Detecting Sybil Nodes in Wireless Networks with Physical Layer Network Coding

Weichao Wang*, Di Pu**, and Alex Wyglinski** *: SIS Dept., UNC Charlotte **: ECE Dept., WPI

Motivation

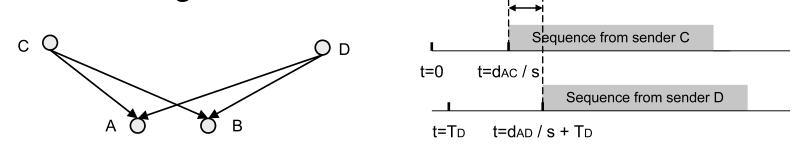
- Network coding technique
 - improve network throughput, reduce congestion and enhance robustness
 - previous research focuses on the protection of NC and the detection of pollution attacks
- A different aspect: can network coding be used to detect malicious attacks?
 - Avoid the adoption of complex security schemes
 - Provide a new incentive for deployment of NC
 - Initial exploration in this paper: Sybil attacks in WN

Presentation organization

- Motivation
- Background
- Basic Idea
- Physical layer issues
- Network layer issues
- Analysis
- Related work
- Conclusions and future work

Background

- Sybil attacks in wireless networks
 - The same node presents multiple identities
 - is an example of stealth attack: difficult to detect through traditional methods
 - can threaten the safety of routing protocols and attack detection mechanisms
 - Previous Sybil detection schemes based on physical layer properties:
 - Depend on special hardware or inaccurate measurement


Background

- PNC uses signal interference to achieve coding [MobiCom'06, SigComm'07]
- Not support random linear combination yet

	A	B	C	A	B	C	A	B	C	
time slot 1	frame 1			frame 1			frame 1 frame 2			
time slot 2		frame 2			frame 2			frame 1 + frame 2		
time slot 3		fram	ne 1	fram ←───	e 1 XOR frar	me 2 →		A and C sepai		
time slot 4	frame	ame 2		Another XOR operation is used to recover the frames			interfered signals to recover frame 1 and frame 2			
	(a) tradit	tional appro	bach	(b) digital network coding			(c) physical layer network coding			

 The start point of signal interference is determined by the distances b/w the receivers and senders, and the sending time

• The difference b/w the arriving time at the receivers:

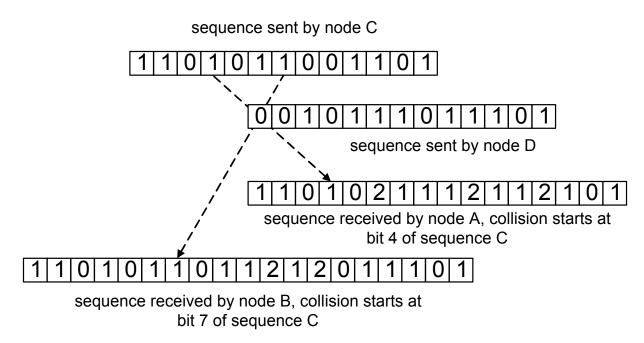
$$t_{diffA} = T_{D} + (d_{AD} - d_{AC}) / s$$

$$t_{diffB} = T_{D} + (d_{BD} - d_{BC}) / s$$

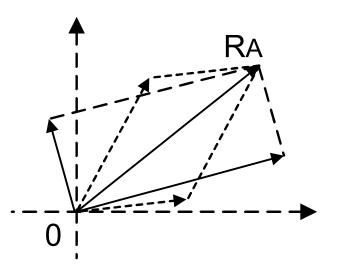
 The difference b/w two tdiff can cancel out the impacts of the sending time TD

$$||t_{diffB} - t_{diffA}|| = ||(d_{BD} - d_{AD}) + (d_{AC} - d_{BC})|| / s \leq (||d_{BD} - d_{AD}|| + ||d_{AC} - d_{BC}||) / s \leq 2 \times d_{AB} / s$$

- The difference b/w tdiffA and tdiffB is restricted by the distance b/w A and B.
- If A and B are two physical nodes, they will demonstrate different time differences under different sender pairs
- If A and B are linked to the same physical node, they will always receive the same interference sequences



- Therefore, we can detect the Sybil nodes by examining the interference sequences at the nodes
- A mechanism is needed to verify the time difference
 - Cannot directly ask the nodes for their time difference: the Sybil nodes will lie to avoid detection
 - If || tdiffA tdiffB || is large enough, the two nodes can combine their received signals to recover the two sequences
 - The Sybil nodes will always get the same interference results and cannot separate the sequences

