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Computer-aided diagnosis of histopathological images usually requires to examine all cells for accurate di-

agnosis. Traditional computational methods may have efficiency issues when performing cell-level analy-

sis. In this paper, we propose a robust and scalable solution to enable such analysis in a real-time fashion.

Specifically, a robust segmentation method is developed to delineate cells accurately using Gaussian-based

hierarchical voting and repulsive balloon model. A large-scale image retrieval approach is also designed to ex-

amine and classify each cell of a testing image by comparing it with a massive database, e.g., half-million cells

extracted from the training dataset. We evaluate this proposed framework on a challenging and important

clinical use case, i.e., differentiation of two types of lung cancers (the adenocarcinoma and squamous carci-

noma), using thousands of lung microscopic tissue images extracted from hundreds of patients. Our method

has achieved promising accuracy and running time by searching among half-million cells .

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Lung cancer is one of the most common cancers in the world

(Siegel et al., 2013), and its diagnosis is an extremely important topic

for personalized lung cancer treatment. There are four typical histo-

logic types of lung cancers, including adenocarcinoma, squamous car-

cinoma, small cell carcinoma, and large cell carcinoma, each of which

needs a different treatment (Freeman, 2001). Therefore, the accurate

staging of lung cancer can help clinicians in determining patient cen-

tered treatment, allow for reasonable prognostication, and facilitates

comparisons between patient groups in clinical studies. Specifically,

current investigations into early detection and adjuvant chemother-

apy heavily rely on the proper staging of patients’ cancer type. Not

only separating small cell carcinoma (SCC) from non-small cell car-

cinoma (NSCC) is important, it is also strongly recommended (Travis

et al., 2011) to subtype NSCC into more specific types such as ade-

nocarcinoma and squamous cell carcinoma, because (1) adenocar-

cinomas can be tested for epidermal growth factor receptor (EGFR)

mutations as a predictor of response to EGFR tyrosine kinase in-

hibitors; (2) adenocarcinoma response to pemetrexed therapy is bet-

ter than squamous; (3) potential life-threatening hemorrhage might
� This paper was recommended for publication by Dr. James Duncan.
∗ Corresponding author. Tel.: +1 7329919820.
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ccur in patients who have squamous cell carcinoma but misclassi-

ed and are given bevacizumab. Bronchial biopsy is one of the most

ffective diagnosis methods to differentiate them, with the aid of

omputer Aided Diagnosis (CAD) systems (Kayser et al., 2002; Thun-

issen et al., 1992; Mijović et al., 2008). However, most previous

ethods have emphasized on the diagnosis of small cell vs. non-

mall cell (i.e., adenocarcinoma, squamous carcinoma, and large cell

arcinoma) types of lung cancers. A few efforts have been put on

he differentiation of the adenocarcinoma and squamous carcinoma,

oth of which belong to NSCC, although this task is clinically sig-

ificant as their management protocols are different (Edwards et al.,

000).

The main challenge of this task is the need of analyzing all in-

ividual cells for accurate diagnosis, since the difference between

he adenocarcinoma and squamous carcinoma highly depends on the

ell-level information, such as its morphology, shape and appearance.

n fact, there are a lot of cellular features used by pathologists to dif-

erentiate adenocarcinoma from squamous cell carcinoma. Currently,

ll of them are estimated in a subjective way without rigorous quan-

ifications. These include, but not limited to: (1) nucleoli are often

ore prominent and obvious in adenocarcinoma tumor cells than

quamous cell carcinoma; (2) the individual cell borders tend to be

harper in squamous cell carcinoma than adenocarcinoma; (3) only

quamous cell carcinoma contains intercellular bridges; (4) adeno-

arcinoma has relatively lower nuclear/cytoplasmic ratios and deli-

ate, vacuolated cytoplasm compared with squamous cell carcinoma.

