
Privacy preserving data storage in cloud
Reusable garbled ORAMs

Privacy Preserving Computation in Cloud
Using Reusable Garbled Oblivious RAMs

Yongge Wang1 Qutaibah M. Malluhi2

UNC Charlotte, NC 28223, USA

Qatar University, Qatar

Bali, Indonesia, 18-22 December 2022

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Outline

1 Privacy preserving data storage in cloud
Privacy preserving data storage

2 Reusable garbled ORAMs
Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

cloud data

A motivating example

encrypt gmail at Gmail server
search gmail

download gmail to local machine, decrypt it and search
search without downloading: search encrypted data
(pattern released, some more challenges)
how to search over encrypted data without leaking search
pattern?

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

cloud data

Privacy preserving data storage

Store encrypted data in cloud
Carry out computation on these encrypted data: download
the encrypted data, process data, and upload
move computation to the data?

computation over encrypted data in the cloud without
downloading: does not hide the access pattern to data
solution: use oblivious RAM techniques by Goldreich and
Ostrovsky for computation over encrypted data, which
provably hides all access patterns.

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

cloud data

ORAM in cloud

ORAM schemes require trusted CPUs
users may not trust the CPU powers at cloud environments
users run the trusted CPU at client site and to treat the
cloud as a large random access memory storage service
disadvantage: heavy communication overhead between
the client and the cloud
e.g., the most efficient ORAM scheme requires at least
O(log n) memory accesses1 for each individual memory
access, where the cloud database contains n unit blocks of
data.

1https://web.cs.ucla.edu/ rafail/PUBLIC/128.pdf or
https://eprint.iacr.org/2021/1123.pdf

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

cloud data

ORAM without trusted CPUs

Lu and Ostrovsky (2013) and Goldwasser et al (2013):
garbled ORAM CPU instead of using trusted CPUs
disadvantage: the garbled RAM CPU is not succinct and is
for one-time use only
if the ORAM CPU runs t-steps for input x , then the garbled
ORAM CPU for the input x is at the size of O(t)
Lu and Ostrovsky asked: Is that possible to use
Goldwasser et al’s reusable garbled circuits to design
reusable garbled ORAMs?
Goldwasser et al’s reusable garbled circuits are based on
fully homomorphic encryption (FHE) and Attribute Based
Encryption (ABE) schemes, which are not practical

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Our approach: Reusable garbled ORAMs

Intuition: using indistinguishability obfuscation schemes
our first design (2015): using multilinear map based Jigsaw
puzzles:

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B.
Waters: Candidate indistinguishability obfuscation and
functional encryption for all circuits. In: Proc. IEEE 54th
FOCS

Unfortuantely, all proposed multilinear maps have been
broken
good news: Jain-Lin-Sahai’s (2021) indistinguishability
obfuscation schemes
Our new design: using Jain-Lin-Sahai’s technique

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

A sample ORAM

the first oblivious RAM by Goldreich (1987): “square root”
construction.
for a RAM machine with n memory cells denoted by an
array R[1..n], design an oblivious RAM with a memory
array OR[1..n + 2

√
n]

the portion OR[n +
√

n + 1..n + 2
√

n] of size
√

n is used by
the ORAM as the cache space (or a shelter).
For the first n +

√
n cells, choose a random permutation

π : {1, · · · ,n +
√

n} → {1, · · · ,n +
√

n}

and let OR[π(i)] = R[i] = (vi , xi)

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

A sample ORAM (continued)

Each time when the ORAM accesses a data block (vi , xi)
from OR[π(i)] = R[i], it stores this value (vi , xi) in the
cache OR[n +

√
n + 1..n + 2

√
n]

For each new query of a data block (vj , xj), ORAM checks
all values in OR[n +

√
n + 1..n + 2

√
n] to see whether

(vj , xj) has been cached there already. If the data block is
found, ORAM only needs to make a dummy access to
another cell OR[π(n + l)] where l is the counter. That is,
this is the l-th dummy memory cell access. If the data
block is not found, ORAM loads the data block (vj , xj) from
OR[π(j)] directly.
After

√
n memory cell accesses, ORAM needs to re-shuffle

data blocks in the memory cells using an oblivious sorting
process.

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Functional encryption

Definition
A functional encryption scheme FE for a class of functions
{Fn}n∈N is a tuple of PPT algorithms

(fmpk,fmsk) = FE.Setup(1κ) outputs a master public key
fmpk and a master secret key fmsk
fskf = FE.KeyGen(fmsk, f) outputs a secret key for a
function f .
c = FE.Enc(fmpk, x) outputs a ciphertext for x .
y = FE.Dec(fskf , c) outputs the value y which should
equal f (x).

The functional encryption scheme is correct if y 6= f (x) with a
negligible probability.

