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Abstract

We show that the class P-mc(n) of polynomial time n-membership comparable sets (defined by Ogihara, 1995) has
p-measure 0. Using this result, we will show that the class of sets which are <J-reducible to some P-selective set has
p-measure 0. Furthermore, we will show that if NP does not have p-measure 0 then no </-hard set for NP is P-approximable.
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1. Introduction

One of the important questions in computational
complexity theory is whether every NP problem is
solvable by polynomial time circuits, i.e., NP C?
P/poly. Furthermore, it has been asked what the de-
terministic time complexity of NP is, if NP C P/poly.
That is, if NP is easy in the nonuniform complexity
measure, how easy is NP in the uniform complex-
ity measure? It is well known that Py (SPARSE) =
P/poly, where Pt(SPARSE) is the class of languages
that are polynomial time Turing reducible to some
sparse sets. Hence the above question is equivalent to
the following question:

NP C? P1(SPARSE).
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It has been shown by Wilson [23] that this question is
oracle dependent. Hence it seems difficult to give an
absolute answer to this question at present. In the past,
many efforts have been made to consider the ques-
tion whether NP is not included in some subclasses of
Pr(SPARSE). Since Pt(SPARSE) is the class of lan-
guages that are Turing reducible to some sparse sets,
one way of obtaining subclasses of Pr(SPARSE) is
to consider some restrictions on the reducibility. For
example, Mahaney [ 16] showed that if all NP sets are
many-one reducible to some sparse set, then P = NP.
Subsequently this result was improved by Ogihara and
Watanabe [ 18] to truth-table reducibility with a con-
stant number of queries, i.e.,

NP # P = NP Z P,,(SPARSE).

Other subclasses of Pr(SPARSE) are obtained by
considering the P-selective sets introduced by Selman
[19]. A set A is P-selective if there exists a polynomial
time computable function that selects one of two given
input strings such that if any one of the two strings
is in A, then so is the selected one. Let SELECT de-
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note the class of P-selective sets. Then we know the
following facts:
(i) (Selman and Ko (see [20])) Pr(SPARSE) =
Pr(SELECT).
(ii) (Watanabe (see [20])) Pp(SELECT) ¢
P, (SELECT).
Regarding our above question, the following results
are known:
(i) (Selman [19]) If P # NP, then NP &
P,,(SELECT).
(i1) (Agrawal and Arvind [1], Beigel et al. [6],
Ogihara [17]) If P # NP, then NP ¢
P, (SELECT) for all @ < 1.
(1ii) (Beigel [5]) IfP # UPorR # NP,then NP ¢
P, (SELECT).
It seems difficult to remove the condition @ < | in
(ii). In the following, however, we will remove this
condition under a stronger but reasonable hypothesis.
We show that

up(NP) # 0 = NP P, (SELECT).

Many evidences have been presented by Lutz and

Mayordomo [ 14] and Kautz and Miltersen [11] that

this stronger hypothesis is reasonable. For example,

the following results are known:

(i) (Lutz and Mayordomo [13]) If u,(NP) # 0,
then there exists an NP search problem which
is not reducible to the corresponding decision
problem.

(i1) (Lutz and Mayordomo [13]) If u,(NP) # O,
then the “Cook versus Karp-Levin” conjecture
holds for NP.

(iii) (Lutz and Mayordomo [14]) If u,(NP) # 0,
then, for every real number & < 1, every <! -
hard language for NP is dense.

(iv) (Kautz and Miltersen {11]) For a Martin-Lof
random language A, ,u,‘,‘(NPA) #+ 0.

We also give a partial affirmative answer to a con-
jecture by Beigel et al. [6]. They conjectured that ev-
ery </-hard set for NP is P-superterse unless P = NP.
We will prove that every </-hard set for NP is P-
superterse unless NP has p-measure 0.

It should be noted that we obtained our above re-
sults by showing that the class P-mc(n) of polyno-
mial time n-membership comparable sets (defined by
Ogihara [17]) has p-measure 0. This result is of in-
dependent interest in the study of complexity classes.
In [24], Zimand has shown that [ J, .y P-mc(c) has

p-measure 0, our result is stronger than Zimand’s re-
sult,

We close this section by introducing some notation.
N and Q (Q7) are the set of natural numbers and the
set of (nonnegative) rational numbers, respectively.

