ANALYZING INTER-APPLICATION COMMUNICATION IN ANDROID

Erika Chin
Adrienne Porter Felt
Kate Greenwood
David Wagner
UC Berkeley
ORGANIZATION

- Android communication model
- Security analysis of Android
- ComDroid
- Analysis of third-party applications
- Recommendations
Android Overview

- **Intents** = Android IPC
- Applications are divided into **components**
- Intents can be sent between components
- Intents can be used for intra- and inter-application communication
Explicit Intents

Name: MapActivity

Only the specified destination receives this message

Yelp

To: MapActivity

Map App
Implicit Intents

- Yelp
 - Implicit Intent Action: VIEW

- Map App
 - Handles Action: VIEW

- Clock App
 - Handles Action: DISPLAYTIME
Implicit Intents

Yelp
Implicit Intent
Action: VIEW

Handles Action: VIEW
Map App

Handles Action: VIEW
Browser App
SECURITY ANALYSIS OF ANDROID
COMMON DEVELOPER PATTERN:
UNIQUE ACTION STRINGS

- **IMDb App**
 - Handles Actions:
 - `willUpdateShowtimes`
 - `showtimesNoLocationError`

- **Showtime Search**
 - Implicit Intent Action:
 - `willUpdateShowtimes`

- **Results UI**
COMMON DEVELOPER PATTERN: UNIQUE ACTION STRINGS

IMDb App

Handles Actions:
willUpdateShowtimes, showtimesNoLocationError

Showtime Search

Implicit Intent Action:
willUpdateShowtimes

Results UI
ATTACK #1: EAVESDROPPING

IMDb App

Eavesdropping App

Handles Action:

- willUpdateShowtimes
- showtimesNoLocationError

Sending Implicit Intents makes communication public
ATTACK #2: INTENT SPOOFING

Malicious Injection App

Malicious Component

Action:
showtimesNoLocationError

IMDb App

Handles Action:
willUpdateShowtimes,
showtimesNoLocationError

Results UI

Receiving Implicit Intents makes the component public
Typical case

<table>
<thead>
<tr>
<th>Date & Location</th>
<th>Current Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, June 23</td>
<td></td>
</tr>
</tbody>
</table>

New This Week

- **Bad Teacher (2011)**
 - Rated R, 1 hr 32 mins, 6.3/10
 - Showtimes from Century Richmond Hilltop 16, Century San Francisco Centre 9 and XD, and 1 other...

- **Cars 2 (2011)**
 - Rated G, 1 hr 53 mins, 6.9/10
 - Showtimes from AMC Bay Street 16, AMC Bay Street 16, and 2 others

Attack case

<table>
<thead>
<tr>
<th>Date & Location</th>
<th>Current Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, June 23</td>
<td>Please specify a location</td>
</tr>
</tbody>
</table>

No showtimes were found for the selected date and location.
ATTACK #3: MAN IN THE MIDDLE

IMDb App
- Handles Action: `willUpdateShowtimes`, `showtimesNoLocation`
- Action: `willUpdateShowtimes`

Man-in-the-Middle App
- Handles Action: `willUpdateShowtimes`, `showtimesNoLocationError`
- Action: `showtimesNoLocationError`
ATTACK #4: SYSTEM INTENT SPOOFING

- Background – System Broadcast
 - Event notifications sent by the system
 - Some can only be sent by the system

- Receivers become accessible to all applications when listening for system broadcast
SYSTEM BROADCAST

App 1
Component
Handles Action: *BootCompleted*

App 2
Component
Handles Action: *BootCompleted*

App 3
Component
Handles Action: *BootCompleted*

System Notifier
Action: *BootCompleted*
System Intent Spoofing: Failed Attack

Malicious App

- **Malicious Component**
 - Action: *BootCompleted*

App 1

- Handles Action: *BootCompleted*
System Intent Spoofing: Successful Attack

- Malicious App
- Malicious Component
 - To: App1.Component

- App 1
- Handles Action: BootCompleted
 - Component
REAL WORLD EXAMPLE: ICE App

- ICE App: Allows doctors access to medical information on phones

- Contains a component that listens for the `BootCompleted` system broadcast

- On receipt of the Intent, it exits the application and locks the screen
REAL WORLD EXAMPLE: ICE
ComDroid analyzes applications to detect Intent-based attack surfaces
EVALUATION

- Manually verified ComDroid’s warnings for 20 applications

- 60% of applications examined have at least 1 exploitable IPC vulnerability

<table>
<thead>
<tr>
<th>Type</th>
<th># of Warnings</th>
<th># of Apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe Vulnerability</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td>Bad Practice</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Spurious Warning</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
RECOMMENDATIONS

- Treat inter- and intra-application communication as different cases

- Prevent public internal communication
 - 21% of severe vulnerabilities
 - 63% of bugs due to bad practice

- Verify system broadcasts
 - 6% of severe vulnerabilities
 - 13% of bugs due to bad practice

- Can be fixed by either developers or platform
RELATED WORK

- Enck et al. – introduces information leakage through Broadcast Intents and information injection into Receivers

- Burns – discusses other common developers’ errors
CONCLUSION

- Applications may be vulnerable to other applications through Android Intent communication
- Many developers misuse Intents or do not realize the consequences of their program design
- 60% of applications examined had at least 1 vulnerability
- ComDroid tool to be publicly accessible soon at www.comdroid.org
Thank you!

Any questions?