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Abstract— In many multi-robot applications such as tar-
get search, environmental monitoring and reconnaissance, the
multi-robot system operates semi-autonomously, but under the
supervision of a remote human who monitors task progress.
In these applications, each robot collects a large amount of
task-specific data that must be sent to the human periodically
to keep the human aware of task progress. It is often the
case that the human-robot communication links are extremely
bandwidth constrained and/or have significantly higher latency
than inter-robot communication links, so it is impossible for
all robots to send their task-specific data together. Thus, only
a subset of robots, which we call the knowledge leaders,
can send their data at a time. In this paper, we study the
knowledge leader selection problem, where the goal is to select
a subset of robots with a given cardinality that transmits the
most informative task-specific data for the human. We prove
that the knowledge leader selection is a submodular function
maximization problem under explicit conditions and present a
novel distributed submodular optimization algorithm that has
the same approximation guarantees as the centralized greedy
algorithm. The effectiveness of our approach is demonstrated
using numerical simulations.

I. INTRODUCTION

For human-supervised multi-robot applications where the
human operator monitors the robotic group remotely, band-
width constraints between the human and the robot team
often make it impossible for all the robots to simultaneously
communicate all their data to the human [1]. The multi-robot
system often obtains a significant amount of redundant data
such as video streams and images, which motivates the need
to dynamically select a subset of the robots whose gathered
information is most informative (not overly redundant) for
transmission to the human. Instead of directly fusing the
task-specific data between robots, which still requires a
great amount of data transmission, it is beneficial to use
an abstract model of that data for evaluating each robot’s
collected information and improving communication effi-
ciency. Moreover, since the communication link to the human
may also have significant latency (e.g. communication delay
between a robot team on Mars and human on Earth), this
further motivates the need to perform the computation in a
distributed manner on the multi-robot team.
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Fig. 1: Three robots explore the environment along their paths with limited
field-of-view (FOV) sensing (dark blue sector regions). Dark red regions

are examples of robots’ blind zones due to occlusion from obstacles.

Our work considers a scenario where a group of robots
under the supervision of a human operator is collecting data
and have to coordinate among themselves via local commu-
nication using an abstract model of the data to periodically
find a subset of k robots that have the most informative
information, and then let those robots transmit their sensed
data to the human so that the total environmental information
available to the human is maximized. Note that we are
not seeking to compute configurations or a control policy
for the robots that will maximize the information collected
as is traditionally done in either static or dynamic multi-
robot dynamic coverage problems [2], [3], but rather we are
selecting the best subset of robots to communicate the col-
lected information at each configuration generated by some
external controller [4] or planner [5], [6]. Due to possible
latency issues in the human-robot communication channel
[7], it is also desirable for the robots to autonomously and
adaptively recompute the value of sensed information based
on the accumulated data already reported to the human
(e.g. redundant data from the same area sent to the human
becomes less valuable), such that the robot team requires no
human feedback after data transmission.

The leader selection problem under such considerations
is NP-hard, so solutions with bounded suboptimality are
acceptable. In this paper, we propose a distributed algorithm
relying on local inter-robot communication that enables
the robotic team to elect effective knowledge leaders with
guaranteed bounds on the suboptimality of performance that
also account for the human operator’s dynamically accu-



mulated knowledge. The contributions of this paper are (1)
formal definition of the aforementioned coverage problem
with consideration for a time-varying information potential
function and visibility limitations due to obstacles, including
a proof of submodularity under explicit conditions, and
(2) a distributed greedy algorithm to solve the formulated
submodular optimization problem with proof of convergence
that relies only on the local interaction among robots but
ensures the same suboptimality bound as the centralized
algorithms.

