and a NIZK proof that these two cipher texts
encrypt the same plain text. In the above arguments, we used the fact that there exists
a universal circuit of depth O(d) for all circuits of depth d. By combining the results
in Theorem 1, De Caro et al [8], and Goldwasser et al [14], we have the following
result: With assumptions of Theorem 1, there exists a reusable garbling scheme RGC for
circuits inNC1 that is secure according to the Definition 6 in the random oracle model.

There exists a functional encryption scheme FE for circuits in NC1 that is secure
according to a standard security definition of functional encryption in the simulation-
based security model (see, e.g., Katz et al [19], Bethencourt et al [3], Gorbunov et al
[17], and Goldwasser et al [14]).

3.4 Construction of reusable garbled ORAMs

The syntax for reusable garbled ORAMs is the same as that for one-time and reusable
garble circuits in Definition 4. The security for ORAMs is defined in Definition 1. The
security definition for reusable garbled ORAMs is the same as that for reusable gar-
ble circuits in Definition 6. Throughout this paper, we will use RGO = (RGO.Garble,
RGO.Enc, RGO.Eval) to denote a reusable garbled ORAM scheme. It is noted that a
RAM CPU runs five kinds of operations. For convenience, RAM operations could be
further grouped into two categories:
1. interface operation (op, v, x)
2. execute one instruction step to update the CPU state Σ and to produce the next

interface operation (op, v, x). CPU state update includes register content update,
program pointer update, query counter update, session information update, cryp-
tographic key update, and other information update. The instruction step could be
one of the following operations: arithmetic instruction, random sequence genera-
tion, control transfer, and halt.

Beame, Cook, and Hoover [2] showed that division could be implemented using a depth
O(log) circuit. Thus the operation of one CPU step could be simulated by a circuit in
NC1.

In the ORAM model, each interface operation (op, v, x) is translated to a sequence
of memory cell accesses to hide the actual data-identifier string v. Since we are trying
to convert the shielded CPU to a garbled circuit, the evaluator of the garbled CPU can
observe how many operations the CPU executes before the next interface command is
created. In order to hide this kind of pattern, we assume that the CPU is modified in
such a way that each CPU operation is followed by an interface operation. This could
be achieved by inserting dummy memory cell accesses or by inserting NOP operations
to the CPU instruction sequences.



Let E = (E.KeyGen, E.Enc, E.Dec) be a semantically secure symmetric key cipher
and PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec) be a semantically secure public key en-
cryption scheme. Throughout the garbling process of an ORAM, we use a secret key
sk = E.KeyGen(1κ) and two public key pairs

(prk1, puk1) = PKE.KeyGen(1κ)

and
(prk2, puk2) = PKE.KeyGen(1κ).

The entire memory cells are encrypted inputs to Goldwasser et al’s reusable garbled
circuits (see Section 3.3 for details). That is, each cell value (v, x) is encrypted as a
tuple (e1, e2, π) where ei = PKE.Enc(puki, sk||v||x) for i = 1, 2 and π is a NIZK
proof that both e1 and e2 encrypt the same message.

An ORAM CPU is modeled as three separate reusable circuits. The graphical de-
scription of these circuits and their communication channels are shown in Figure 1.

Fig. 1. Garbled ORAM CPU

The first circuit is the reusable CPU circuit CCPU ∈ NC1 that takes the current
CPU state (Σ, v, x) as inputs, checks the consistency of session information contained
in the input, runs one CPU step, updates the CPU state Σ and session information, and
produces the next encrypted interface command (op, v, x) for the second circuit CORAM

to execute. The details of CCPU are described in Figure 2.
The interface command (op, v, x) produced by circuit CCPU is in the default for-

mat (op, v, x, ctr, flag) where ctr = 0 and flag = no. The second circuit CORAM

translates the command (op, v, x, ctr, flag) to a sequence of memory cell access com-
mands to implement the command (op, v, x) obliviously. In order to run (op, v, x) obliv-
iously, the circuit CORAM needs to keep a record on whether the actual data-identifier
string v has been found. This information is kept in the flag field. The counter ctr
is used to record the number of memory cells this circuit has accessed for this specific