3 = {0,1} is the binary alphabet, 3* is the set
of (finite) binary strings, and 3" is the set of binary
strings of length n. The length of a string x is denoted
by |x|. < is the length-lexicographical ordering on 2*
and z, (n 2 0) is the nth string under this ordering.
A is the empty string. For strings x, y € 3™, xy is the
concatenation of x and y.

A subset of 3™ is called a language, a problem or
simply a set. Italic capital letters are used to denote
subsets of 3™ and roman capital letters are used to
denote subsets of 3°°. The cardinality of a language
A is denoted by ||A|. We identify a language A with
its characteristic function, i.e., x € A iff A(x) = 1.
For a language A C X" and astring x € 3*, A | x
denotes the finite initial segment of A below x, i.e.,
Alx={y]|y<xandy € A}, and we identify
this initial segment with its characteristic string, i.e.,
Al zy=A(2) -A(z—y) € 2"

We will use P and E to denote the complexity classes
DTIME (poly) and DTIME(2""4"), respectively.

2. Resource bounded measure

In this section, we introduce a fragment of Lutz’s
effective measure theory which will be sufficient for
our investigation.

Definition 1. A martingale is a function F : 3* —
R* such that, for all x € 2,

F(x) = $(F(x1) + F(x0)).
A martingale F succeeds on a set A if
limsupF(A [ z,) = oc.
n
S$°°[ F] denotes the class of sets on which the martin-
gale F succeeds.

Definition 2. A set A is n*-random if there is no n*-

time computable martingale F which succeeds on A.

Definition 3. (Lutz [12]) A class C of sets has p-
measure 0 (u,(C) = 0) if there is a polynomial time
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computable martingale F : 2* — Q% which suc-
ceeds on every set in C. The class C has p-measure
1 (4,(C) = 1) if up(C) = 0 for the complement
C={A|AgC}ofC.

It should be noted that Lutz [12] introduced his p-
measure in terms of approximable martingales. How-
ever, the following lemma shows that it is equivalent
to the above definition.

Definition 4. (Lutz [12]) A function F is p-
approximable if there exists a polynomial time com-
putable function A(0", x) such that

|F(x) —h(0",x)| <27 "foralln e Nand x € 3*.

Lemma 5. For each p-approximable martingale F,
there exists a polynomial time computable martingale
F' such that F'(x) 2 F(x) forall x € X*.

Proof. See [2], [9] or [15]. OO

The following theorem gives a characterization of
p-measure O sets in terms of the n*-randomness con-
cept.

Theorem 6. Lez C be a class of languages. C has p-
measure O if and only if there exists a number k € N
such that there is no n*-random set in C.

Proof. Straightforward. [
It was proved by Ambos-Spies et al. [2] that, for
each k € N, there exist n*-random sets in E. Hence

we have the following theorem.

Theorem 7. (Lutz [12]) E does not have p-measure
0.

Proof. This follows from Theorem 6. O

3. Resource bounded measure and polynomial
time membership comparable sets

Jockusch [10] defined a set A to be semirecursive
if there is a recursive function f such that for all x
and y,

(i) flx.y) € {x. ¥},

(i) if {x,y} N A # 0, then f(x,y) € A.

We call the function f a selector for A. Selman [19]
considered a polynomial time version of semirecursive
sets and defined a set A to be P-selective if A has a
polynomial time computable selector. P-selective sets
have been widely studied, see, e.g., [1,6,17].

For aset A, we identify A and its characteristic func-
tion. Let f be a selector for A. If f maps a pair (x, y)
to y, then we have “x € A — y € A”, equivalently,
“A(x)A(y) # 10”. Thus we can view a selector for
A as a function f that maps every pair (x, y) of strings
to a string z € {01, 10} such that A(x)A(y) # z.
By replacing pairs of strings by k-tuples of strings
for any number & > 1, we obtain the concept of an
approximable set. A set A is approximable if there
exists some k& > 0 and a polynomial time computable
function f such that for all xg,...,x; € 2%,
f(xos. .., xk—1) # A(xo) - A(xp—1). A further
extension of this concept, namely membership com-
parability, was introduced by Ogihara [17]. Here
the length of the tuples is not fixed but it may vary
depending on the maximum length of the strings
contained in the tuples.

