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a b s t r a c t 

Histopathology is crucial to diagnosis of cancer, yet its interpretation is tedious and challenging. To facili- 

tate this procedure, content-based image retrieval methods have been developed as case-based reasoning 

tools. Especially, with the rapid growth of digital histopathology, hashing-based retrieval approaches are 

gaining popularity due to their exceptional efficiency and scalability. Nevertheless, few hashing-based 

histopathological image analysis methods perform feature fusion, despite the fact that it is a common 

practice to improve image retrieval performance. In response, we exploit joint kernel-based supervised 

hashing (JKSH) to integrate complementary features in a hashing framework. Specifically, hashing func- 

tions are designed based on linearly combined kernel functions associated with individual features. Su- 

pervised information is incorporated to bridge the semantic gap between low-level features and high- 

level diagnosis. An alternating optimization method is utilized to learn the kernel combination and hash- 

ing functions. The obtained hashing functions compress multiple high-dimensional features into tens of 

binary bits, enabling fast retrieval from a large database. Our approach is extensively validated on 3121 

breast-tissue histopathological images by distinguishing between actionable and benign cases. It achieves 

88.1% retrieval precision and 91.3% classification accuracy within 16.5 ms query time, comparing favorably 

with traditional methods. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

For years, histopathology has played a key role in the early

iagnosis of breast cancer, which is the second leading cause

f cancer-related death among women ( American Cancer Soci-

ty, 2013 ). Unfortunately, examination of histopathological im-

ges is time-consuming and error-prone due to their large size,

nter- and intra-observer variability among pathologists, and sev-

ral other factors ( Gurcan et al., 2009; Al-Janabi et al., 2012; Veta

t al., 2014 ). To facilitate this procedure, many content-based im-

ge retrieval (CBIR) methods have been proposed as computer-

ided diagnosis (CAD) tools ( Zheng et al., 2003; Akakin and Gur-

an, 2012; Caicedo et al., 2011; Zhang et al., 2015b, 2015c, 2014,

015; Foran et al., 2011 ). These methods compare a query image

ith previously diagnosed cases stored in a database, and return

he most similar cases along with the likelihood of abnormality of

he query. Pathologists could use the retrieved cases to better diag-
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ose the query case. In addition, CBIR methods also contribute to

igital slide archiving, pathologist training, and various other ap-

lications ( Foran et al., 2011 ). Especially, the recent development

f digital histopathology has been a catalyst for the increase of

ashing-based retrieval methods ( Zhang et al., 2015b, 2015c, 2014,

015 ), which have remarkable computational efficiency and scala-

ility. 

In the image retrieval community, it is a common practice to

mploy multiple features for performance improvement. Neverthe-

ess, except Zhang et al. (2014) and Liu et al. (2014a ), few hashing-

ased approaches in medical image analysis integrate multiple fea-

ures. Both Zhang et al. (2014) and Liu et al. (2014a ) adopted affin-

ty aggregation. They first calculated the aggregated affinity ma-

rix by taking the average of the individual affinity matrices, which

ere computed using single features. Then, they applied traditional

ashing methods, which are designed for one single matrix, to

he aggregated affinity matrix. However, affinity aggregation is not

uitable for those features that need different kernel functions dur-

ng the hashing process. Besides, it introduces extra parameters,

uch as weights of all the matrices, which require to be elaborately

http://dx.doi.org/10.1016/j.media.2016.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.07.011&domain=pdf
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Fig. 1. Overview of the proposed approach. 
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tuned. Other widely used feature fusion methods in medical image

retrieval include feature concatenation ( Zheng et al., 2003; Akakin

and Gurcan, 2012; Alto et al., 2005; Zheng et al., 2006 ) and result-

level fusion ( Zhang et al., 2015, 2015a, Wei et al., 2011 ). The former

approach simply concatenates several features to form a new one.

Similar to affinity aggregation, it is not appropriate for features of

different formats even with feature normalization, because vari-

ous features may need different similarity measures during sub-

sequent feature matching. The latter method integrates similarity

search results derived using individual features. Obviously, this ap-

proach compromises the computational efficiency, since its pro-

cessing time will be at least the sum of time required by each fea-

ture. 

To overcome the aforementioned drawbacks, we employ a

joint kernel-based supervised hashing (JKSH) approach ( Liu et al.,

2014b ) to incorporate feature fusion into supervised hashing

framework, and apply it to scalable histopathological image analy-

sis. The overview of our approach is shown in Fig. 1 . Specifically, a

joint kernel function is defined as a linear combination of the ker-

nels for individual features, and a series of hashing functions are

constructed based on this kernel. During offline process, a super-

vised optimization algorithm is utilized to learn the kernel weights

and hashing functions according to the diagnostic information of

database images, which bridges the semantic gap between low-

level features and high-level diagnosis. With the learned hashing

functions, high-dimensional features extracted from database im-

ages are compressed into compact hash codes and stored in hash

tables. During online process, the query hash code is computed us-

ing the same hashing functions and searched from the hash tables

to obtain the most similar database images. The query image is

classified (as actionable or benign) according to a weighted major-

ity vote of its retrieved images ( Jiang et al., 2015b ). 

Our approach has many advantages over current methods. First,

it improves the retrieval precision by adopting multiple kernel

functions as similarity measures for various features, rather than

employ the same kernel. Second, parameter tuning is a critical

issue to affinity aggregation. We address this problem by auto-

matically learning all the important parameters. The learning al-

gorithm also bridges the semantic gap between low-level features

and high-level diagnosis. Finally, utilizing the kernel representa-

tion, our approach compresses multiple features into hash codes

with little computational overhead than using a single feature. This

journal paper has made considerable progress compared with the

preliminary results published in a conference paper ( Jiang et al.,

2015a ). First of all, new image feature and kernel function are

adopted to achieve even better performance. Second, all the meth-

ods are evaluated on a larger dataset containing more challenging

c  
ases, which makes the experimental results more convincing and

etter demonstrates the scalability of our approach. Finally, this

aper is substantially extended to provide more details about our

ethod as well as the techniques at the base of it. 