Fig. 2. CCPU updates its state and outputs an encoded (op, v, x, ctr, flag)

Inputs: CPU state (Σ, v, x, sctrlr) and session control data (session, sctrls).
Output: Encoded (Σ, v, x), session, and interface command com

1. if sctrlr and sctrls are inconsistent then exit.
2. simulate ORAM CPU execution for one step with internal state Σ and input

(v, x), compute the new state Σ and the next interface command (op, v, x).
3. update session, sctrlr, and sctrls.
4. encode sk||(Σ, v, x)||sctrlr to obtain (Σ, v, x) = (eΣ

1 , e
Σ
2 , π

Σ) as an input to
a Goldwasser’s reusable garbled circuit using public keys puk1, puk2.

5. encode sk||session||sctrls to obtain session as an input to a Goldwasser’s
reusable garbled circuit using public keys puk1, puk2.

6. encode sk||(op, v, x, ctr, flag, strlc) to obtain com as an input to a Gold-
wasser’s reusable garbled circuit using public keys puk1, puk2.

7. output (Σ, v, x), session, and com.

command (op, v, x). In other words, for each (op, v, x) command, the circuit CORAM is
executed t times repeatedly to hide the actual data block it accessed, where t is a con-
stant that is independently of the value (op, v, x).

Specifically, the reusable circuit CORAM is a pair of circuits CORAM1 and CORAM2. CORAM1

takes the interface command (op, v, x, ctr, flag) as the input and produces an inter-
face command (op′, i, z) where op′ and i are plain texts and z = (v, x) is encoded. If
op′ =READ, the evaluator reads the memory cell at physical location i and loads the
encoded content to z. If op′ =WRITE, the evaluator writes the encoded value z to the
memory cell at physical location i. After the evaluator finishes processing the actual
memory cell access, the resulting updated interface command (op′, i, z) is given to the
circuit CORAM2. CORAM2 decrypts z to a pair (v′, x′). If v = v′, the actual data block has
been found. CORAM2 sets flag = yes and checks whether op = READ. If op = READ,
CORAM2 needs to copy the value x′ to the field x of (op, v, x, ctr, flag). If v 6= v′, the
actual data block has not been found yet and CORAM2 keeps flag = no. After CORAM2

finishes its job, circuit CORAM1 takes turn again. CORAM1 examines the interface command
(op, v, x, ctr, flag) to obtain the values of flag and ctr. Using these values, CORAM1

creates the next memory access instruction according to the oblivious memory access
schedule and outputs the corresponding interface command (op′, i, z). For each execu-
tion of CORAM1, the counter ctr is increased by one. After ctr reaches t, CORAM1 copies
the value x from (op, v, x, ctr, flag) to the field-x of (Σ, v, x) which is the input to
CCPU. The evaluator knows the value of t. Thus it lets the circuit CCPU take turn after
CORAM1 finishes t steps. The details of circuit CORAM are described in Figure 3.

The third circuit CSHUFFLE implements the re-shuffling process for ORAM mem-
ory cells. CSHUFFLE consists of a pair (CSHUFFLE1, CSHUFFLE2) of circuits that implement
the randomized data-oblivious Shellsort algorithm for re-shuffling the memory cells.
CSHUFFLE is constructed using an oblivious sorting algorithm. Specifically, CSHUFFLE1

takes an input with fields (op, v1, T1, v2, T2, ctr, flag) and compare-exchanges the