http://dx.doi.org/10.1016/j.media.2015.10.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2015.10.005&domain=pdf
mailto:rutgers.shaoting@gmail.com
mailto:shaoting@cs.rutgers.edu
mailto:szhang16@uncc.edu
http://dx.doi.org/10.1016/j.media.2015.10.005
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herefore, rigorously measuring and analyzing each individual cell is

mportant and can assist pathologists for accurate diagnosis. How-

ver, a region-of-interest (ROI) image may contain hundreds or thou-

ands of cells. Analyzing each cell can be computationally inefficient

sing traditional methods. As a result, most previous methods en-

ode the whole image as holistic features by representing the statis-

ics of cell-level information (e.g., architecture features (Doyle et al.,

008) or frequency of local textures (Zhang et al., 2015a)), and may

ompress high-dimensional features to improve the computational

fficiency. Despite the compactness and hence the efficiency, infor-

ation loss is inevitable in such holistic representation. Therefore,

fficiently analyzing each cell is important to investigate. In addi-

ion, all the aforementioned cellular features and analysis can only

e measured after we complete the accurate cell-level segmentation.

In this paper, we design an automatic framework for the large-

cale cell-level analysis of histopathological images, which can ex-

mine millions of cells in real-time (preliminary results have been

eported in Zhang et al., 2015b). Our solution includes two impor-

ant modules, robust cell segmentation and large-scale cell retrieval.

pecifically, segmentation module provides automatic and robust de-

ineation and measurement of cells, enabling effective feature ex-

raction for each cell. The large-scale image retrieval framework can

ocate similar instances among massive databases of cells, by im-

roving the efficient hashing methods (Datar et al., 2004; Kulis and

rauman, 2009). Given a new image to be diagnosed, our system

utomatically segments all cells and efficiently discovers the most

elevant cells by comparing them with the training database (e.g.,

illions of cells extracted from thousands of images). The diagno-

is is decided by classifying each cell and using the majority logic.

e conduct extensive experiments to differentiate lung cancers, i.e.,

denocarcinoma and squamous carcinoma, using a large dataset con-

aining thousands of lung microscopic tissue images acquired from

undreds of patients. Our proposed framework achieves 87.3% accu-

acy in real-time, by searching a massive database of half million cells

xtracted from this dataset.

The major contribution of this paper is twofold. (1) A compre-

ensive and real-time framework is designed to analyze histopatho-

ogical images by examining all cells. This framework opens a new

venue for investigating large-scale databases, and is particularly

uitable for this challenging use case. (2) In terms of technical con-

ribution, we propose a carefully designed learning method that

ssigns probabilistic-based importance to different hash values or

ntries. This scheme alleviates several intrinsic problems of using

raditional hashing methods for classification, and significantly im-

roves the accuracy. Furthermore, we also improve the cell segmen-

ation algorithms by handling variations in shape and cell size, which

rovide robust and accurate delineations of cells.

The rest of the paper is organized as follows. Section 2 reviews rel-

vant work of cell segmentation and content-based image retrieval.

ection 3 presents our framework for realtime cell mining. Section 4

hows the experimental results on lung microscopic tissue images.

oncluding remarks are given in Section 5.

. Related work

.1. Cell segmentation

Various approaches of segmentation in pathological image have

een investigated. In Al-Lahham et al. (2012), K-means clustering is

sed to segment out the cancer cell nuclei at pixel level in a trans-

ormed color space. In Loukas et al. (2003), PCA is applied to learn a

olor space transform and the cell nuclei are segmented out by glob-

lly thresholding the transformed image. In Markiewicz et al. (2008),

009), support vector machine (SVM) classifiers are trained to seg-

ent background and the cells based on color or morphological fea-

ures. Because the above approaches mainly rely on color, they do not
ork well when there exist non-negligible amount of touching cells

resent in the images.