The rest of this paper is organized as follows. Section 2 re-

iews some relevant work. Section 3 describes the proposed

pproach. Section 4 presents the experimental results. Finally,

ection 5 draws a conclusion. 

. Related work 

In this section, we first review the development of hashing

echniques, which forms the foundation of our approach. Then we

ummarize existing CBIR-based CAD methods, with an emphasis

n those employing scalable image retrieval. 

.1. Hashing methods 

During the past few years, hashing has become a popular ap-

roach to scalable image retrieval. Early work on this topic can

e traced back to locality-sensitive hashing (LSH) ( Gionis et al.,

999 ). LSH solves the “curse of dimensionality” by mapping high-

imensional feature vectors to compact binary hash codes. Mean-

hile, it ensures that similar features under certain metric are

ompressed into similar hash codes in Hamming space with high

robabilities. While showing a promising direction for large-scale

imilarity search, LSH has a few limitations, e.g. its projection vec-

ors are randomly generated. In response, a tremendous effort has

een made to improve LSH. Representative approaches include, but

re not limited to, kernel-based hashing ( He et al., 2010; Kulis

nd Grauman, 2012 ), unsupervised hashing ( Weiss et al., 2008; Liu

t al., 2011; Li et al., 2014 ), (semi-)supervised hashing ( Wang et al.,

012; Liu et al., 2012 ), and multiple-feature hashing ( Gönen and

lpaydin, 2011; Zhang et al., 2011; Hassan et al., 2012; Liu et al.,

014b ). 

The core of hashing is to preserve data similarity in Hamming

pace. However, many hashing methods, such as LSH, define data

imilarity in the original feature space, where it might be difficult

o find the pattern of data. To solve this problem, kernel func-

ions are introduced to hashing ( He et al., 2010; Kulis and Grau-

an, 2012 ). For instance, He et al. (2010) proposed an optimal ker-

el hashing (OKH), which could use any kernel to define hashing

unctions. As a result, OKH is able to handle any data format (e.g.

raph) and utilize various similarity measures (e.g. label consis-

ency). 

Another drawback of traditional hashing methods is that they

annot handle the so-called “semantic gap”, which means images
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ith similar low-level features may have different high-level se-

antic meanings. Supervised information is leveraged to address

his issue ( Wang et al., 2012; Liu et al., 2012 ). Perhaps the most

rominent one of existing supervised hashing methods is kernel-

ased supervised hashing (KSH) ( Liu et al., 2012 ). Specifically,

hen learning the hashing functions, KSH simultaneously mini-

izes the Hamming distances between semantically similar images

nd maximizes the distances between dissimilar images. 

In addition, researchers improve the performance of hashing

ethods via the adoption of multiple features, which has been in-

ensively explored in non-hashing image retrieval approaches. For

xample, Zhang et al. (2011) proposed a composite hashing with

ultiple information sources (CHMIS), where the hash code of an

mage is a convex combination of the codes generated by all the

ashing functions for individual features. Hassan et al. (2012) in-

orporated kernels into distance-based hashing (DBH) and pre-

ented KernelDBH to embed multiple features into hash codes. Ker-

elDBH defines the hashing functions based on a combination of

ultiple kernels, and selects the optimal combination using a ge-

etic algorithm. 

.2. CBIR-based CAD approaches 

The past decade has witnessed many CBIR-based CAD ap-

roaches ( Müller et al., 2004; Akgül et al., 2011; Kumar

t al., 2013 ). In the context of histopathology, to name a few,

heng et al. (2003) developed a CBIR system to retrieve im-

ges from an online pathological image database using four fea-

ures, which are fused via feature concatenation. Akakin and Gur-

an (2012) designed a multi-tiered image retrieval system for mi-

roscopic images, through which the query image is first classi-

ed into a certain disease type and then is searched from database

mages of the same category. Similarly, Caicedo et al. (2011) com-

ined image annotation and retrieval together. They first annotated

he query image with high-level semantic concepts according to

ts low-level features and then searched it from database images

ith similar annotations. Besides the above approaches designed

or histopathological images, CBIR-based CAD also finds application

n many other medical modalities, such as mammographic images

 Alto et al., 2005; Zheng et al., 2006; Wei et al., 2011 ), X-ray images

 Avni et al., 2011 ), endomicroscopic videos ( André et al., 2012 ), and

T images ( Yang et al., 2012 ). These approaches have shown great

alue of CBIR in medical image analysis. Nevertheless, a vast ma-

ority of them fall short of scalability and cannot handle the enor-

ous amount of data in practice. 

Recognizing the importance of scalability to medical imaging

pplications ( Langs et al., 2012 ), researchers have started to de-

elop scalable approaches to medical image retrieval and anal-

sis. For example, Zhang et al. (2015b ) employed KSH for effi-

ient retrieval of histopathological images. They also integrated

ultiple features in anchor graph hashing (AGH) ( Liu et al.,

011 ) through affinity aggregation ( Zhang et al., 2014 ). Subse-

uently, Zhang et al. (2015) adopted another feature fusion strat-

gy, namely result-level fusion. In particular, KSH and exhaustive

earch, which employ two different features, are independently

onducted for each query image, and their results are consoli-

ated through a query specific re-ranking algorithm ( Zhang et al.,

015a ). Similar to Zhang et al. (2014) , Liu et al. (2014a ) ap-

lied AGH and affinity aggregation to mammographic image re-

rieval. Jiang et al. (2015b ) exploited vocabulary tree ( Nistér and

tewénius, 2006 ) in large-scale retrieval and analysis of mammo-

raphic images. As an alternative to hashing for scalable CBIR, the

ocabulary tree framework could retrieve query images from mil-

ions of database images in real time ( Nistér and Stewénius, 2006 ).

oran et al. (2011) developed a practical retrieval system for

athological images, which leverages high-performance comput-
rs and grid technology. Among the above methods, the work by

hang et al. (2015b ) based on KSH can be regarded as the base-

ine of our approach. In addition, affinity aggregation ( Zhang et al.,

014; Liu et al., 2014a ), feature concatenation ( Zheng et al., 2003;

kakin and Gurcan, 2012; Alto et al., 2005; Zheng et al., 2006 ), and

esult-level fusion ( Zhang et al., 2015, 2015a; Wei et al., 2011 ) are

ll compared with our approach in the experiments. 