II. RELATED WORK

Most existing work models environmental monitoring or
sampling tasks as either the multi-robot static or dynamic
coverage problem. The static coverage problem is related
to locational optimization where the main objective is to
redeploy robots such that the mission domain is covered
optimally and the agents move to a final configuration to
accomplish the coverage objective [2], [8], while the goal of
the dynamic coverage problem is to cover all the points in
the mission domain to some predefined coverage level over
time based on the mobility of the robot team [3], [4], [9].
Many versions of these problems have been studied based on
different assumptions on the environmental model, sensor
models, density function and coverage metric to make the
solution more practical in real-world applications. For exam-
ple, for the robots’ sensing capability, an isotropic disc-like
sensing model has been widely used since [3], while recently
more realistic anisotropic sensors such as on-board cameras
have been considered in [9]. In this paper, we employ the
modified dynamic coverage metric similar to that of [4]
defined with anisotropic sensors and a time-varying density
function to establish a different problem: the knowledge
leader selection. In this problem, we aim to maximize the
accumulated sensory information over time from a subset of
robots with given cardinality, which is proved in this paper
to be a submodular maximization problem.

Although maximizing submodular functions is NP-hard,
[10] has proved that a greedy algorithm could provide a so-
lution with approximation ratio 1−1/e. The greedy algorithm
and the submodularity property have been studied recently
in the context of leader selection problems with different
submodular metrics for information acquisition [11], sensor
placement in networks [12] and leader-follower convergence
in multi-agent systems [13]. However, much of this work
relies on a centralized greedy algorithm that requires global
information from all the nodes (robots), while a decentralized
optimization design is needed for solving our problem. Exist-
ing distributed submodular function maximization algorithms
assume one or more of the following: (a) the data can be
partitioned among the multiple computational nodes [14],
(b) the communication graph is complete or star-shaped
[15], or (c) global knowledge of current solution [16] is
available at all the nodes. There is often a gap between the
performance of the distributed algorithm and the centralized
algorithm as in [14]. In this paper, we propose a distributed
submodular optimization approach and prove it to share

the same suboptimality bound as the centralized greedy
algorithm.

III. PROBLEM STATEMENT

Consider n mobile robots moving in a planar bounded
space A ⊂ R2, with the pose of each robot i ∈ {1, 2, . . . , n}
at time t denoted by pi (t) = [xi(t), yi(t), θi(t)]

T where
[xi(t), yi(t)]

T ∈ R2 represents the position of each robot and
θi (t) ∈ [−π, π) represents the orientation. Areas occupied
by obstacles are defined by closed set B ⊂ A, so the
traversable and observable space for robots is T = A \ B.
At regularly spaced time intervals, we select a subset of
the robots to transmit information back to the human. For
simplicity of exposition, assume the current selection time-
point is t = taft, and hence the history of robot poses can
be assumed to be recorded as P (t) = {p1(t), . . . , pn(t)} for
t ∈ [t0, taft]. Each robot in the scenario shown in Figure 1
can evaluate the value of the collected data by considering the
product of sensing strength (sensing model) and importance
of the sensed area (information potential) that dynamically
changes as the area is explored over time.

A. Sensing Model

For our work, the robots are equipped with limited field-
of-view anisotropic sensors (e.g. cameras) that are used to
gather task-specific environmental data. In particular, we
adopt the limited field-of-view model utilized in [9] that
incorporates degradation of effective sensing close to the
boundaries of the sensing footprint, which is realistic for
most sensors. Assume a homogeneous robotic team, where
the sensing footprint of robot i is defined by a circular sector
Si with uniform radius r ∈ R+ and subtended by angle
2α, where α ∈ (0, π). If pi (t) = [xi(t), yi(t), θi(t)]

T is the
pose of robot i in world frame and q ∈ A : q = [x̄, ȳ]T

is an arbitrary to-be-sampled point of interest, let ψi(t, q)
represent the bearing to point q in body frame of robot i.

ψi(t, q) = atan2(ȳ − yi(t), x̄− xi(t))− θi(t) (1)

We define the following functions for convenience.

c1i(t, q) = r2 − (x̄− xi(t))2 − (ȳ − yi(t))2

c2i(t, q) = α− ψi(t, q), c3i(t, q) = α+ ψi(t, q)
(2)

All functions cji(t, q) monotonically decrease as the point
of interest q approaches the sensor footprint boundaries. We
define the sensing performance function as follows.

fi (pi(t),mi(t, q), q) =
mi(t, q)

∏3
j=1 max (0, cji(t, q))

2

r4α4
(3)

This function has range [0, 1] and monotonically increases as
robot i approaches point q. It is minimized (evaluates to 0)
when q is on the boundary or outside the sensor footprint of
robot i. The binary function mi(t, q) captures whether point
q can be sensed by robot i at time t. Specifically, if [pi(t), a]
is the line segment connecting pi(t) and a, we can define
mi(t, q) as follows.

mi(t, q) =

{
1 if q ∈ {a ∈ A | [pi(t), a] ∈ T }
0 else

(4)



This function captures the idea that environmental points that
are occluded from a robots’ view due to obstacles cannot be
sensed. Initially, robots are unaware of obstacle locations, so
each robot i cannot know mi(t, q) a priori.