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Functional encryption security

Definition

Let FE be a FE for F = {Fn}n∈N . For a pair of PPT algorithms
A = (A0,A1) and a PPT simulator S:

ExprealFE,A (1κ) :

(fmpk,fmsk)← FE.Setup(1κ)
(f ,stateA)← A1(fmpk)
fskf ← FE.KeyGen(fmsk, f)
(x ,state′A)← A2(stateA,fskf)
c ← FE.Enc(fmk, x)
output(state′A,c)

ExpidealFE,A,S(1κ) :

(fmpk,fmsk)← FE.Setup(1κ)
(f ,stateA)← A1(fmpk)
fskf ← FE.KeyGen(fmsk, f)
(x ,state′A)← A2(stateA,fskf)

c̄ ← S(fmpk,fskf , f , f (x),1|x |)
output(state′A,--c)

FE is secure if there exists a PPT simulator S such that for all
pairs of PPT adversaries (A0,A1), the outcomes of the two
experiments are computationally indistinguishable.

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Garbled circuits

Definition

A garbling scheme for a family of circuits C = {Cn}n∈N is a tuple
of PPT algorithms GC = (GC.Garble,GC.Enc,GC.Eval) with

(Γ,sk) = GC.Garble(1κ,C) outputs a garbled circuit Γ and
a secret key sk.
cx = GC.Enc(sk, x) outputs an encoding cx for an input
x ∈ {0,1}n.
y = GC.Eval(Γ, cx) outputs y = C(x).

The garbling scheme GC is correct if the probability that
GC.Eval(Γ, cx) 6= C(x) is negligible. The garbling scheme GC is
efficient if the size of Γ is bounded by a polynomial and the
run-time of c = GC.Enc(sk, x) is also bounded by a polynomial.

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Garbled circuits privacy

Definition

A garbling scheme GC for a family of circuits C is said to be
input and circuit private if there exists a PPT simulator
SimGarble such that for all PPT adversaries A and D and all
large κ, we have∣∣∣Pr [D(α, x ,C,Υ, c) = 1|REAL]− Pr [D(α, x ,C, Υ̃, c̃) = 1|SIM]

∣∣∣ = negl(κ)

where REAL and SIM are the following events

REAL : (x ,C, α) = A(1κ); (Υ,sk) = GS.Garble(1κ,C); c = GS.Enc(sk, x)

SIM : (x ,C, α) = A(1κ); (Υ̃, c̃) = SimGarble(1κ,C(x),1|C|,1|x |).

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Reusable garbled circuits

Definition

RGC: a reusable garbling scheme for C = {Cn}n∈N and C ∈ Cn.
PPT algorithms A = (A0,A1) and PPT simulator S = (S0,S1):

ExprealRGC,A(1κ) :

(C,stateA)← A0(1κ)
(sk,Υ)← RGC.Garble(1κ,C)

α← ARGC.Enc(sk,·)
1 (M,Υ,stateA)

ExpidealRGC,A,S(1κ) :

(C,stateA)← A0(1κ)

(Υ̃,stateS)← S0(1κ,C)

α← AO(·,C)[[stateS]]
1 (M, Υ̃,stateA)

RGC is private if ∃S, ∀ A = (A0,A1), we have{
ExprealRGC,A(1κ)

}
κ∈N

=c

{
ExpidealRGC,A,S(1κ)

}
κ∈N

(1)

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Indistinguishability obfuscation

Theorem

(Jain, Lin, and Sahai 2021) Let τ > 0, and δ, ε ∈ (0,1). Assume
the following assumptions with security parameter κ where p is
a κ-bit prime, and l , k ,n below are large polynomials in κ:

LWE assumption over Zp with subexponential
modulus-to-noise ratio 2kε

, k is dimension of LWE secret
LPN assumption over Zp with polynomially many LPN
samples and error rate 1/lδ, l is dimension of LPN secret
the existence of a Boolean PRG in NC0 with stretch n1+τ ,
SXDH assumption on asymmetric bilinear groups of a
order p.

Then, (subexponentially secure) indistinguishability obfuscation
for all polynomial-size circuits exists.

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Functional encryption scheme for circuits C ∈ NC1

Choose two standard public-key encryption key pairs
(puk1,prk1) and (puk2,prk2) in the key generation
process of the Functional Encryption scheme.
The encryption of an input x consists of two ciphertexts of
x under the two public keys puk1 and puk2 together with a
statistically simulation sound non-interactive zero
knowledge (NIZK) proof that both ciphertexts encrypt the
same message.
The secret key skC for the circuit C is an
indistinguishability obfuscation of a program that first
checks the NIZK proof and, if the proof is valid, it uses one
of the two secret keys prk1 and prk2 to decrypt x and
then computes and outputs C(x).

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Reusable garbled circuit C for a circuit C ∈ NC1

Based on Goldwasser et al (2013): “from FE to reusable
garbled circuits”
chooses a secret key sk to encrypt C as E.Encsk(C).
UE (sk, x) ∈ NC1 be a UC that decrypts E.Encsk(C) and
runs C on x
skUE be the secret key of the FE scheme for UE

The reusable garbled circuit C is FE secret key skUE .
The secret key is (sk,puk1,puk2)
input to C consists of the two cipher texts of (sk, x) under
the two public keys puk1,puk2 and a NIZK proof.
By combining the results in Theorem 6, De Caro et al
(2013), and Goldwasser et al (2013) we have the following
result: With assumptions of Theorem 6, there exists a
reusable garbling scheme RGC for circuits in NC1 that is
secure according to the Definition 5 in the random oracle
model.