. Methods 

In this section, we first formulate the multiple-feature hashing

roblem as a linear combination of individual kernels, and then ex-

lain how to simultaneously learn the kernel weights and hashing

unctions. After obtaining the hashing functions, features extracted

rom database histopathological images can be mapped to compact

ash codes and stored in hash tables. Given a query image, its hash

ode is calculated using the same hashing functions and searched

rom the hash tables to find similar database images, which then

ote to determine its diagnosis ( Jiang et al., 2015b ). 

.1. Joint kernel-based hashing 

Suppose we extract M features from N histopathological im-

ges. Denote x ( 
m ) 

n ∈ R 

d ( m ) as the m -th feature of the n -th im-

ge, which is a d ( m ) -dimensional column vector. Then x n =(
x ( 

1 ) 
n 

)T 

, · · · , 

(
x ( 

M ) 
n 

)T 
]T 

∈ R 

d is the concatenation of all features 

xtracted from the n -th image, where d = 

∑ M 

m =1 d 
( m ) . A hashing

ethod aims at finding P hashing functions { h 1 , ���, h P }, where P is

he desired number of hash bits. Each hashing function, h p : R 

d �→
 

−1 , 1 } , maps a concatenated feature vector into a binary bit. The

 th image is represented as y n = [ h 1 ( x n ) , · · · , h P ( x n ) ] 
T 

. Note that

ere we use “−1 ” instead of “0”; in the implementation we use

0”. In addition, all the vectors in this paper are column vectors. 

When designing hashing functions, a classic idea is to pre-

erve “local sensitivity”, i.e., similar feature vectors are compressed

nto similar hash codes ( Gionis et al., 1999 ). Unfortunately, some-

imes it is difficult to distinguish between the original features.

o solve this problem, kernel functions are introduced to oper-

te the data in an implicit higher-dimensional feature space ( He

t al., 2010; Kulis and Grauman, 2012 ). Given M features, we can

hoose M kernel functions { κ (1) , ���, κ ( M ) }, where each kernel κ ( m ) 

s associated with an implicit feature mapping function ϕ 

( m ) , i.e.

( m ) 
(

x ( 
m ) 

i 
, x ( 

m ) 
j 

)
= ϕ 

( m ) 
(

x ( 
m ) 

i 

)T 

ϕ 

( m ) 
(

x ( 
m ) 

j 

)
. Without ever comput-

ng the mapped features ϕ 

( m ) 
(

x ( 
m ) 

i 

)
and ϕ 

( m ) 
(

x ( 
m ) 

j 

)
, κ ( m ) di-

ectly calculates their inner product. Such “kernel trick” improves

omputational efficiency dramatically. Following Gönen and Alpay-

in (2011) and Caicedo et al. (2011) , the joint mapping function ϕ 

nd corresponding kernel κ are defined as: 

 ( x n ) = 

[ √ 

μ( 1 ) ϕ 

( 1 ) 
(
x ( 

1 ) 
n 

)T 
, · · · , 

√ 

μ( M ) ϕ 

( M ) 
(
x ( 

M ) 
n 

)T 
] T 

, (1) 

(
x i , x j 

)
= ϕ ( x i ) 

T ϕ 

(
x j 

)
= 

M ∑ 

m =1 

μ( m ) κ( m ) 
(
x ( 

m ) 
i 

, x ( 
m ) 

j 

)
, (2) 

here μ( m ) is the weight for the m -th feature. Later we

ill show how to automatically learn the weight vector μ =
μ( 1 ) , · · · , μ( M ) 

]T 
. Eq. (2) demonstrates that κ = 

∑ M 

m =1 μ
( m ) κ( m ) is

ctually a linear combination of individual kernels for each feature.

In practice, we don’t need to explicitly calculate ϕ 

( m ) or ϕ. In-

tead, only κ ( m ) and κ should be computed. To further improve

omputational efficiency, R ( R � N ) landmark points, denoted as

 z , ���, z }, are randomly selected from all the database feature
1 R 
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Fig. 2. Illustration of joint kernel-based hashing. (a) Two features are extracted from twelve histopathological images. The m th feature of the n th image is denoted as 

x ( 
m ) 

n , m = 1 , 2 , n = 1 , · · · , 12 . These images can be divided into four groups, which are marked in red, green, blue and yellow, respectively. However, it’s difficult to distinguish 

between the four groups in the original feature space. (b) All the concatenated feature vectors, x 1 , ���, x 12 , are mapped to a joint kernel space, and their projections are 

represented as ϕ( x 1 ), ���, ϕ( x 12 ). Now, it’s much easier to find the pattern of features. Four landmark points, z 1 , ���, z 4 , are randomly selected from the concatenated feature 

vectors. Two hyperplanes’ normal vectors, which are denoted as v 1 and v 2 , are calculated as linear combinations of the projections of landmarks. (c) Two hashing functions 

h 1 and h 2 are defined based on v 1 and v 2 . h 1 and h 2 compress the feature vectors into 2-bit hash codes with similar features mapped to the same code. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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vectors { x 1 , ���, x N }. Define K 