It is noteworthy that with (1)-(4) any robot’s sensing
performance over time can be obtained by others merely
based on its path through the environment (captured by pi(t))
and the points it senses within the environment along its path
(captured by mi(t, q)). As before, P (t) = {p1(t), . . . , pn(t)}
and M(t, q) = {m1(t, q), . . . ,mn(t, q)}.

B. Information Potential of Points in the Environment

Each point q ∈ A in the environment potentially holds
new information. As the robots explore the environment,
points that have not been previously sensed are expected
have more information potential than points that have already
been sensed (i.e. redundant sensing of a point results in
less information gained each time it is sensed). To capture
this idea, we define φt(J, q) (a modification of the density
function in [4]) which measures the information potential at
point q at time t for a subset of the robots J ⊆ {1, 2, ..., n}.
Given Jpre ⊆ {1, 2, ..., n} as the previous set of selected
knowledge leaders and and tpre as the time at which they
were selected, we can compute φt(J, q) recursively. The base
case of the recursive computation is φ0(·, q) which represents
the predefined initial information potential at each point. We
assume φ0(·, q) is given for all q ∈ A.

φt (J, q) = φtpre (Jpre, q) e
−k∗At(J,q)

At(J, q) =
∑
j∈J

∫ t

tj,pre

fj(pj(τ),mj(τ, q), q) dτ
(5)

Here, k∗ ∈ R+ is a design variable and the function
At(J, q) quantifies how well a certain point q has been
geometrically explored by the subset of robots J since the
last time they were selected as knowledge leaders. Note that
tj,pre ≤ tpre denotes the last time-point robot j was selected
as a knowledge leader and sent collected data to human. As
the computation of φt (J, q) only depends on points sensed
after time tj,pre, each robot j can then simply store data
collected starting from tj,pre and discard all data collected
prior to tj,pre. The specification of k∗ will be discussed in
Section IV.

C. Objective Functions

Our selection of the subset is subject to a predetermined
cardinality constraint (i.e. we can only pick at most k
knowledge leaders, so |J | ≤ k). We define the incremental
information gain, an abstract model of the collected task-
specific data, for a subset of robots J from an arbitrary point
q ∈ A over time interval t ∈ [tpre, taft] as follows.

Q(J, q) =
∑
j∈J

∫ taft

tj,pre

fj(pj(τ),mj(τ, q), q)φτ (J, q) dτ (6)

Then the incremental information gain over the entire envi-
ronment A for robots J is given by

F (J) =

∫
A
Q(J, q) dq (7)

and our objective at each selection time point can be written
formally as follows.

J∗ = arg max
J

F (J)

subject to |J | ≤ k
(8)

IV. LEADER SELECTION USING DISTRIBUTED
SUBMODULAR OPTIMIZATION

Considering that the problem in (8) is an NP-hard com-
binatorial optimization problem, in this section we show the
submodularity of the function F (J) and propose a distributed
submodular optimization approach with solutions as good as
the standard centralized greedy approach.

A. Submodularity Analysis

Definition 1 (Submodularity [17]): Let V be a finite set.
A function f : 2V → R is submodular if for all sets S and
T with S ⊆ T ⊆ V , the following is satisfied.

∀v /∈ T : f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ) (9)

In [17], it is shown that a nonnegative weighted sum
of submodular functions is submodular, which serves as
a preliminary lemma used in the following analysis of
submodularity of the objective function F (J) in (8). The
condition for making F (J) a submodular function is given
in the following Theorem.