Fig. 3. CORAM uses ctr and flag to determine which memory cell to access

CORAM1:
Inputs: (Σ, v, x, sctrlr), (op, v, x, ctr, flag, sctrlc), (session, sctrls)
Output: Memory access command (op, i, z)
1. if sctrlc, sctrlr, and sctrls are consistent, use session to update sctrlc,

sctrlr, and sctrls and go to next step 2. Otherwise, exit
2. if ctr < t, go to step 5.
3. if ctr = t and op = READ, extract (v, x) from (op, v, x, ctr, flag, sctrlc)

and put it in (Σ, v, x).
4. output the encoded sk||(Σ, v, x, sctrlr) in the format of input to an Gold-

wasser’s reusable garbled circuit using public keys puk1, puk2 and exit.
5. use ctr, flag, and oblivious memory access schedule to output the next mem-

ory access command (op′, i, z), where op′ and i are in plain text and z = (v, x).
CORAM2:
Inputs: (op′, i, z), (op, v, x, ctr, flag, sctrlc), (session, sctrls)
Output: encoded sk||(op, v, x, ctr, flag, sctrlc, z) using puk1, puk2
1. if sctrlc and sctrls are inconsistent then exit.
2. use session to update sctrlc and sctrls.
3. decode z to sk||(v′, x′) using the key prk1.
4. if v = v′, then the required data block has been found. Set flag =

yes. Furthermore, if op = READ, insert the value of x′ to the x-field of
(op, v, x, ctr, flag, sctrlc).

5. output encoded sk||(op, v, x, ctr, flag, sctrlc) in the format of input to an
Goldwasser’s reusable garbled circuit using public keys puk1, puk2.

values (v1, T1) and (v2, T2). After the compare-exchange operation, CSHUFFLE1 outputs
a next memory cell access command (op, i, z) with plain-text op and i for the evaluator
to access the ith memory cell. The updated (op, i, z) is given to CSHUFFLE2 that decodes
z and inserts it to the corresponding field of (op, v1, T1, v2, T2, ctr, flag) if necessary.
The algorithm for CSHUFFLE is similar to the algorithm for the circuit CORAM described in
Figure 3. The details are omitted here.

Without loss of generality, we may assume that there exist NC1 encryption and de-
cryption circuits for the symmetric key cipher E and the public key cipher PKE. Then it is
straightforward to show that circuits CCPU, CORAM1, CORAM2, CSHUFFLE1, and CSHUFFLE2 be-
long to NC1 also. By Goldwasser et al’s results that we discussed in Section 3.3, there
exist efficient polynomial size reusable garbled circuits C̄CPU, C̄ORAM1, C̄ORAM2, C̄SHUFFLE1,
and C̄SHUFFLE2. Using these constructions, we are ready to give the formal construction
of our reusable garbled ORAM machines.

In above paragraphs, we described the construction of a garbled ORAM CPU. In a
practical deployment of ORAM programs, the program is generally encoded and stored
in the memory cells. In other words, the garbled ORAM CPU could be considered as
a garbled universal machine. It reads encoded ORAM programs in memory cells and



executes them on inputs. Part of the input is provided by the client and the other part
of the input is located in memory cells already. For example, part of memory cells
may be considered as an encoded database which is part of the input to the ORAM
program. The other part of the input could be an encoded database search query that
is submitted by the client. Let P = {Pn}n∈N be a family of ORAM programs such
that Pn is a set of programs that take n-bit inputs. The reusable garbling scheme RGO =
(RGO.Garble, RGO.Enc, RGO.Eval) for P is instantiated as follows.

– (Γ, (sk, puk1, puk2)) = RGO.Garble(1κ, P ):
• sk = E.KeyGen(1κ)
• (prki, puki) = PKE.KeyGen(1κ) for i = 1, 2
• encode P appropriately and include it as part of the memory cells
• encode each memory cell content (v, x) to (e1, e2, π) which is in the format of

input to Goldwasser et al’s reusable garbled circuits using sk, puk1, and puk2.
• use Goldwasser et al’s approach to construct reusable garbled circuits for each

of the NC1 circuits CCPU, CORAM1, CORAM2, CSHUFFLE1, CSHUFFLE2 with keys prk1,
sk, puk1, and puk2.