Watershed transformation and its variants for splitting touching

bjects have been widely studied (Vincent and Soille, 1991). A RGB

olor-based segmentation followed by the watershed algorithm is

roposed to tackle the touching cells in Grala et al. (2009), and a

D watershed algorithm incorporating gradient information and ge-

metric distance of nuclei is represented in Lin et al. (2003). In order

o handle over-segmentation, marker-controlled watershed is inves-

igated in Grau et al. (2004), Schmitt and Hasse (2008). In particu-

ar, Jung and Kim (2010) developed an H-minima transform based

arker-controlled watershed algorithm for clustered nucleus seg-

entation on histopathological images, and an adaptive H-minima

ransform is reported in Cheng and Rajapakse (2009) to generate

arkers for the watershed algorithm. H-minima transform is rela-

ively robust to noise, but it usually requires a careful choice of the h

alue. Learning based approaches are also exploited to detect mark-

rs for watershed algorithms. Mao et al. (2006) applied a supervised

arker detection based watershed to cell segmentation on bladder

nverted papilloma images, where the markers are located by using

classifier with a combination of photometric and shape informa-

ion. In Akakin et al. (2012), an SVM classifier is used to automatically

etect markers for the watershed algorithm. Compared with unsu-

ervised learning, the supervised marker detection algorithms might

rovide better performance, but they need sophisticated feature de-

ign, which is very challenging due to the complex characteristics of

igital pathology images.

Graph-based segmentation methods (Kolmogorov and Zabih,

004; Boykov and Funka-Lea, 2006) can also be used to automatically

egment cells. The nodes of the graph represent pixels or superpixels

nd each edge corresponds to one pair of neighboring nodes. Image

egmentation is achieved by partitioning the graph into several com-

onents. Lucchi et al. (2010) exploited a mincut-maxflow algorithm

o partition the superpixel based graph, Bernardis and Yu (2010)

egmented out individual cells based on the normalized cuts (Shi

nd Malik, 2000), and (Zhang et al., 2014a) employed a correlation

lustering method to achieve superpixel graph partition. Some other

raph based methods can be found in Al-Kofahi et al. (2010), Nath

t al. (2006), Faustino et al. (2009), Chen et al. (2008), Wu et al. (2012),

u et al. (2010), Janowczyk et al. (2012) and Lou et al. (2012). Al-

hough efficient graph-based segmentation algorithm (Felzenszwalb

nd Huttenlocher, 2004) is proposed, generally graph partition meth-

ds exhibit high time cost, which limits their applications in real cell

egmentation.

Deformable models are another popular type of cell segmen-

ation algorithms in biomedical image analysis. A multireference

evel set algorithm is used for nucleus segmentation in Chang et al.

2012), a dynamic watershed scheme is introduced to the level set

odel with topology dependence for cell segmentation in Yu et al.

2009), and several repulsive level set approaches are reported in

an et al. (2008), Ali et al. (2011), Ali and Madabhushi (2012) and Qi

t al. (2012). Xu et al. (2007) formulated the active contour model

nto a graph cut framework, which deforms the contour towards a

lobal minimum within the contour neighborhood. In general, these

ethods are suitable can naturally handle topology changes, but

hey might create undesired contours with inhomogeneous regions.

herefore, the parametric active contour models are an alternative

pproach. Li et al. (2007) applied a gradient flow tracking to 3D nu-

lei segmentation algorithm, and Cai et al. (2006) developed a repul-

ive active contour model based on gradient vector flow (GVF) (Xu

nd Prince, 1998) to segment neuronal axons. However, GVF snake re-

uires clean edge maps to calculate the gradient vector flow, and this

ight suffer from background clutter in histopathological images.