( m ) 
R ×N 

= κ( m ) z ( 
m ) 

r , x ( 
m ) 

n 
R ×N 

as the

kernel matrix for the m -th feature between R landmarks and N

database images, and K 

( m ) 
R ×R 

= 

[ 
κ( m ) 

(
z ( 

m ) 
i 

, z ( 
m ) 

j 

)] 
R ×R 

as the kernel

matrix for the m -th feature between R landmarks. Then, the ker-

nel matrix between landmarks and database images, K R × N , and

the kernel matrix between all the landmarks, K R × R , can be easily

obtained by calculating the linear combination of K 

( m ) 
R ×N 

and K 

( m ) 
R ×R 

:

K R ×N = [ κ( z r , x n ) ] R ×N = 

M ∑ 

m =1 

μ( m ) K 

( m ) 
R ×N 

, (3)

K R ×R = 

[
κ
(
z i , z j 

)]
R ×R 

= 

M ∑ 

m =1 

μ( m ) K 

( m ) 
R ×R 

. (4)

For the p th hashing function h p ( p = 1 , · · · , P ), its hyperplane’s

normal vector v p is defined as a linear combination of the projec-

tions of landmarks in the kernel space: 

v p = 

R ∑ 

r=1 

W ( r, p ) ϕ ( z r ) , (5)

where W is a R × P -dimensional matrix, its element W ( r, p ) de-

notes the weight of ϕ( z r ) for v p . The hyperplane is represented as:

v T p ̄x + b p = 0 , (6)

where x̄ denotes a point in the kernel space, b p is a parameter

related to the distance from the space origin to the hyperplane.

h p ( x n ) reflects on which side of the p -th hyperplane ϕ( x n ) is lo-

cated: 

h p ( x n ) = sgn 

(
v T p ϕ ( x n ) + b p 

)
. (7)

Define b = [ b 1 , · · · , b P ] 
T 

as the vector containing all the hyper-

planes’ distance parameters. W and b determine the hashing func-

tions, and they will be automatically learned along with μ using

supervised information. The construction of hashing functions is

demonstrated in Fig. 2 . 

Let K R × N (:, n ) represent the n th column of K . Utilizing the def-

initions of y n , h p ( Eq. (7) ), v p ( Eq. (5) ), and κ ( Eq. (2) ) successively,

we can represent the hash code of the n th image in a kernel form:

y n = sgn 

(
W 

T K R ×N ( : , n ) + b 

)
. (8)
a  
.2. Supervised optimization 

In the image retrieval field, “semantic gap”, which refers to the

ifference between low-level features and high-level concepts, is

 long-standing problem ( Caicedo et al., 2011; André et al., 2012;

ang et al., 2012 ). Supervised methods, such as KSH ( Liu et al.,

012 ), offer a promise to address this issue. Instead of only consid-

ring low-level features, supervised hashing approaches also take

igh-level training information into consideration and map seman-

ically similar images to similar hash codes. To this end, we incor-

orate diagnostic information into affinity matrix S. S ( i, j ), which

epresents the similarity score between the i th and the j th images,

s defined as: 

 ( i, j ) = 

⎧ ⎨ 

⎩ 

exp 

(
−‖ 

x i −x j ‖ 

2 

σ 2 

)
, if x i ∈ N 

k 
s 

(
x j 

)
or x j ∈ N 

k 
s ( x i ) 

0 , otherwise 

, 

(9)

here σ is a scaling parameter estimated from the data, and

 

k 
s ( x ) represents the set of k -nearest neighbors of x with the same

emantic label. Note that S is a sparse matrix, i.e., most of its ele-

ents are 0. An example of S is provided in Fig. 3 . 

Following Weiss et al. (2008) and He et al. (2010) , the objective

unction of JKSH is formulated as: 

min 

W, b, μ

1 

2 

N ∑ 

i, j=1 

S ( i, j ) 
∥∥y i − y j 

∥∥2 + λ‖ 

V ‖ 

2 
F = Tr 

(
Y L Y T 

)
+ λ‖ 

V ‖ 

2 
F , 

s.t. 

N ∑ 

n =1 

y n = 0 , 
1 

N 

N ∑ 

n =1 

y n y 
T 
n = I, 1 

T μ = 1 , μ � 0 . 

(10)

ere V = [ v 1 , · · · , v P ] contains all the hyperplanes’ normal vec-

ors, Y = [ y 1 , · · · , y N ] includes all the database hash codes, L =
iag ( S1 ) − S is the graph Laplacian matrix, λ is the parameter that

ontrols how smooth the hashing functions are. In this objective

unction, 
∑ N 

i, j=1 S ( i, j ) 
∥∥y i − y j 

∥∥2 
guarantees that histopathological

mages with the same label and similar features are compressed

nto similar hash codes, ‖ V ‖ 2 F is a regularized term that promotes

he smoothness of hashing functions, the constraints 
∑ N 

n =1 y n = 0

nd ( 1 /N ) 
∑ N 

n =1 y n y 
T 
n = I ensure that the generated hash codes are
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Fig. 3. A toy example of affinity matrix. (a) Twelve histopathological images are divided into four groups, which are circled in red, green, blue, and yellow, respectively. 

Images in the same group have identical diagnosis (actionable or benign) and similar feature vectors (2-nearest neighbors). (b) Affinity matrix of these histopathological 

images. Only images with the same diagnosis and similar features have positive similarity scores. All the other elements in the matrix are 0. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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alanced and uncorrelated, 1 T μ = 1 and μ�0 ensure that μ is a

alid weight vector. 