• Let Γ =
(
C̄CPU, C̄ORAM1, C̄ORAM2, C̄SHUFFLE1, C̄SHUFFLE2

)
.

– c = RGO.Enc((sk, puk1, puk2), x).
• Encode sk||x to c = (e1, e2, π) which is in the format of input to Goldwasser

et al’s reusable garbled circuits using the two keys puk1, and puk2.
– y = RGO.Eval(Γ, c):
• run the garbled ORAM CPU(

C̄CPU, C̄ORAM1, C̄ORAM2, C̄SHUFFLE1, C̄SHUFFLE2

)
on the memory cells and on c to compute the output y = P (x).

3.5 Proof of security

We first make a few observations on the garbled ORAM construction in Section 3.4. The
first observation is that for a given encoded input c = RGO.Enc(x), the running time of
y = RGO.Eval(Γ, c) is disclosed according to Definition 1. Thus the running time is
provided to the simulator in advance. In case that the running time of the execution
should be protected also, the ORAM CPU should be revised in such a way that it takes
the same time for all inputs of the same length. This could be achieved by adding NOP
operations to the ORAM CPU if the calculation ends early than the expected time.

The second observation is that the output y = RGO.Eval(Γ, c) is an encoded value
(e1, e2, π) which is in the format of input to Goldwasser et al’s reusable garbled circuits
using the keys sk, puk1, and puk2. This is acceptable in practice since generally the
garbled ORAM program is executed in the cloud and the cloud does not need to know
the actual output. After the computation is finished, the cloud returns the encoded y to
the client who can recover the plain text output using either of the secret keys prk1 or
prk2.

The third observation is that in our scheme, the garbled ORAM will only run on
encoded input provided by the client. The secret key sk of the ideal cipher E and the
public keys puk1, puk2 of the public key scheme PKE are needed to encode the input



for the garbled ORAM CPUs. Without correctly encoded inputs with matching session
identification, neither garbled CPU circuitCCPU nor garbled ORAM circuitCORAM would
continue the computation since the session control message validation process would
only pass with a negligible probability. Similarly, the adversary could not mix/swap
computation states for two inputs since each input contains an input specific session
control message. The session control messages in inputs for two sessions (even if the
input values are identical) are identical only with a negligible probability.

The fourth observation is that the adversary may play fault-insertion attacks in the
memory cells. This kind of attacks have not been discovered or modeled in the tra-
ditional simulation-based security model for ORAMs in Definitions 1 and 6. In this
section, we prove that our ORAM garbling scheme is secure according to Definition 6.

Theorem 2. Assuming the existence of a semantically secure symmetric key cipher E, a
semantically secure public key cipher PKE, and a private reusable garbling scheme for
circuits in NC1, there is a private reusable ORAM garbling scheme RGO as defined in
Definition 6 in the random oracle model.

Proof. First we observe that the existence of semantically secure ciphers E and PKE

implies the existence of cryptographically secure one-way functions. Thus the assump-
tion in Theorem 2 implies the existence of a secure ORAM according to Definitions 1.
The correctness of the construction in Section 3.4 is straightforward. In order to show
that the construction is input and circuit private as defined in Definition 6, we show
that there exists a simulator S = (S0, S1) simulating the garbled execution given the
program output y and the ORAM CPU running time t, so that the equation (1) holds.

Let Sa be the ORAM memory access pattern simulator and SPKE be the simulator
for the cipher PKE. Let SCPU, SORAM, and SSHUFFLE be the simulators for Goldwasser et
al’s reusable garble circuits (as described in Section 3.3) CCPU, CORAM, and CSHUFFLE

respectively.
Assume that an ORAM machine P is selected with the security parameter κ. For the

given ORAM CPU running time t and output y = P (x), let Sa(y, t) outputs a sequence
of memory access pattern η1, · · · , ηt where ηi (i ≤ t) is the simulated oblivious memory
cell access sequence for the ith memory cell access of the original RAM machine.
In other words, each ηi = {vi,1, · · · , vi,ti} is a sequence of memory cells that the
simulated ORAM machine accesses to implement the ith memory cell access of the
original RAM machine. Sa(y, t) also outputs a sequence of memory access pattern
ξ1, · · · , ξt′ where ξi (i ≤ t′) is the simulated oblivious memory cell access sequence for
the ith re-shuffling process.