There exist other types of state-of-the-arts for automatic cell seg-

entation. Kong et al. (2011) first separated cellular regions from

he background with a supervised pixel-wise classification, and then
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Fig. 1. Overview of our proposed framework, based on robust cell segmentation and large-scale cell image retrieval. The top row is the online classification, and the bottom row

is the offline learning. Yellow boundaries mean squamous carcinoma, green means adenocarcinoma, and blue means unknown types to be classified. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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split touching cells based concave point and radial symmetry. Ozolek

et al. (2014) built a statistic model with a set of training nuclei and

thereafter performed template matching to segment out individual

nuclei. This method can handle touching cases by selecting the best

matched model parameters. Another learning based nucleus segmen-

tation is presented in Kårsnäs et al. (2011), where intensity and label

dictionaries are constructed to separate the foreground from the

background and then touching nuclei are split by combining region

merging with a marker-controlled watershed. Probabilistic models

have also attracted research interests. Park et al. (2013) exploited

a Gaussian mixture model based on B-splines to achieve cell seg-

mentation, and a generic segmentation framework for pathologic im-

ages that employs an EM algorithm with Markov prior is reported in

Monaco et al. (2012). The learning based methods usually require a

large number of training data and assume that the training data are

sufficient to capture the variations on new testing samples, and the

probabilistic models need to be carefully selected such that the used

generative models are strong enough to model testing data.

2.2. Content-based image retrieval

Content-based image retrieval (CBIR) is an effective approach in

analyzing medical images. It supports doctors for making clinical de-

cisions by retrieving and visualizing relevant medical images with di-

agnosis information. To this end, many systems and methods have

been developed. For examples, Comaniciu et al. (1999) designed a

CBIR system to support decision making in clinical pathology. In this

system, a fast color segmenter is used to extract cell features includ-

ing shape, area, and texture of the nucleus. Its performance was com-

pared with that of a human expert on a database containing 261

digitized specimens. The experimental results demonstrated that this

system could be used to assist pathologists to improve the analy-

sis. Dy et al. (2003) described a new hierarchical approach of CBIR

based on multiple feature sets and a two-step approach. The query

image is classified into different classes with best discriminative fea-

tures between the classes, and similar images are searched in the pre-

dicted class with the features customized to distinguish subclasses.

El-Naqa et al. (2004) proposed a hierarchical learning approach con-

sisting of a cascade of a binary classifier and a regression module to

optimize retrieval effectiveness and efficiency. Greenspan and Pin-

has (2007) proposed a CBIR system that consists of a continuous and

probabilistic image-representation scheme. It uses Gaussian mixture

models (GMM) and information-theoretic image matching via the

Kullback–Leibler (KL) measure to match and categorize X-ray images

by body regions. Song et al. (2011) designed a hierarchical spatial
atching-based image retrieval method using spatial pyramid

atching to extract and represent the spatial context of pathological

issues effectively. Recently, Foran et al. (2011) designed a CBIR sys-

em named ImageMiner for comparative analysis of tissue microar-

ays by harnessing the benefits of high-performance computing and

rid technology.

One of the main limitations of these systems is the scalability.

o analyze large-scale datasets, one needs to design efficient CBIR

ethods. With the goal of comparing CBIR methods on a larger scale,

mageCLEF and VISCERAL provide benchmarks for medical image

etrieval tasks (Müller et al., 2005; Langs et al., 2013; Hanbury et al.,

013). In our use case, it is necessary to retrieve among half-million

nstances in realtime to conduct cell-level analysis in histopatholog-

cal images. To this end, hashing-based methods have been inves-

igated, which enable fast approximated nearest neighbors (ANN)

earch to deal with the scalability issue. For examples, the locality

ensitive hashing (LSH) (Andoni and Indyk, 2006) uses random pro-

ections to map data to binary codes, resulting in highly compact bi-

ary codes and enabling efficient comparison within a large database

sing the Hamming distance. Anchor Graph Hashing (AGH) (Liu et al.,

011) has been proposed to use neighborhood graphs which reveal

he underlying manifold of features, leading to a high search accuracy.

hen et al. (2013) also proposed to leverage manifold information

or inductive hashing. Recent work has focused on data-driven hash

unctions, such as the semi-supervised hashing (SSH) (Wang et al.,

012) incorporating the pairwise semantic similarity and dissimi-

arity constraints from labeled data. Particularly, supervised hashing

ethods (Liu et al., 2012; Shen et al., 2015) have also been proposed

o leverage annotations into hash function learning. These hashing

ethods have been employed to solve the dimensionality problem in

edical image analysis (Zhang et al., 2015a, 2014b). Specifically, high

imensional features are compressed into 48 bits that are exhaus-

ively compared among thousands of images. However, such high

imensional features only approximately represent cell-level infor-

ation. It is desired to analyze all cells in our use case, while tradi-

ional hashing methods fail to provide accurate results as shown in

ur experiments.