Theorem 1: At each leader selection time-point t = taft,
the function F (J) is a monotone submodular function of
robot set J if the following condition holds (k is the
maximum number of knowledge leaders).

k∗ ∈
[

0,
1

k
(
taft − t0

)] (10)

Proof: First we consider the submodularity of the
integrand of F (J), namely the incremental information gain
function Q(J, q) on any point of interest q defined in (6).
Let I ⊆ I ′ ⊆ {1, 2, . . . , n} and i ∈ {1, 2, . . . , n} \ I ′, which
implies i ∈ {1, 2, . . . , n} \ I . Then we have

∆ = (Q(I ∪ {i}, q)−Q(I, q))−
(
Q(I′ ∪ {i}, q)−Q(I′, q)

)
=D1 ·D2 +D3

(11)

where
D1 = Q(I, q)−Q(I′, q)

=
∑
j∈I

∫ taft

tj,pre

fj(pj ,mj , q)φτ (I, q)dτ

−
∑
i∈I′

∫ taft

tj,pre

fj(pj ,mj , q)φτ (I′, q)dτ

D2 = e
−k∗

∫ t
ti,pre

fi(pi,mj ,q)dτ − 1

D3 = fi(pi,mi, q)e
−k∗

∫ t
ti,pre

fi(pi,mi,q)dτ (
φt(I, q)− φt(I′, q)

)
(12)

Considering the non-negativity of fi(·) and the non-
increasing function φt(J, q), it is straightforward that D2 ≤ 0
and D3 ≥ 0.

To discuss the sign of D1, we consider the contin-
uous function g(x) = xe−k

∗x whose monotonicity is
identical to that of Q(J, q) in Equation (6) (where x =



∑n
j=1

∫ taft

tj,pre
fj(pj ,mj , q)dt and e−k

∗x ∼ φt(J, q)). By
taking the first derivative of g(x) w.r.t. x, we have

dg(x)

dx
= (1− k∗x)e−k

∗x (13)

To that end, we have the following condition for dg(x)/dx ≥
0, namely Q(J, q) is non-decreasing, which thus renders
D1 ≤ 0 since I ⊆ I ′.

0 ≤ k∗ ≤
1

x
(14)

Recalling the definition of x, we have max{x} ≤ k(taft−t0)
due to the cardinality constraint |J | ≤ k and fi(·) ∈ [0, 1].
Hence, the explicit condition for k∗ is as follows.

k∗ ∈
[
0,

1

k(taft − t0)

]
(15)

Then it follows from (11) that ∆ ≥ 0 under condition (15)
and hence Q(J, q) is a non-decreasing submodular function
of J . Since the objective function F (·) can be regarded as
the sum of Q(J, q) over all q ∈ A given A is discretized,
then by the aforementioned lemma from Definition 1, F (·)
is a monotonially non-decreasing submodular function of set
J , which concludes the proof.

Remark 1: The restriction on k∗ in Theorem 1 corresponds
to the fact that taking information from as many robots as
possible is always beneficial for increasing human operators’
knowledge over the map despite diminishing returns.

B. Distributed Greedy Algorithm

Consider the connected communication graph of the robot
team given as G = (V, E) with each node v ∈ V representing
a robot in the graph. Assume each robot has the same limited
communication range. There is an edge (vi, vj) ∈ E for any
pair of robots vi, vj ∈ V within communication range of
each other. Note that the communication graph is undirected
(i.e. (vi, vj) ∈ E ⇒ (vj , vi) ∈ E).

Due to the proven submodularity of our objective function
in (8), it is convenient to use the standard greedy algorithm
as a subroutine for the computation described above. In
order to avoid the pitfalls of the distributed algorithms that
work on partitioned data sets, as suffered in [14], here
we propose a novel distributed algorithm relying on local
inter-robot communications that (1) implicitly constructs a
hop-optimal spanning tree [18], and (2) uses the standard
greedy algorithm as a subroutine to perform local leader
computation as well as repeated backtracking verification
to retrieve the solutions that are omitted during the greedy
optimization over partitioned data until convergence (simi-
larly to [19]) while exploiting the spanning tree structure.
Such an algorithm provides a solution that is as good as the
centralized greedy algorithm on the whole dataset.