To solve this NP-hard problem, we employ spectral relaxation

 Weiss et al., 2008 ), which ignores the discrete constraint for y n in

q. (8) and allows: 

 n = W 

T K R ×N ( : , n ) + b ∈ R 

P . (11)

he above problem, when either ( W , b ) or μ is fixed, is convex

ith respect to the other. Therefore we perform an alternating op-

imization algorithm, which mainly consists of the following two

teps. Derivation of the algorithm is provided in Appendix A . 

Step 1. Optimize ( W , b ) for given μ. Similar to He et al. (2010) ,

e can find the optimal W by solving the following problem using

igen-decomposition: 

in 

W 

Tr 
(
W 

T CW 

)
, s.t. W 

T GW = I , (12)

here 

 = K R ×N LK 

T 
R ×N + λK R ×R , (13)

 = 

1 

N 

K R ×N 

(
I − 1 

N 

1 1 

T 
)

K 

T 
R ×N . (14)

 has a close-form solution depending on W : 

 = − 1 

N 

W 

T K R ×N 1 . (15)

Step 2. Optimize μ for given ( W , b ). The optimal μ can be

btained by solving the following quadratic programming problem:

in 

μ

1 

2 

μT Eμ + f T μ, s.t. 1 

T μ = 1 , μ � 0 . (16)

ere, E is a M × M -dimensional matrix with its ( i, j )th element

efined as 

 ( i, j ) = 2 Tr 

(
W 

T K 

( i ) 
R ×N 

L 

(
K 

( j ) 
R ×N 

)T 

W 

)
. (17) 

f = 

[
f ( 1 ) , · · · , f ( M ) 

]T 
is a M -dimensional vector and its m th ele-

ent is 

f ( m ) = λ Tr 
(
W 

T K 

( m ) 
R ×R 

W 

)
. (18) 
i  
In summary, the optimization approach works as follows. First,

t initializes μ = [ 1 /M , · · · , 1 /M ] 
T . Then, it iteratively updates ( W ,

 ) according to step 1 and updates μ according to step 2 until they

onverge. In practice, our method usually finds the optimal ( W , b )

nd μ within a few iterations. 

. Experiments 

This section validates the JKSH approach on retrieval and clas-

ification of breast cancer histopathological images. First, the em-

loyed dataset is introduced. Then, the image features and kernel

unctions adopted in our approach as well as the baseline meth-

ds are described. Finally, experimental results are presented and

nalyzed. 

.1. Dataset 

Our experiments are carried out on the breast-tissue micro-

copic image dataset built in Dundar et al. (2011) and Zhang et al.

2015b ). 116 patient cases are collected on a retrospective basis

rom the IU Health Pathology Lab (IUHPL) according to the ap-

roved Institutional Review Board protocol. Based on the diagnosis

f nine board-certified pathologists, 57 cases are identified as ac-

ionable (atypical ductal hyperplasia, ADH, and ductal carcinoma in

itu, DCIS), and the remaining 59 cases are determined as benign

usual ductal hyperplasia, UDH). The H&E-stained tissue specimens

re scanned using a ScanScope digitizer (Aperio, Vista, CA, USA) at

0 × magnification. Once the whole-slide images are obtained, a

esearch associate and a pathologist manually identify regions of

nterest (ROIs) on each slide, which generally show proliferation of

ells. 347 and 579 ROIs are extracted from the actionable and be-

ign cases, respectively. Each ROI reaches thousands of pixels along

ach direction, e.g., 5K × 7K pixels. 3121 images are sampled from

hese ROIs. 1013 of them are actionable and the other 2108 are be-

ign. Each image has about 2.25M pixels. 

Four-fold cross-validation is performed to achieve reliable

esults—that is, both actionable and benign cases are divided into

our parts, and the proposed approach is evaluated four times. Dur-

ng each time, images in one part are used as queries, and the

ther images form a database. Note that the query and database

mages are selected from different cases to avoid positive bias. Be-
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low we report the average of the evaluation results during four

tests. 

4.2. Implementation details 

The proposed approach is evaluated twice based on three fea-

tures, namely SIFT ( Lowe, 2004 ), HOG ( Dalal and Triggs, 2005 ), and

GIST ( Oliva and Torralba, 2001 ). SIFT has been widely used in med-

ical image retrieval and analysis ( Caicedo et al., 2009; Zhang et al.,

2014, 2015, 2015b; Caicedo et al., 2011; Liu et al., 2014a; Jiang

et al., 2015b; Avni et al., 2011; André et al., 2012; Tamaki et al.,

2013 ), owing to its excellent robustness and discriminative power.

Briefly speaking, SIFT features are extracted from a histopatholog-

ical image as follows. First, scale-invariant keypoints are detected

by finding local extrema in the difference-of-Gaussian (DoG) space.

Then, for each keypoint, a surrounding region of size 16 × 16 is

identified in a certain scale, and a 128-dimensional gradient ori-

entation histogram is calculated as feature vector. All the SIFT fea-

tures are quantized using bag-of-words (BoW) method ( Sivic and

Zisserman, 2003 ), which is the de facto standard of compressing

local features like SIFT ( Caicedo et al., 2009; Cruz-Roa et al., 2012;

Zhang et al., 2014, 2015, 2015b; Caicedo et al., 2011; Liu et al.,

2014a; Jiang et al., 2015b; Avni et al., 2011; André et al., 2012;