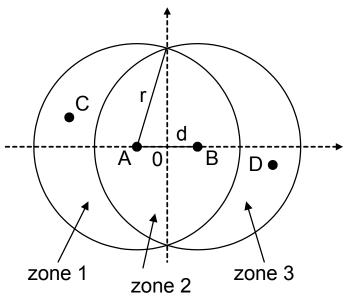

- Advantages: no synchronized clocks, no special hardware, distributed algorithm
- To turn the approach into a practical solution, efforts in both physical and network layers are needed

Physical layer issues

- Our approach is not bound to any signal modulation techniques; below MSK is assumed
 - Represent the data bits by varying the phase difference b/w consecutive signals
 - $\pi/2 = bit "1", -\pi/2 = bit "0"$
 - The receiver will get the vector sum of the two colliding signals

Physical layer issues

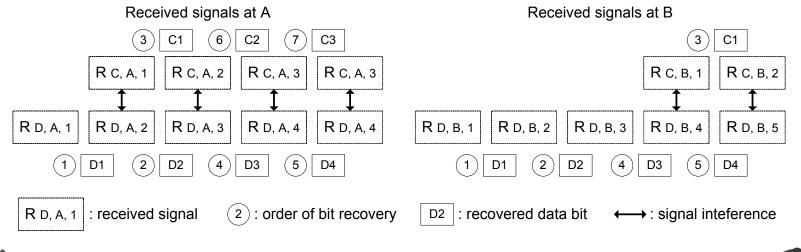
- Procedure to separate the colliding signals
 - Estimate the magnitudes of the two vectors [Katti et al. Sigcomm'07]
 - Use prior knowledge about one sequence or combine two different signal interference results to recover the data sequences
- Detect the start of signals and collisions
 - Use the incoming energy level changes to detect the first sequence
 - Measure the variance in the energy level of the incoming signals to detect collision



- Network assumptions
 - Unit disk graph model for neighbor detection
 - Wireless nodes can adjust the transmission power
 - Share a secure, lightweight pseudo random bit generator
 - Omni-directional antenna
- The Sybil nodes
 - Have access to all knowledge bound to the identities under their control
 - Cannot compromise encryption keys or reverse a hash function

- Selection of senders
 - Choose senders from the union of the neighbors of A and B: a pool much larger than the shared neighbors
 - The senders adjust the transmission power so that both receivers will get the signals

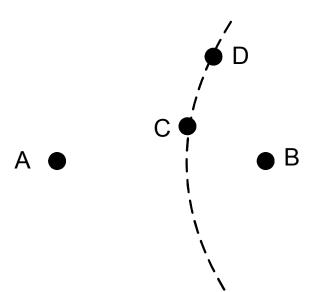
- Generation of sending sequences
 - The sequences should satisfy two conditions:
 - Kept as a secret before they are sending out
 - Committed sequences and cannot be changed by the (malicious) senders
 - Sequence generation procedure
 - The senders select their seeds for the PRBG
 - The hash results of the seeds are broadcasted as the commitment of the sequences