First, consider the centralized greedy subroutine (see Al-
gorithm 1) as applied to our problem. The input is the
robots’ index set J , their path set {pj}j∈J , the corresponding
visibility {mj}j∈J of points in the map for the considered
time span, and the maximum number of knowledge leaders
k. The output is the selected knowledge leader index set J∗,
the corresponding path sets {pj}j∈J∗ and the corresponding

visibility {mj}j∈J∗ of points in the map. By iteratively
considering all the robots for evaluating the objective func-
tion F (·) in (8) with corresponding sensing model f(·)
and information potential φ(·) derived from {pj}j∈J∗ and
{mj}j∈J∗ , the near-optimal knowledge leader set J∗ will
be constructed after at most k iterations.

Algorithm 1 Greedy Algorithm
1: procedure GREEDY(J, {pj}j∈J , {mj}j∈J , k)
2: J∗ ← ∅
3: while (|J∗| < k) ∧ (|J∗| < |J |) do
4: j ← arg maxj∈J\J∗ F (J∗ ∪ {j})
5: J∗ ← J∗ ∪ {j}
6: end while
7: end procedure

Algorithm 2 Distributed Greedy Algorithm
1: procedure DISTRIBUTEDGREEDY(u, Cu, Nu)
2: CJ ∗ ← Cu, l← u, h← 0, m← NIL
3: for all j ∈ Nu do
4: SENDMSG(j, u, h, l, CJ ∗ )
5: end for
6: while {j′, h′, l′, CJ ∗′} ← RECVMSG() do
7: if (l > l′) ∨ ((l = l′) ∧ (h > h′ + 1)) then
8: l← l′, h← h′ + 1, m← j′, CJ ∗ ← Cu
9: for all j ∈ Nu do

10: SENDMSG(j, u, h, l, CJ ∗ )
11: end for
12: else if (l = l′) ∧ (h < h′) then
13: CJ ∗ ← GREEDY(CJ ∗ ∪ CJ ∗′ ∪ Cu)
14: SENDMSG(j′, u, h, l, CJ ∗ )
15: if m 6= NIL then
16: SENDMSG(m,u, h, l, CJ ∗ )
17: end if
18: else if (l = l′) ∧ (m = j′) ∧ (CJ ∗ 6= CJ ∗′ ) then
19: CJ ∗ ← GREEDY(Cu ∪ CJ ∗′ )
20: for all j ∈ Nu do
21: SENDMSG(j, u, h, l, CJ ∗ )
22: end for
23: end if
24: end while
25: end procedure

By using the standard greedy algorithm as our subroutine,
the distributed greedy algorithm for selecting k knowledge
leaders is proposed in Algorithm 2, which contains three
interleaved stages of data processing for each robot node:
implicit spanning tree construction (line 7–11), information
propagation (line 12–17) and backtracking (line 18–23). As-
sume each robot vi in the communication graph has a unique
identifier (UID) and assume UID(vi)=i for simplicity of
exposition. The UIDs of the communication graph neighbors
of robot vi are denoted by Ni = {j | vj ∈ V : (vi, vj) ∈ E}.
The algorithm takes as inputs the robot’s own UID u, its
own UID-stamped information Cu = {u, pu,mu} and the set
of its direct neighbour UIDs Nu within its communication
range. On line 2, it initializes its current leader information
set CJ ∗ , root UID l, number of hops h from root and master
UID m, and then sends them to its direct neighbors on lines
3–5. The robots will not start to perform the subroutine
greedy algorithm until reaching a consensus on the lowest
UID l as the root of the spanning tree and each robot has
been assigned the lowest possible number of hops (line 7).



Although the root is identified by every robot, we do not
assume it will collect every robot’s information and then
compute the leader set in a centralized manner, since that
method has no bound on message size and is not applicable
in a bandwidth constrained environment. Instead, exploiting
the structure of the constructed spanning tree in which each
robot has a unique master (spanning tree parent), we utilize
each robot’s dual roles on processing the incoming messages
as either the non-child node (line 12) or the child node
(line 18) to switch between the information propagation
process and the verification process, which repeatedly applies
the standard greedy algorithm (Algorithm 1) and sends
the updated information to different nodes as necessary to
collaboratively and efficiently obtain the final solution in a
decentralized manner. It is also noted that the output of each
robot following this protocol is always its current estimate
of leader set with cardinality limited to k, which ensures that
the outgoing message size will never exceed one containing
k robots, their path sets and visibility of points in the map.