Starting from the last memory cell sequence set ηt, for each ηi = {vi,1, · · · , vi,ti},
repeat simulators SPKE and SORAM for ti times to generate a simulated viewiORAM. Simi-
larly, starting from the last memory cell sequence set ξt′ , for each ξi = {ui,1, · · · , ui,si},
repeat simulators SPKE and SSHUFFLE for si times to generate a simulated viewiSHUFFLE.
Lastly, using the views {viewiORAM, view

j
SHUFFLE : i ≤ t and j ≤ t′}, repeat simulators

SPKE and SCPU for t+ t′ times to generate a simulated viewCPU. Without loss of general-
ity, we may assume that the adversaries output their entire views in the above simulation
so that any required view could be calculated from these views in a probabilistic poly-
nomial time. In other words, the simulator’s view

{
ExpidealRGO,A,S(1κ)

}
κ∈N in (1) could



be calculated in probabilistic polynomial time from S’s entire view

{viewiORAM, view
j
SHUFFLE, viewCPU : i ≤ t and j ≤ t′}κ∈N . (2)

In order to show that (1) holds, we consider three experiments.
Experiment 1: The ideal game ExpidealRGO,A,S(1κ) of Definition 6 with the simulator S and
the ORAM machine P .
Experiment 2: The same as Experiment 1 except that the ORAM programP is replaced
with the reusable garbled ORAM P : CCPU, CORAM, CSHUFFLE, and corresponding keys.
Experiment 3: The same as Experiment 2 except that the simulated cipher SPKE is
replaced with the actual cipher PKE using keys sk, puk1, puk2, prk1.

Since the view of Experiment 1 equals to
{
ExpidealRGO,A,S(1κ)

}
κ∈N and the view of

Experiment 3 equals to
{
ExprealRGO,A(1κ)

}
κ∈N , it is sufficient for us to show that the view

of Experiment 1 is computationally indistinguishable from the view of Experiment 2
and the view of Experiment 2 is computationally indistinguishable from the view of
Experiment 3.

Claim. Assume that CCPU, CORAM, and CSHUFFLE are private reusable garbled circuits for
circuits CCPU, CORAM, and CSHUFFLE. Furthermore, assume that the ORAM access pattern
is securely simulated by the simulator Sa. Then the outputs of Experiment 1 and Ex-
periment 2 are computationally indistinguishable.

Proof outline. Assume that outputs of Experiment 1 and Experiment 2 could be
distinguished by a probabilistic polynomial time algorithm D. Then a standard hybrid
approach could be used to construct a probabilistic polynomial time algorithm D′ to
distinguish the view in (2) from the view for the ideal experiments with the ORAM
program P . In other words, if Sa securely simulate the ORAM memory cell access pat-
tern, then the view in (2) could be distinguished from the ideal experiments with circuits
CCPU, CORAM, and CSHUFFLE. This contradicts the fact that CCPU, CORAM, and CSHUFFLE are
private reusable garbled circuits (see Section 3.3). Q.E.D.

Claim. Assume that the cipher PKE be semantically secure. Then the outputs of Exper-
iment 2 and Experiment 3 are computationally indistinguishable.

Proof outline. Assume that there exist probabilistic polynomial time adversaries
A = (A1, A2) and a probabilistic polynomial time distinguisher D such that D can
distinguish the outputs of Experiment 2 and Experiment 3 with a non-negligible proba-
bility. Using the standard hybrid argument, one can construct a probabilistic polynomial
time distinguisher D′ to distinguish at least one cipher text in Experiment 3 from the
corresponding simulated cipher text in Experiment 2 with a non-negligible probability.
This contradicts the assumption that PKE is semantically secure. Q.E.D.