Yang et al., 2012; Tamaki et al., 2013 ). In particular, our approach

utilizes a SIFT vocabulary of size 10 0 0, i.e. each image is repre-

sented as a 10 0 0-dimensional BoW histogram. Histogram intersec-

tion (HI) kernel is chosen for SIFT feature, which is a meaningful

similarity measure for histograms ( Caicedo et al., 2009, 2011; Avni

et al., 2011; Tamaki et al., 2013 ). HOG has been successfully applied

to histopathological image retrieval and classification ( Zhang et al.,

2014 ). In our paper, HOG features are calculated around the SIFT

keypoints. They are also quantized using BoW method and repre-

sented as 10 0 0-dimensional histograms. Radial basis function (RBF)

kernel is selected for HOG, which is very popular in kernelized

learning methods for medical image analysis ( Caicedo et al., 2009,

2011; Avni et al., 2011; Tamaki et al., 2013 ). GIST has demonstrated

good performance in medical image retrieval ( Liu et al., 2014a ). In

our paper, the traditional 512-dimensional GIST feature ( Oliva and

Torralba, 2001 ) is employed. As for kernel function, GIST also uti-

lizes the RBF kernel. In our conference paper ( Jiang et al., 2015a ),

the proposed approach adopts SIFT and HOG features. In this pa-

per, we employ SIFT and GIST for even better performance. The

two configurations are hereafter denoted as “Ours1” and “Ours2”.

In both Ours1 and Ours2, R (number of landmark points) is set to

200, λ (weight of the smoothness term in the energy function) is

set to 0.1, and σ (the scaling parameter used in affinity matrix) is

set to 0.01. 

Eight baseline methods are implemented for comparison. The

first three methods investigate the performance of traditional KSH

( Liu et al., 2012 ) on individual features. They adopt SIFT feature

and HI kernel, HOG feature and RBF kernel, GIST feature and RBF

kernel, respectively. The fourth to sixth methods carry out widely

used feature fusion strategies in medical image retrieval, which

are affinity aggregation ( Zhang et al., 2014; Liu et al., 2014a ), fea-

ture concatenation ( Zheng et al., 2003; Akakin and Gurcan, 2012;

Alto et al., 2005; Zheng et al., 2006 ), and result-level fusion ( Zhang

et al., 2015, 2015a; Wei et al., 2011 ). In particular, affinity aggrega-

tion first computes the affinity matrices using SIFT and GIST fea-

tures, then calculates the average of these two matrices, and fi-

nally applies KSH to the aggregated matrix. Note that affinity ag-

gregation could use only one kernel function during the hashing

process. Here we choose RBF kernel. Feature concatenation applies

KSH to the concatenation of SIFT and GIST features. RBF kernel

is used for the concatenated feature. Result-level fusion integrates

the retrieval results of the first and third comparison methods via a

re-ranking algorithm ( Zhang et al., 2015a ). The seventh and eighth
omparison methods are based on two non-hashing algorithms,

amely kNN and SVM, which are very popular in histopathological

mage analysis. kNN ( Tabesh et al., 2007; Yang et al., 2009 ) calcu-

ates the distance between the query feature and each database

eature, and returns the database images with smallest distance

alues. The query image is assigned to the class that is most com-

on among the retrieved database images. SVM with a nonlin-

ar kernel is often employed in histopathological image analysis

 Caicedo et al., 2009; Huang and Lai, 2010; Tuzel et al., 2007;

guyen et al., 2010 ), owing to its efficiency and the ability to han-

le linearly inseparable data. Note that SVM could only generate

 classification result. Both kNN and SVM use concatenated SIFT

nd GIST as image feature. The comparison methods will hereafter

e referred to as “SIFT”, “HOG”, “GIST”, “Affinity”, “Concatenation”,

ResultFusion”, “kNN”, and “SVM”. 

All the methods are implemented in MATLAB and evaluated on

 computer with Intel Core i7 processor (6M cache, 2.40 GHz),

6GB memory, and Windows 7 operating system. 

.3. Results 

We first evaluate the retrieval precision of all the methods. Pre-

ision is the most widely used evaluation metric in image re-

rieval. In our context, it is defined as the percentage of retrieved

istopathological images which have the same pathology (action-

ble/benign) as that of the query image. Overall the precision

cores remain stable as the number of retrieved images increases

rom 1 to 20. We take the top 20 retrieved images into considera-

ion in the following evaluation. To demonstrate parameter sensi-

ivity, all the hashing methods use a series of hash code lengths,

anging from 8 to 64 bits. The precision scores are summarized in

ig. 4 (a). Note that SVM is not included since it cannot generate

etrieval result. Four retrieval examples obtained by Ours2 are pro-

ided in Fig. 5 for qualitative evaluation. 

The above results lead to several conclusions. First, the hashing

ethods outperform kNN. The reason lies in the adoption of ker-

el functions and supervised optimization in these hashing meth-

ds. Kernel functions model linearly inseparable data, and super-

ised optimization alleviates the semantic gap issue. Second, for all

he hashing methods, as the hash code length increases to 64 bits,

he precision scores first increase and then remain relatively stable.

his phenomenon is consistent with the conclusion that the first

ashing bits are more discriminative than the subsequent bits in

igen-decomposition-based hashing methods ( Wang et al., 2012 ).

hird, among all the hashing methods, the three methods utiliz-

ng single features perform worst. This is very intuitive, as multi-

le features provide more information of the image than a single

eature does. Fourth, as for the fusion methods, feature concate-

ation gains marginal improvement over SIFT, while affinity ag-

regation and result-level fusion obtain considerable improvement.

urs1 and Ours2 substantially surpass all these baseline methods

nd achieve precision scores of 87.2% and 88.1% respectively. As

oted earlier, the proposed approach could select appropriate ker-

els for different features, whereas affinity aggregation and feature

oncatenation could employ only one kernel during the hashing

rocess. In addition, our method automatically selects the optimal

eights for individual features, which is not guaranteed in result-

evel fusion. Finally, Our2, which exploits SIFT and GIST, is superior

o Ours1, which utilizes SIFT and HOG. The reason is that, com-

ared with HOG, GIST is more complementary to SIFT. Both HOG

nd SIFT describe the gradient orientation of local image patches,

hereas GIST characterizes the gradient information of the entire

mage. 