. Methodology

.1. Overview

Fig. 1 shows the overview of our proposed framework, which in-

ludes offline learning and online classification. During offline learn-

ng, our system automatically detects and segments all cells from
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housands of images, resulting in half million of cell images. Re-

arding cell detection and segmentation, we propose to improve the

ingle-pass voting (SPV) scheme (Qi et al., 2012; Xing et al., 2014).

ur improvement focuses on handling variations in shape and cell

ize. After that, texture and appearance features are extracted from

hese cell images and are compressed as binary codes, i.e., tens of bits.

hese compressed features are stored in hash table for constant-time

ccess even among millions of images.

During online classification, our system segments all cells from a

esting image, and same types of features are extracted accordingly

nd compressed using hashing methods. Then, we perform large-

cale cell image retrieval for each segmented cell to classify its cat-

gory. Finally, the classification result of the testing image is decided

y the majority logic, i.e., voting from all cells’ classification. Using

his scheme, our system can maximally utilize the cell-level informa-

ion without sacrificing the computational efficiency, owing to the

arge-scale retrieval via hashing methods. We also design a content-

ware weighting scheme to improve the accuracy of traditional

ashing methods, based on the observations and priors in

istopathological image analysis. In the following sections, we intro-

uce the details of robust cell segmentation, large-scale cell image

etrieval, and weighting techniques.

.2. Robust cell segmentation

Accurately delineating cells is critical to the cell-level analysis of

istopathological images. It includes cell detection and segmentation.

ur detection algorithm is an improved version of single-pass vot-

ng (SPV) proposed by Qi et al. (2012). The improvement focuses on

andling variations in shape and cell size. The newly introduced (1)

egion-based hierarchical voting in a distance transform map han-

les the shape variation, and (2) Gaussian pyramid based voting sup-

resses the effect of the scale variation. For an image, a Gaussian

yramid is created. At layer l, an SPV is applied with the distance

ransform being weighted by a Gaussian kernel. Unlike SPV within

hich each pixel in the voting area receives uniform vote, this

eighted voting enables the pixels that locate more inside the cell

o receive more votes. Therefore, this mechanism encourages higher

oting scores in the central region of the cells. The final vote value is

alculated by summing up all the layers:

(x, y) =
L∑

l=0

∑
(m,n)∈S

I[(x, y) ∈ Al(m, n)]

·Cl(x, y)g(m, n,μx,μy, σ ), (1)

here S denotes the set of all voting pixels, Al(m, n) denotes the

oting area of pixel (m, n) at layer l and it is defined by a radial

ange (rmin, rmax) and angular range � (Qi et al., 2012). I[·] is an

ndicator function, and Cl(x, y) represents the distance transforma-

ion map at layer l. In our experiment, we use Euclidean distance.

he g(m, n, μx, μy, σ ) is an isotropic Gaussian kernel for pixel

m, n) with mean (μx,μy) = (m + (rmax + rmin)cosθ/2, n + (rmax +
min)sinθ/2) and scalar σ , where θ represents the angle of the gra-

ient direction with respect to the x axis.