Claim 1 and Claim 2 imply that the equation (1) holds. This completes the proof of
Theorem 2. Q.E.D.

Definition 7. (Private reusable garbling ORAMs) Let RGO be a reusable garbling scheme
for ORAM machines. In addition to the attacks that are allowed in Definitions 1 and 6,
the adversary is allowed to interfere with the garbled ORAM execution by playing or



replaying the garbled ORAM on modified environments (e.g., inserting faults in the
memory cells during the execution). The garbling scheme RGO is said to be private with
reusability if there exists a probabilistic polynomial time simulator S such that for all
pairs of probabilistic polynomial time adversaries A = (A0, A1) as defined above, the
two distributions in (1) are computationally indistinguishable.

Theorem 3. Assume the existence of a semantically secure symmetric key cipher E, a
semantically secure public key cipher PKE, a secure digital signature scheme Dsig, and
a private reusable garbling scheme for circuits inNC1. Then there is a private reusable
ORAM garbling scheme RGO1 as defined in Definition 7 in the random oracle model.

Proof. Let Dsig = (Dsig.KeyGen, Dsig.Sign, Dsig.Vefy) be a secure digital signa-
ture scheme and (SIGsk, SIGpk) = Dsig.KeyGen(1κ). Let P = {Pn}n∈N be a family
of square-root ORAM programs such that Pn is a set of functions that take n-bit inputs.
The reusable garbling scheme RGO1 = (RGO1.Garble, RGO1.Enc, RGO1.Eval) for P is
instantiated as in Section 3.4 with the following revisions:

– (Γ, (sk, puk1, puk2, SIGsk, SIGpk)) = RGO1.Garble(1κ, P ): This process is ob-
tained from RGO.Garble in Section 3.4 by the following revisions:
• add a component in circuit CORAM to digitally sign the shelter (cache) at the end

of the execution of each CCPU interface command (op, v, x)
• add a component in circuit CORAM to check the validity of the digital signature

at the beginning of the execution of each CCPU interface command (op, v, x).
• add an component to circuit CSHUFFLE so that a unique sequence number seq

is added to all memory cells. At the same time, the physical location i of the
memory cell OR[i] is added to the content of OR[i]. In other words, the ith
memory cell contains the value OR[i] = (v, x, seq, i).

• add a component to circuit CORAM to check that the accessed non-shelter mem-
ory cells contain the current sequence number and check that the actual phys-
ical address of the memory cell is the same as that contained in the content
OR[i] = (v, x, seq, i).

– c = RGO1.Enc((sk, puk1, puk2), x). This is obtained from RGO.Enc by adding a
process to digitally sign the entire shelter cells and adding the current sequence
number to all non-shelter memory cells if this has not been done yet.

– y = RGO1.Eval(Γ, c): same as RGO.Eval(Γ, c).

The remaining part of the proof is similar to the proof of Theorem 2. Q.E.D.

4 Witness encryption and extractable witness encryption

Witness encryption schemes are based on languages in NP. For each language L ∈ NP,
there is a polynomial witness relation R. That is, x ∈ L if and only if there is a w such
that (x,w) ∈ R. In a witness scheme, one can encrypt a message M with a string x to
get a cipher text c = E(M,x,L). The recipient of c can decrypt M if x ∈ L and the
recipient knows a witness w with (x,w) ∈ R. Note that the encrypted does not know
whether x ∈ L.



Garg et al [9] designed two witness encryption schemes based on the hardness of de-
cision multilinear no-exact-cover problems: one is based on multilinear group families
and the other is based on graded encoding systems. In the following, we briefly/infor-
mally discuss the witness encryption scheme based on multilinear group families. For a
given security parameter κ, a multilinear group family is a list of groups G1, · · · , Gn of
prime order p = p(κ) with generators g1, g2, · · · , gn, and a multilinear map e with the
properties

e(gai , g
b
j) = gabi+j for all a, b ∈ Zp.