Definition 8. (Beigel et al. [6]) Given a num-
ber k € N*, a set A is P-approximable via k if
there is a polynomial time computable function f :
HZ,] 3* — 3% such that for all xg,...,x¢_; € 3*,
f(x0....,xk1) * A(xg)---A(xp—1). A set A is
P-approximable if A is P-approximable via some
k € N*t. A set A is P-superterse if A is not P-
approximable.

Note that the above definition of a P-approximable
set is a little different from Beigel’s [4] original def-
inition.

Definition 9. (Ogihara [17]) Let g: N — Nt be a
nondecreasing, polynomial time computable and poly-
nomial bounded function.

(i) A function f is called a g-membership com-
paring function (a g-mc-function for short) for A if,
forall m € N* and all xg,...,xy_1 € 3* withm >
g(max{|x0|, cees |xm—l|})s

f(x0,.. .., xm_)) € 2™ and

A(X()) o 'A(xm—l) * f(wa-csxm—l)-
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(i1) A set A is polynomial time g-membership
comparable if there exists a polynomial time com-
putable g-mc-function for A.

(iii) P-mc(g) denotes the class of all polynomial
time g-membership comparable sets.

The following proposition is obvious from the def-
inition.

Proposition 10. (i) {f A is P-selective, then A is P-
approximable.

(ii) A set A is P-approximable if and only if A €
P-mc(c) for some constant ¢ € N. That is to say,

P-appro = U P-mc(c),
ceN

where P-appro is the class of P-approximable sets.

Theorem 11. (Ogihara [17]) P,(SELECT) C
P-mc(LOG), where LOG = {clog | ¢ > 0}.

Theorem 12.
P-mc(n).

(Ogihara [17]) P-mc(LOG) C

The next proposition gives an important property of
P-approximable sets which we need later. If A is P-
approximable then, for strings xo, ..., x;—1 € 3%, we
can compute in polynomial time a subset of 3* which
contains A(xg) ---A(xs_1).

Proposition 13. (Beigel [3,4]) If A is P-approxim-
able via k € N, then there is a polynomial time
computable function which computes for any s strings
X9, ...,Xs—1 a Set of at most

s = (0) = () =+ ()

elements from 3* which contains A(xp) -+ A(x4-1).
(Note that, for a fixed k, S(s, k) is a polynomial in s
of degree k — 1.)

Let P, (P-appro) be the class of sets which can be
<P -reduced to some P-approximable sets. Then we

have the following theorem.

Theorem 14. P, (P-appro) C P-mc(n).

Remark. In fact, Theorem 14 is a corollary of Corol-
lary 2.7 in [6]. For the reason of completeness, we
will give the proof here. The idea underlying the fol-
lowing proof is the same as that underlying the proof
of Theorem 3.3 in [17].

Proof. Let A be a P-approximable set via k € N, and
let L <!, A via a machine M. Assume that the num-
ber of queries in the reduction L <!, A is bounded by
the polynomial f. Now, to show that L € P-mc(n),
fix n € Nand x9,...,x,_1 € 3% such that n >
max{|xo|,...,|*s~1]}- We have to compute a string
g(xg,...,x,-1) of length n in polynomial time such
that L(xg) ---L(x,—1) # g(xg,...,X,—1). For each
[ < n, let Q; denote the set of queries of M on x;,
and Q = Qo U---UQ,-1. Since f is nondecreasing,
[1Qill < f(n). So, for sufficiently large n,

IQII* < (nf(n))* < 2m.