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Construction of reusable garbled ORAMs

Figure: Garbled ORAM CPU

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

CCPU outputs an encoded (op, v , x ,ctr,flag)

Inputs: state (Σ, v , x ,sctrlr) and (session,sctrls).
Output: Encoded (Σ, v , x), session, and interface command com

topsep=0pt,1temsep=-1ex,p1rtopsep=1ex,p1rsep=1exif sctrlr and sctrls are inconsistent then exit.
topsep=0pt,2temsep=-2ex,p2rtopsep=2ex,p2rsep=2exsimulate ORAM CPU for one step with state Σ and input (v , x),

compute new state Σ and next interface command (op, v , x).
topsep=0pt,3temsep=-3ex,p3rtopsep=3ex,p3rsep=3exupdate session, sctrlr , and sctrls.
topsep=0pt,4temsep=-4ex,p4rtopsep=4ex,p4rsep=4exencode sk||(Σ, v , x)||sctrlr to obtain (Σ, v , x) = (eΣ

1 ,e
Σ
2 , π

Σ)
as an input to a Goldwasser’s reusable garbled circuit

topsep=0pt,5temsep=-5ex,p5rtopsep=5ex,p5rsep=5exencode sk||session||sctrls to obtain session as an input
to a Goldwasser’s reusable garbled circuit

topsep=0pt,6temsep=-6ex,p6rtopsep=6ex,p6rsep=6exencode sk||(op, v , x ,ctr,flag,strlc) to obtain com as an
input to a Goldwasser’s reusable garbled circuit

topsep=0pt,7temsep=-7ex,p7rtopsep=7ex,p7rsep=7exoutput (Σ, v , x), session, and com.
Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

CORAM1

Inputs: (Σ, v , x ,sctrlr), (op, v , x ,ctr,flag,sctrlc),
(session,sctrls)
Output: Memory access command (op, i , z)

topsep=0pt,1temsep=-1ex,p1rtopsep=1ex,p1rsep=1exif sctrlc , sctrlr , and sctrls are consistent, use session
to update sctrlc , sctrlr , and sctrls and go to next step 2.
Otherwise, exit

topsep=0pt,2temsep=-2ex,p2rtopsep=2ex,p2rsep=2exif ctr < t , go to step 5.
topsep=0pt,3temsep=-3ex,p3rtopsep=3ex,p3rsep=3exif ctr = t and op = READ, extract (v , x) from

(op, v , x ,ctr,flag,sctrlc) and put it in (Σ, v , x).
topsep=0pt,4temsep=-4ex,p4rtopsep=4ex,p4rsep=4exoutput sk||(Σ, v , x ,sctrlr) in the format of input to an

Goldwasser’s reusable garbled circuit and exit.
topsep=0pt,5temsep=-5ex,p5rtopsep=5ex,p5rsep=5exuse ctr, flag, and oblivious memory access to output

(op′, i , z), where op′ and i are in plain text and z = (v , x).
Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

CORAM2

Inputs: (op′, i , z), (op, v , x ,ctr,flag,sctrlc),
(session,sctrls)
Output: encoded sk||(op, v , x ,ctr,flag,sctrlc, z) using
puk1,puk2

topsep=0pt,1temsep=-1ex,p1rtopsep=1ex,p1rsep=1exif sctrlc and sctrls are inconsistent then exit.
topsep=0pt,2temsep=-2ex,p2rtopsep=2ex,p2rsep=2exuse session to update sctrlc and sctrls.
topsep=0pt,3temsep=-3ex,p3rtopsep=3ex,p3rsep=3exdecode z to sk||(v ′, x ′) using the key prk1.
topsep=0pt,4temsep=-4ex,p4rtopsep=4ex,p4rsep=4exif v = v ′, then the required data block has been found. Set

flag = yes. Furthermore, if op = READ, insert the value of x ′

to the x-field of (op, v , x ,ctr,flag,sctrlc).
topsep=0pt,5temsep=-5ex,p5rtopsep=5ex,p5rsep=5exoutput encoded sk||(op, v , x ,ctr,flag,sctrlc) in the format

of input to an Goldwasser’s reusable garbled circuit using
public keys puk1,puk2.

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

Privacy preserving data storage in cloud
Reusable garbled ORAMs

Reusable garbled ORAMs
Construction of reusable garbled ORAMs

Questions

Questions?

Yongge Wang, Qutaibah M. Malluhi Privacy Preserving Computation in Cloud Using Reusable Garbled Oblivious RAMs

	Privacy preserving data storage in cloud
	Privacy preserving data storage

	Reusable garbled ORAMs
	Reusable garbled ORAMs
	Construction of reusable garbled ORAMs