Then, classification accuracy is measured, which refers to the

ercentage of query images that are correctly classified. Remem-

er that a query image is classified as actionable or benign tissue
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Fig. 4. (a) Retrieval precision and (b) classification accuracy of all the evaluated methods. 

Fig. 5. Four query histopathological images (left) and their retrieved database images obtained by our approach (right). Images in the top two rows are all actionable, and 

images in the bottom two rows are all benign. 
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ccording to a weighted majority vote of its retrieved database

mages ( Jiang et al., 2015b ). The accuracy scores are reported in

ig. 4 (b). 

From Fig. 4 , we can see that the classification accuracy scores

xhibit similar patterns to those of the retrieval precision scores.

n other words, the aforementioned conclusions regarding the pre-

ision scores also apply to the accuracy scores. This is expected

ecause the classification results rely on the retrieval results. Sec-

nd, Fig. 4 demonstrates that the accuracy scores are systemati-

ally higher than the precision scores. The reason is because irrel-

vant retrieved images would not cause a misclassification as long

s their weighted votes are less than half of the total votes. Third,

VM is superior to kNN, since it utilizes the supervised information

nd kernel function. SVM also surpasses HOG and GIST, because

t employs concatenated SIFT and GIST as image feature. However,

VM performs worse than other hashing-based comparison meth-

ds. Especially, its accuracy score is lower than that of Concatena-

ion, which adopts the same feature as SVM does. This observation

ndicates that KSH-based methods surpass SVM in terms of clas-

ification of histopathological images. Finally, it is worth mention-
ng that our methods considerably outperform all the comparison

ethods. Ours1 and Ours2 achieve accuracy scores of 90.5% and

1.3%, respectively. 

Finally, query time , which means the time needed to retrieve

nd classify a query image, is investigated. Here, the time cost of

eature extraction and quantization is not taken into account, since

t remains fixed as the database expands and therefore is not the

ottleneck for large-scale image analysis. Besides, all the hashing

ethods are tested when they use 64-bit hash codes. The results

re summarized in Table 1 . 

Table 1 shows that kNN is inefficient. In fact, its computational

omplexity is linear in the product of database size and feature di-

ensionality. Obviously, kNN is not suitable for applications that

nvolve high-dimensional features and/or large databases. SVM is

uch faster than kNN. However, its query time increases with the

eature dimensionality ( Zhang et al., 2015b ). The hashing-based

ethods exhibit outstanding computational efficiency owing to the

ompactness of hash codes and the adoption of “kernel trick”.

oreover, their query time is sublinear in the database size when

hey employ hash tables to store the database hash codes. Our
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Table 1 

Query time (unit is millisecond) of all the evaluated methods. The hashing methods are measured when they use 64-bit 

hash codes. 

Method SIFT HOG GIST Affinity Concatenation ResultFusion kNN SVM Ours1 Ours2 

Time 14 .5 14 .4 13 .1 16 .2 16 .0 30 .4 1932 .2 58 .3 17 .4 16 .5 
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methods, along with affinity aggregation and feature concatena-

tion, have only a small computational overhead compared with the

hashing methods using single features. As expected, the time cost

for ResultFusion is the sum of those for SIFT and GIST. 

5. Conclusions 

In this paper, we adopt joint kernel-based supervised hash-

ing (JKSH) for fusion of complementary features. Multiple-feature

hashing is transformed to a similarity preserving problem with lin-

early combined kernel functions, which are associated with indi-

vidual features. An alternating optimization algorithm is performed

to learn both the kernel combination and hashing functions effi-

ciently. Superior to traditional multiple-feature hashing methods,

the proposed approach can adopt several kernels, therefore it is

more suitable for heterogeneous features. In addition, it doesn’t

introduce new parameters, and has little computational overhead

compared with methods employing one feature. Extensive experi-

ments on breast cancer histopathological images demonstrate the

efficacy of our approach. Future endeavors will be devoted to ex-

tending our approach with online learning so that it could effi-

ciently update hashing functions as new images are added into

the database. In addition, we plan to investigate the proposed ap-

proach on other data, such as liver whole slide image ( Liang et al.,

2015b, 2015a, 2016 ), lung-tissue microscopic images and mammo-

graphic images. 

Appendix A. Proof of the optimization algorithm 

Derivation in this section follows He et al. (2010) . From

the “balance” constraint 
∑ N 

n =1 y n = 0 and the spectral relaxation

( Eq. (11) ), we have: 

N ∑ 

n =1 

y n = 

N ∑ 

n =1 

(
W 

T K R ×N ( : , n ) + b 

)
= W 

T K R ×N 1 + Nb = 0 . (A.1)

Then, we can easily get the solution to b in Eq. (15) . 

Using the above solution, we can rewrite the hash code matrix

as: 

Y = [ y 1 , · · · , y N ] 

= 

[ 
W 

T K R ×N ( : , 1 ) − 1 

N 

W 

T K R ×N 1 , · · · , 

W 

T K R ×N ( : , N ) − 1 

N 

W 

T K R ×N 1 

] 
= W 

T K R ×N 

(
I − 1 

N 

11 

T 
)

. 

(A.2)

The first item in the objective function is transformed to: 

Tr 
(
Y L Y T 

)
= Tr 

(
W 

T K R ×N 

(
I − 1 

N 

11 

T 
)

L 

(
I − 1 

N 

11 

T 
)T 

K 

T 
R ×N W 

)
= Tr 

(
W 

T K R ×N LK 

T 
R ×N W 

)
. 