The NP-complete problem Exact Cover is defined as follows: for a given collection
X of subsets of the set {1, · · · , n}, find a sub-collection X∗ ⊆ X such that X∗ is a
partition of {1, · · · , n}.
EncWE(1

κ, X,m): Given an Exact Cover instance X = {X1, · · · , Xl} and a message
m, generate a multilinear group family G1, · · · , Gn of prime order p = p(κ) with
generators g1, g2, · · · , gn, and a multilinear map e. Chooses random a1, · · · , an ∈ Zp.
Assume that m ∈ Gn, the cipher text ct consists of a description of the multilinear
group family, the description of X , and

c = m · ga1···ann and for all i ∈ {1, · · · , l}, ci =
(
g|Xi|

)∏
j∈Xi

ai
.

DecWE(ct,X
∗): Given the cipher text ct and the witness X∗ = {j1, · · · , j|X∗|} associ-

ated with the partition of {1, · · · , n}, it outputs

m = c/e(cj1 , · · · , cj|X∗|).

Using the witness encryption scheme, Garg, et al [9] constructed an Attribute-Based
Encryption scheme for any circuits and constructed other cryptographic schemes such
as public key encryption schemes, identity based encryption schemes, and fully secure
identity-based encryption schemes.

Goldwasser et al [13] extended Garg et al’s witness encryption scheme to extractable
witness encryption by requiring that if one can recover M from EncWE(1

κ, X,M), then
one can extract a witness X∗ = {j1, · · · , j|X∗|} for X .

5 ABE for Turing machines and RAMs

Using witness encryption schemes, Goldwasser et al [13] designed succinct Attribute
Based Encryption scheme for any Turing machines and RAM machines. It is convenient
to first describe the non-succinct ABE scheme first. The master secret and public keys
for the ABE scheme is the pair (sigK, SigPubK) for a digital signature scheme. The se-
cret function key for a Turing machine M is the digital signature σ on M under the key
sigK. In order for a sender to encrypt a messagemwith the public attribute x, the sender
computes the witness encryption c = EncWE(1

κ, x∗,m) where x∗ = (x, SigPubK). A
valid witness for x∗ is a tuple (M,σ, π) where M is a Turing machine, σ is the digital
signature σ on M , and π is a tableau of computation proving that M(x) = 1. This
scheme is not succinct since it takes a long time to check that π is a tableau of computa-
tion for M(x) = 1. Thus the size of the ciphertext c depends on the worst-case running
time of M .



In order to address the succinctness challenge, Goldwasser et al used SNARK scheme
in Bitansky et al [?] where SNARK (Succinct Non-interactive Arguments of Knowl-
edge) has a securely generated common reference string crs such that any one can
prove a NP statement by presenting a proof π. The length of crs, the length of π, and
the time to check the proof π only depends on the security parameter κ instead of the
running time to check the NP witness. Furthermore, if an adversary can prove that x is
the member of a NP language L, then the adversary can extract a witness for x. Now
the succinct ABE scheme for both uniform and non-uniform Turing machines are as
follows: the cipher text c = EncWE(1

κ, x∗,m) where x∗ = (x, crs, SigPubK). A valid
witness for x∗ is a tuple (π, t) where π is a proof-of-knowledge of a Turing machine
M and a signature σ such that σ is the digital signature on M and M halts on input x
with output 1 in at most t steps. The witness size and verification time is independent
of the Turing machine size or its run time. Thus it is a succinct ABE scheme. The ABE
scheme for RAM machines could be similarly defined.

6 Conclusion

In this paper, we designed reusable garbling schemes for ORAMs using alternative
techniques. The garbled ORAM design could find a variety of applications in secure
cloud computing environments.
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