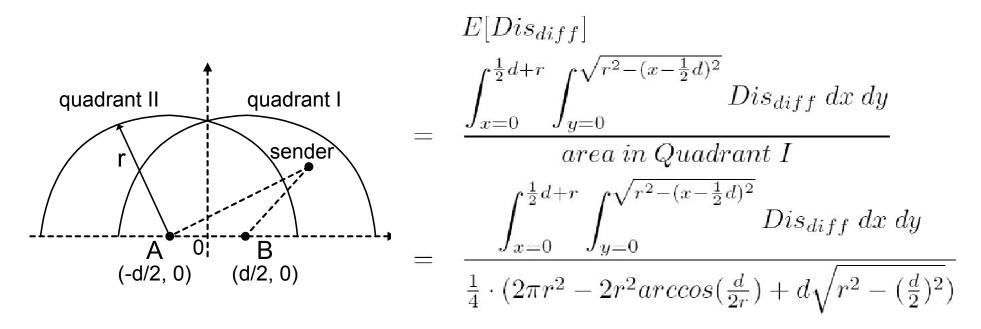
Data recovery procedure

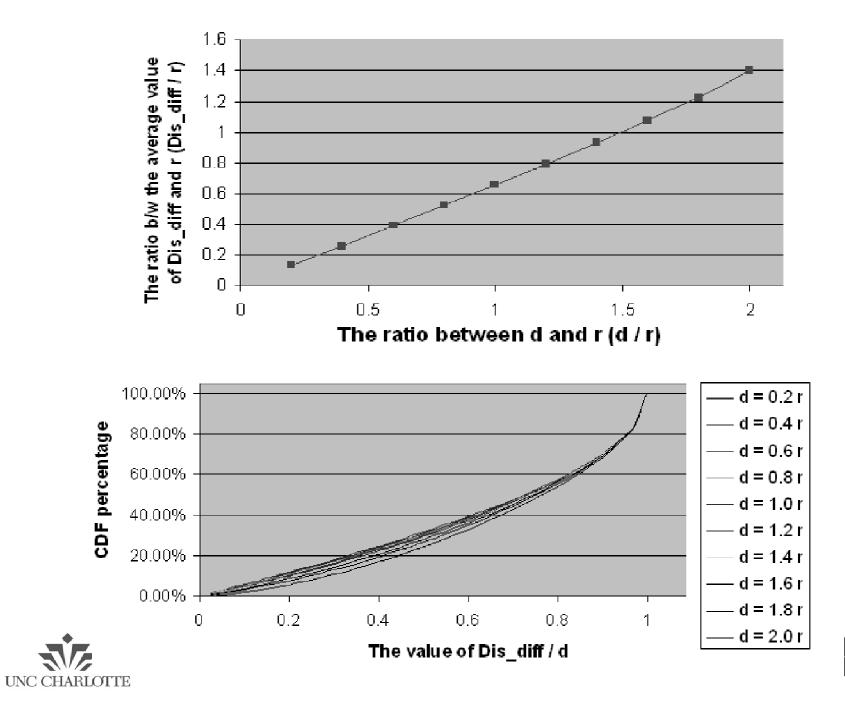
UNC CHARLOTTF

- Under MSK modulation the receiver needs two signals to reconstruct one bit
- Our analysis shows that when || tdiffA -tdiffB || ≥ 2 signals, the two receivers can combine the interference signals to rebuild the sequences



- Data recovery procedure
 - The receivers will broadcast the decoding results; the senders will broadcast the seeds
 - all nodes can verify the recovery results


- Handling false positive alarms
 - Even if the receivers are two different physical nodes, there is still a chance that they cannot reconstruct the packets
 - Example: two senders C and D are on the same hyperbola with the foci points A and B



- Handling false positive alarms
 - An intuitive approach: multiple rounds of detection
 - We need a quantitative analysis

- Observations from the figures
 - The average value of Disdiff has a nearly-constant ratio to d
 - From the CDF figure, the Disdiff has a very low probability to have a small value
 - An empirical example
 - r=250m, d in [0, 2r], then P[Disdiff \leq 3m] \approx 0.01
 - For one round of detection, when the senders are chosen from different sides of the Y-axis, P[|| tdiffA - tdiffB|| ≤ 3m / c] ≤ 0.01%
 - Multiple rounds of detection will lead to a very low false positive detection rate

- Why depend on PNC instead of system clocks to measure the time difference
 - The clock drift of wireless nodes is at microsecond level
 - The software defined-radio can easily use a much higher frequency
 - We will have a much higher Sybil detection sensitivity

- Safety of the approach
 - When the selected senders are malicious
 - It is not easy for malicious senders to frame good receivers since they have committed to the sequences
 - If they are attached to the same physical node, all other nodes will receive the same interference results
 - They can disclose their sequences to Sybil nodes: multiple rounds of detection are needed
 - Frequency adjustment enabled by SDR
 - Control the Sybil detection accuracy
 - Avoid the jamming attacks

Related work

- Sybil detection
 - Identity based approaches
 - Location based approaches
 - Signal-print based approaches: measure RSSI at multiple positions [WiSe'06] or use radio signal transient shape [IPSN'09]
- Physical layer network coding
 - With synchronization at the senders [MobiCom'06]
 - Analog network coding [sigcomm'07]

Conclusions

- Exploring the security capabilities of Physical Layer Network Coding
- Using Sybil attack detection as a concrete example
- Advantages:
 - Avoid the dependence on special hardware
 - Take advantage of bandwidth efficiency improvement mechanisms
- Other potential applications
 - Localization [GlobeCom'10]
 - Other attacks on topology and identity

Limitations and future work

- What about attackers with multiple antennas or directional antennas
- What about collaborative attackers
- Implementation on SDR
- Thanks. Questions?