(A.3)

Here we use the fact 
(
I − ( 1 /N ) 11 T 

)
L 
(
I − ( 1 /N ) 11 T 

)T = L . 
According to the definition of v p ( Eq. (5) ), the second item in

he objective function becomes: 

λ‖ 

V ‖ 

2 
F = λ

P ∑ 

p=1 

‖ 

v p ‖ 

2 = λ
P ∑ 

p=1 

v T p v p 

= λ
P ∑ 

p=1 

⎛ 

⎝ 

( 

R ∑ 

i =1 

W ( i, p ) ϕ ( z i ) 

) T ( 

R ∑ 

j=1 

W ( j, p ) ϕ 

(
z j 

)) 

⎞ 

⎠ 

= λ
P ∑ 

p=1 

R ∑ 

i, j=1 

W ( i, p ) W ( j, p ) K R ×R ( i, j ) 

= λ Tr 
(
W 

T K R ×R W 

)
. 

(A.4)

e plug in Eqs. (A.3) and (A.4) , and rewrite the objective function

s: 

min 

W, b, μ
Tr 

(
Y L Y T 

)
+ λ‖ 

V ‖ 

2 
F 

= min 

W 

Tr 
(
W 

T K R ×N L K 

T 
R ×N W 

)
+ λ Tr 

(
W 

T K R ×R W 

)
= min 

W 

Tr 
(
W 

T CW 

)
, 

(A.5)

here C = K R ×N LK 

T 
R ×N 

+ λK R ×R ( Eq. (13) ). Note that the parameters

 and μ are omitted in the above equation, because b has a close-

orm solution expressed in terms of W , and μ is fixed when opti-

izing W . 

Now, let’s look at the other constraint ( 1 /N ) 
∑ N 

n =1 y n y 
T 
n = I. It

an be rewritten as: 

1 

N 

N ∑ 

n =1 

y n y 
T 
n 

= 

1 

N 

N ∑ 

n =1 

((
W 

T K R ×N ( : , n ) − 1 

N 

W 

T K R ×N 1 

)
(

W 

T K R ×N ( : , n ) − 1 

N 

W 

T K R ×N 1 

)T 
)

= 

1 

N 

( 

N ∑ 

n =1 

W 

T K R ×N ( : , n ) K R ×N ( : , n ) 
T W 

− 1 

N 

N ∑ 

n =1 

W 

T K R ×N ( : , n ) 1 

T K 

T 
R ×N W 

− 1 

N 

N ∑ 

n =1 

W 

T K R ×N 1 K R ×N ( : , n ) 
T W 

+ 

1 

N 

2 

N ∑ 

n =1 

W 

T K R ×N 1 1 

T K 

T 
R ×N W 

) 

= 

1 

N 

(
W 

T K R ×N K 

T 
R ×N W 

− 1 

N 

W 

T K R ×N 1 1 

T K 

T 
R ×N W 

− 1 

N 

W 

T K R ×N 1 1 

T K 

T 
R ×N W 

+ 

1 

N 

W 

T K R ×N 1 1 

T K 

T 
R ×N W 

)
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= 

1 

N 

W 

T K R ×N 

(
I − 1 

N 

1 1 

T 
)

K 

T 
R ×N W 

= W 

T GW = I, (A.6) 

here G = ( 1 /N ) K R ×N 

(
I − ( 1 /N ) 1 1 T 

)
K 

T 
R ×N 

( Eq. (14) ). In the

bove derivation, we use the facts 
∑ N 

n =1 K R ×N ( : , n ) K R ×N ( : , n ) 
T =

 R ×N K 

T 
R ×N 

, 
∑ N 

n =1 K R ×N ( : , n ) = K R ×N 1 , and 

∑ N 
n =1 K R ×N ( : , n ) 

T =
 

T K 

T 
R ×N 

. With the objective function represented by Eq. (A.5) and

he constraint represented by Eq. (A.6) , we can get Eq. (12) . 

Given fixed ( W , b ), using Eqs. (3) , (4), (A.3) , and (A.4) , we can

ewrite the objective function as 

Tr 
(
Y L Y T 

)
+ λ‖ 

V ‖ 

2 
F 

= Tr 

⎛ 

⎝ W 

T 

( 

M ∑ 

i =1 

μ( i ) K 

( i ) 
R ×N 

) 

L 

( 

M ∑ 

j=1 

μ( j ) K 

( j ) 
R ×N 

) T 

W 

⎞ 

⎠ 

+ λ Tr 

( 

W 

T 

( 

M ∑ 

m =1 

μ( m ) K 

( m ) 
R ×R 

) 

W 

) 

= Tr 

( 

M ∑ 

i, j=1 

μ( i ) μ( j ) W 

T K 

( i ) 
R ×N 

L 

(
K 

( j ) 
R ×N 

)T 

W 

) 

+ λ Tr 

( 

M ∑ 

m =1 

μ( m ) W 

T K 

( m ) 
R ×R 

W 

) 

. 

(A.7) 

ccording to the definitions of E ( Eq. (17) ) and f ( Eq. (18) ), the

bove equation can be further transformed to 

Tr 
(
Y L Y T 

)
+ λ‖ 

V ‖ 

2 
F 

= 

M ∑ 

i, j=1 

μ( i ) μ( j ) Tr 

(
W 

T K 

( i ) 
R ×N 

L 

(
K 

( j ) 
R ×N 

)T 

W 

)

+ 

M ∑ 

m =1 

μ( m ) λ Tr 
(
W 

T K 

( m ) 
R ×R 

W 

)

= 

1 

2 

M ∑ 

i, j=1 

μ( i ) μ( j ) E ( i, j ) + 

M ∑ 

m =1 

μ( m ) f ( m ) 

= 

1 

2 

μT Eμ + f T μ . 

(A.8) 

sing the above equation and the constraints 1 T μ = 1 , μ � 0 , we

an obtain Eq. (16) . Note that in Eq. (16) , the parameter ( W , b ) is

mitted since it’s fixed when we optimize μ. 
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