Homework Assignment 4

Reading Assignment: Rosen, Sections 1.3, 1.4, 1.5

I. 1. List all the members of the following sets
 A. \{ x \mid x \text{ is an integer such that } x^2 = 1 \}
 B. \{ x \mid x \text{ is a real number such that } x^3 = 27 \}
 C. \{ x \mid x \text{ is a positive odd integer less than 16 }\}
 D. \{ x \mid x \text{ is a positive integer so that } x \text{ is divisible by 3 and } x < 20 \}

2. What is the cardinality of the following sets?
 A. \emptyset
 B. \{ \emptyset, a \}
 C. \{ \emptyset, \{\emptyset\}, \{\} \}
 D. \{ \}
 E. \{ \}, \{ \{ \emptyset \} \}

3. Give the Power set of the Following sets
 A. \{ \}
 B. \{ \emptyset \}
 C. \{ \emptyset, a \}
 D. \{ a \}

4. Determine if the following sets are Power sets.
 A. \{ \emptyset, \{b\}, \{c\}, \{ b, c \} \}
 B. \{ \emptyset, \{ b \}, \{ \emptyset, b \} \}
 C. \{ \emptyset, \{ \emptyset \} \}
 D. \emptyset

5. Let A = \{a, b, d\} and B = \{1, 2\} Find:
 A. A \times B
 B. B \times A

6. Let A=\{a,b,c,d,e\}, B=\{a,b,c,d,e,f,g,h\} Find:
 A. A \cap B
 B. A \cup B
 C. A-B
 D. B-A

7. Let A=\{0,2,4,6,8,10\}, B=\{0,1,2,3,4,5,6\}, C=\{4,5,6,7,8,9,10\} Find:
 A. A \cap B \cap C
 B. A \cup B \cup C
 C. (A \cup B) \cap C
 D. (A \cap B) \cup C
 E. A \oplus B
I. Using predicate calculus, prove the following:
Given: All people walk or drive.
All people who walk wear shoes.
Prove: All people drive or wear shoes.
Universe of Discourse: People
In your solution, let \(W(x) = \text{person } x \text{ walks}, D(x) = \text{person } x \text{ drives}, \) and \(S(x) = \text{person } x \text{ wears shoes}. \) Don’t forget to use quantifiers.

III. a. Use a truth table to prove the following:
\[\forall x \ P(x) \land \exists x \ Q(x) \Rightarrow \exists x \ (P(x) \land Q(x)) \]
b. Use the \textbf{contrapositive rule} and \textbf{DeMorgan’s laws} to reduce this statement to the statement in part a.
\[\forall x \ (P(x) \lor Q(x)) \Rightarrow \exists x \ P(x) \lor \forall x Q(x) \]

IV. Fill in the truth tables for the following predicates.

<table>
<thead>
<tr>
<th>Quantifiers</th>
<th>(P(x,y))</th>
<th>(x \in {0,1}, y \in {0,1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall x \forall y)</td>
<td>((x \lor y) \land \neg(x \land y))</td>
<td></td>
</tr>
<tr>
<td>(\exists x \exists y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\forall x \exists y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\exists y \forall x)</td>
<td>[if true (y = \ldots)]</td>
<td></td>
</tr>
<tr>
<td>(\forall y \exists x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\exists x \forall y)</td>
<td>[if true (x = \ldots)]</td>
<td></td>
</tr>
</tbody>
</table>