Theorem 2: Algorithm 2 always converges to the identical
leader set obtained from the standard centralized greedy
algorithm (Algorithm 1).

Proof: First, let J∗ = {j1, . . . , jk} be the leader
set obtained from Algorithm 1 over all robots {1, . . . , n},
with robot j1 computed in the 1st iteration and robot jk
in the kth iteration. Then consider the distributed leader set
computation in Algorithm 2 (see lines 13 and 19). Let Jj1
denote the merged candidate set robot j1 provides as input
to the GREEDY() subroutine. Since Jj1 always contains j1,
j1 will also be included in its output leader set Jj1∗ because
j1 = arg max

j∈{1,...,n}
F ({j}) and Jj1 ⊂ {1, . . . , n}. As this output

set propagates through the robot network, j1 will always
be preserved in the output set from other robots as well. In
particular, after robot j2 receives the candidate set containing
j1 and merges it into set input Jj2 , j2 will be included
into its output set Jj2∗ and always preserved because j2 =

arg max
j∈{1,...,n}\{j1}

F ({j1} ∪ {j}) and Jj2 ⊂ {1, . . . , n} \ {j1}.

When this output set containing j1 and j2 reaches robot j3,
then j3 will be added and preserved in further information
propagation, and so forth. In this way, the output leader set
{j1, . . . , jk} will be recursively obtained and agreed upon by
each robot, after which Algorithm 2 will eventually terminate
as no more messages are sent (see line 18).

Bound on Suboptimality: In [10], it has been proven that
the standard greedy algorithm will obtain a solution set that
will cause the submodular objective function to evaluate to
at least (1 − 1/e) times the value produced by the optimal
solution set of the same cardinality, and this bound was
proven to be tight in [20]. As a byproduct of Theorem 2,
the solutions obtained from our proposed distributed greedy
algorithm share the same suboptimality bound.

V. RESULTS

In the first simulation shown in Figure 2, we consider a ho-
mogeneous team of 5 mobile robots equipped with cameras
moving in trajectories generated by external planners [6] in a

region with four static obstacles over time span t ∈ [0, 40s].
The task is to select 2 robots every 20s as knowledge leaders
to maximize the new accumulated sensed information sent
to the operator. The leader selection time-points are then
specified by t = 20s and t = 40s respectively. At t = 0 each
robot can access the initial value of the information potential
over the entire environment shown in Figure 3a and use it
to evaluate their coverage over time. At the first selection
time-point t = 20s, robots communicate their information,
construct the spanning tree rooted at robot 1, and then
converge to the selected knowledge leader set (robot 2 and 5
in black circle) in Figure 2b by running Algorithm 2. Since
each robot knows the leaders’ information after convergence,
their knowledge of the information potential will be updated
by (5) in which the value of areas covered by selected
leaders decreases as shown in Figure 3b. Following the same
process, in the next selection round, at t = 40s, robot 3 and
4 are selected as new knowledge leaders and each robot’s
information potential value over the map is updated again as
shown in Figure 3c. Each robot’s respective information gain
is evaluated by the updated information potential at t = 20s
and t = 40s are shown in Figure 4a-4j. It is noted that at
t = 40s since the information from robot 2 and 5 has already
been sent to human at a previous selection time-point, their
information gain before t = 20s is reset to zero, as shown
in Figure 4g and Figure 4j.