By Lemma 13, we can compute, in time polynomial
in 3 o |¥], and thus, in time polynomial in n, a set

R={z |z € 3€lI} of at most ||Q||* elements which
contains the characteristic sequence of A on domain
Q. Now, foreach z € Rand j < n, let b, ; = M*(x;).
Clearly, there is some z € R such that, for every j <
n, L(x;) = b, ;. Since |[R|| < 2", there is some v €
3" such that v # b,o-- b, forall z € R. Let
g(x0,...,%,—1) =v. This proves the theorem. [J

In order to prove our main theorem, we prove a
lemma at first.

be an infinite se-
n, + logn; for all

Lemmal5. Letr 1 < nj,n,,...
quence of numbers such that niy) <
i. Then limp_oo [ [ 1o (1 + 1/1) =

Proof. By a simple induction, it is easy to check

that there exists a number & > 5 such that n; <
ilogiloglogi for i > k. Hence

m ]
Jim T1(1+7)

> —— ] =00. d
ml—l»n;oH( llOgllOglogl) >

Theorem 16. Let A be an n’-random set. Then A ¢
P-mc(n).
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Proof. For a contradiction, assume that f witnesses
that A is polynomial time n-membership compara-
ble. In the following, we construct an n*-martingale F
which succeeds on A.

Let n; = i for i < 5 and n;yy = n; + [logn;] for
i > 5. Forlz| < ns, let F(z) = 1. For n; < |z| <
niy1 (i > 5). Fix the initial segment y € 3™ of z
and let z = yz'. Let 7/ = z"b (where b is the last
bit of z’). Let |z/| = m. If z/ = (the first m bits of
f(Zns s 2n,—1)) then let
F(z"B) = (1+ 2[Tg"ll—]—_—]>F(y),
S0

F(z') =2F(z") — F(z"b),
else (that is, 7’ # (the first m bits of f(z,,-..,
Znn—-1))) let

F(z') = (|+W)F(y).

It is easily verified that the above defined function
F is an n*-martingale. So it suffices to show that F
succeeds on A. Obviously, for i > 5,

F(A anm)
1 1
- (1 + TiogmT = 1) (1 + MognT — 1)

1 1
> (1+ L)1+ ).
ns n;

By Lemma 15, limsup, F(A | z,,) = oo, that is to say,
F succeeds on A. [J

Corollary 17. P-mc(n) has p-measure 0, i.e.,
pp(P-me(n)) =0.

Corollary 18. (Zimand [24]) P-appro has p-
measure 0, i.e., u, (P-appro) = 0.

By combining Theorem 7 and Corollary 17, we get
the following theorem.

Theorem 19. E & P,,(P-appro).
Corollary 20. (Toda [21]) E € P,,(SELECT).

Note that Toda proved Corollary 20 using a direct
diagonalization. The importance of our Theorem 16

is that it also has implications on the structure of NP.
By combining Corollary 17 and Theorem 14, we get
the following theorem.

Theorem 21. If NP does not have p-measure Q, then
no P-approximable set is <},-hard for NP. That is to
say, every <!-hard set for NP is P-superterse unless
Mp (NP) =0.

Corollary 22. IfNP does not have p-measure O, then
no P-selective set is <',-hard for NP.

Theorem 21 gives a partial affirmative answer to
the conjecture of Beigel et al. Note that our hypoth-
esis u, (NP) # 0 is a reasonable scientific hypoth-
esis (see [14]1). It is worthwhile to mention that, in
the above, we used the uniform constructive method
initiated by Lutz and Mayordomo [14]. At first, we
proved Theorem 16, a measure-theoretic result con-
cerning the quantitative structure of E, and then get
the qualitative separation result: Theorem 19. More
precisely, the proof of Theorem 19 consists of the fol-
lowing two components:

(1) Prove that u, (P, (P-appro)) =0.
(i1) The measure conservation theorem: Theorem 7.

One of the important feature of this method is that
it gives an automatic witness for the qualitative sep-
aration. For example, in our setting, by Theorem 16,
for large enough k, every n*-random language A is not
<% -reducible to any P-approximable set.

Remark 23. Recently Buhrman and Longpré [7] in-
dependently proved that P,,(SELECT) has p-measure
0.

Remark 24. Recently Beigel (personal communica-
tion) has observed that actually our results can be
strengthened as follows:

Observation. If NP does not have p-measure 0, then
no set in P-mc(+/n) is <h-hard for NP.
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