To further compare with other existing work, we con-
duct 50 simulation trials with each trial consisting of a
randomly distributed robotic group containing 40 mobile
robots. For each trial, we execute our proposed distributed
greedy algorithm, the distributed algorithm GREEDI in [14],
the standard greedy algorithm, random selection and an
optimum selection algorithm to pick up the knowledge
leaders. The comparisons on performance and computation
time are shown in Figure 5. It is noted in Figure 5a that the
proposed distributed greedy algorithm will converge to the
same solution as the standard centralized greedy algorithm,
which is not ensured for the GREEDI algorithm and random
selection algorithm, especially when the error accumulates as
the required number of leaders increases. It should also be
noted that although for the 50 trials our proposed distributed
greedy algorithm can always reach the optimal solution, as
the property of standard greedy algorithm, it can only ensure
an approximation of (1 − 1/e) to the optimal performance
in general cases. The computation time comparison is given
in Figure 5b, and it is clear that the computational cost for
optimal selection algorithm grows exponentially as number
of leaders increases, which makes it impractical in large scale
multi-robot application. For the GREEDI algorithm, since it
always performs two-stage standard greedy algorithms on
each subset of the dataset and then the union of the solution
set, in dealing with small scale problems, it may not be more
efficient than the standard greedy algorithm. However, for
our distributed greedy algorithm, since the cardinality of total
inputs to the subroutine greedy algorithm at each iteration
will never exceed 2k, where k is the required number of
knowledge leaders and independent of the robotic group
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Fig. 2: Simulation of 5 mobile robots exploring the environment with 4 static obstacles (black) over time [0, 40s]. The time-points for leader selection
are 20s and 40s. (a) Robot’s trajectories (dashed line), visible range examples (blue sectors) and snapshots of their positions and orientations at starting

time t = 0s (blue) and the two leader selection time-points t = 20s (black) and t = 40s (red). (b) Inter-robot communication graph (grey) and
constructed spanning tree (red) at leader selection time-points t = 20s and t = 40s. Selected leaders are marked by circles.
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Fig. 3: Heat map of time-varying information potential. (a) Initial information potential at t = 0s. Viewing the magenta area gives robots more
information than the surrounding light blue area. (b) Information potential updates at t = 20s after robot 2 and 5 are selected as leaders. (c) Information

potential updates at t = 40s after robot 3 and 4 are selected as new leaders. Black polygons mark the positions of static obstacles in the heat maps.
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Fig. 4: Snapshot of each robot’s accumulated information at sampling time-points t = 20s and t = 40s. (a)-(e) Information gain of robot 1-5 at t = 20s
computed with updated information potential from robot 2 and 5. (f)-(j) Information gain of robot 1-5 at t = 40s computed with updated information

potential from robot 3 and 4.

scale, the computation cost is hence ensured to significantly
decrease compared to the standard greedy algorithm. The
communication-related results are reported in Fig. 6, in
which the centralized algorithms represent any algorithms
that requires global information from all the nodes to be
sent to the root robot of the tree. It is noted that although
the distributed greedy algorithm consumes a larger number
of messages, the total amount of data moving through the
networks is much less due to the bounded message size.

VI. CONCLUSION

We formulated the knowledge leader selection as a sub-
modular maximization problem and proposed a distributed
greedy algorithm with bounded suboptimality to find knowl-
edge leaders. Such an approach is guaranteed to provide
the same approximate solution as the centralized greedy
algorithm. We account for diminishing sensory information
gain due to overlapped sensing areas, constrained anisotropic
sensing performance, and sensing limitations due to occlu-
sions from obstacles. Numerical simulations were performed
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Fig. 5: Performance comparison of the proposed distributed greedy algorithm and other submodular optimization algorithms from 50 independent trials
on randomly generated groups of 40 robots with their paths. (a) The maximum, minimum and average ratio of performance for global objective functions
in (8) of proposed distributed greedy, standard greedy, random leader selection and GREEDI, which is another distributed greedy algorithm proposed in
[14] vs. the benchmark performance of centralized combinatorial optimization algorithm (NP-hard). (b) The average computation time (log(sec)) among

the four algorithms. For the GREEDI algorithm, the cardinality of each subset was chosen to be 8.
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Fig. 6: Communication-related simulation results from 50 independent trials on different number of robots/leaders using the proposed distributed greedy
algorithm and centralized algorithms. (a) Average number of messages transmitted. (b) Average amount of data transmitted, as computed by the

multiplication of number of messages and average message size.

to compare our proposed distributed algorithm to other
methods on computational time and performance w.r.t. an op-
timal selection strategy and communication-related metrics.
Results validated the effectiveness of the proposed algorithm.
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