Our segmentation method is based on the active contour (Cohen,

991) with a newly introduced repulsive term. The repulsive term

s used to prevent the evolving contours from crossing and merging

ith each other. Based on the detection result, a circle is associated

ith each detected cell as initial contour. The ith contour vi(s) de-

orms until it achieves a balance between internal force Fint(vi) and

xternal force Fext(vi) with

int(vi) + F ext(vi) = 0, (2)

int(vi) = αv′′(s) − βv′′′′(s), (3)
i i
ext(vi) = γ ni(s) − λ
∇Eext(vi(s))

‖Eext(vi(s))‖
+ω

N∑
j=1, j �=i

∫
d−2

i j
(s, t)nj(t)dt, (4)

here s indexes the points on the contour, and v′′
i
(s) and v′′′′

i
(s), with

heir weights α and β , are the second and fourth derivative of vi(s),

espectively. ni(s) with its weight γ denotes the internal pressure

orce and ∇Eext(vi(s)) denotes the edges in the image (∇Eext(vi(s))) =
∇‖T [x(s), y(s)]‖2, T[x(s), y(s)] represents the image). The last term

n (4) represents the repulsive force. N is the number of the cells,

nd dij denotes the Euclidean distance between the points of different

ontours. λ and ω are the weights controlling the edge driven force

nd repulsive force, respectively. Given initial contours, the contours

teratively deform towards cell boundaries and the cell segmentation

s achieved when Eq. (2) is satisfied or the maximum number of iter-

tion is reached.

This method can robustly detect and segment cells from

istopathological images, which are used for the cell-level analysis

n the next stage. The active contour in Eqs. (2)–(4) is a parametric

odel with explicit contour representation, which is different from

he level set algorithms (Yan et al., 2008; Ali and Madabhushi, 2012;

i et al., 2012), which implicitly represent contours. Therefore, given

nitial contours (based on detection results), our model can take ad-

antage of known topology constraint such that it can prevent con-

ours from splitting or merging; on the other hand, the level set

ethod (Qi et al., 2012) as well as the graph cut based active con-

our (Xu et al., 2007) allow topology changes such that it might gen-

rate undesired small holes inside or outside cells due to intensity

eterogeneity, as shown in the experimental section. In addition, our

odel uses a contour-based repulsive force instead of a region-based

erm, which is used in Qi et al. (2012). The d−2
i j

in the repulsive term

emonstrates that the closer the jth contour moves to the ith contour,

he more repulsion each contour receives. In this case, the model can

ffectively handle touching cells by preventing contours from cross-

ng each other.

.3. Classification via large-scale cell image retrieval

Once all cells are segmented from a testing image, our system

onducts cell-level classification by exhaustively comparing each cell

ith all cells in the training database, using hashing-based large-

cale image retrieval and majority voting. Hashing has been widely

sed to compress (high-dimensional) features into binary codes with

erely tens of bits (Datar et al., 2004). Therefore, such short binary

eatures allow mapping into a hash table for constant-time retrieval.

o improve the accuracy of previous hashing methods, the kernelized

cheme (Kulis and Grauman, 2009) is incorporated to handle practi-

al data that is mostly linearly inseparable, which is a common phe-

omenon of medical images:

= sgn( f (x)) = sgn

(
m∑

j=1

(
κ(x( j), x) − 1

n

n∑
i=1

κ(x( j), xi)

)
aj

)
, (5)

here n is the number of training samples, h is the kernelized hash-

ng method mapping a kernel function f(x) with kernel κ to 0 or

by taking its sign value, x1, x2, x3, . . . , xm are the m random sam-

les selected from the data and aj is the coefficient determining hash

unctions. The resulting binary codes can be used for indexing and

ifferentiating different categories. Although kernelized scheme well

olves the linear inseparability problem of features, it is still not able

o provide accurate retrieval or classification, due to the high intra-

lass variation of histopathological images. Therefore, supervised in-

ormation (Liu et al., 2012) is also leveraged to design discriminative
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Fig. 2. Illustration of the cell distribution in a hash table. The x-axis means the hash

value using 12 bits, ranging from 0 to 4095, and y-axis means the ratio between two

types of cells, ranging from 0 to 1. Each circle means a set of cells mapped to the hash

value located in the centroid, its size means the number of cells, and the color map

visualizes the ratio of two types of cells, same as the y-axis values. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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hash functions that are particularly suitable for analyzing histopatho-

logical images:

min
A∈Rm×r

Q(A) =
∥∥∥1

r
sgn(K̄lA)(sgn(K̄lA))T − S

∥∥∥2

F
(6)

where r is the number hash bits, S is a matrix encoding the super-

vised information (e.g., 1 for same category and -1 for different cat-

egories) and A is the model parameter to compute hashing code,

and K̄l = [k̄(x1), · · · , k̄(xl)]T ∈ R
l×m is the matrix form of the ker-

nel function, in which k̄(xi) is a kernelized vectorial map R
d �→ R

m,

A = [a1, · · · , ar] ∈ R
m×r . The optimization of Q is based on Spectral

Relaxation (Weiss et al., 2008) for convexification, which is used as

a warm start, and Sigmoid Smoothing for applying standard gradient

descent technique, which is used for accurate hashing.

Indexing these compressed features in a hash table, our method

can perform image retrieval in constant-time among millions of cells

without significantly sacrificing the accuracy. The category of each

cell can be decided straightforwardly with the majority logic of re-

trieved cells, and the whole image is hence classified by accumulating

results of its all cells.

3.4. Hashing with content-aware weighting

Theoretically, using hashing methods by indexing in a hash table

enables constant-time searching, no matter how many training sam-

ples are used. However, it also requires that the length of the binary

code is sufficiently short, to store in physical memory for fast access.

Given limited number of hash bits, an inevitable limitation is that a

large number of images may be mapped into the same hash value.

In other words, it may result in an unordered set for the same hash

value, where exact or near-exact matches may be obscured within a

large-scale database due to noisy features, similar instances, or er-

roneous segmentations. This is particularly true for histopathologi-

cal image analysis, since the differences of cells are very subtle, and

accurate segmentation for all cells is challenging. Consequently, the

accuracy of cell classification is adversely affected when choosing

the majority of cells mapped into a hash value, and the accuracy of

whole image classification is also reduced. Fig. 2 illustrates this in-

herent limitation of hashing methods in analyzing histopathological

images. Half million of cells are mapped into 12 bits, which mean

212 = 4096 hash values. The entries (i.e., hash values) in each hash
able are illustrated according to the distribution of cells mapped into

hem, such as the ratio between two categories (i.e., adenocarcinoma

nd squamous carcinoma) and the number of cells mapped into that

ntry. Ideally, each hash value should be discriminative enough, i.e.,

he number of one type should dominate the other. However, many

f them actually contains similar amount of both types of cells, i.e.,

round 0.5 ratio. In other words, the indecisive hash values are usu-

lly around the 0.5 ratio, indicating equal opportunity for either cate-

ory. Classification based on such hash value is likely inaccurate. The

mall circles in Fig. 2 are also not reliable, since only a few cells are

apped there, which can be easily affected by the image noise or er-

oneous segmentation. A potential solution is to identify reliable hash

alues and omit indecisive one, by heuristically select or prune them

ia feature selection. However, this may involve tuning parameters

nd lack the consistent measures. Furthermore, there is no guarantee

hat the hash values from feature selection algorithms are sufficiently

iscriminative for classification.

Therefore, we introduce a probabilistic-based formulation to solve

hese problems in a principled way, i.e., design a content-aware

eighting scheme to re-weight the importance of hash values. Specif-

cally, we aim to assign probability scores to each hash value, based

n its ability to differentiate different categories. Such “soft assign-

ent” upon hash values can significantly boost the classification ac-

uracy using hashing-based retrieval. In our framework, kernelized

nd supervised hashing (KSH) (Liu et al., 2012) is employed as the

aseline method to generate initial hash values, because of its efficacy

nd success in histopathological image analysis (Zhang et al., 2015a).

he content-aware weighting scheme can significantly enhance the

ifferentiation ability of hash values generated by this baseline. Intu-

tively, since cells in certain hash values are not accurate for classifica-

ion, their weights should be diminished during the process. On the

ther hand, discriminative hash values should be emphasized, e.g.,

ircles nearby 1 or 0 ratios. In addition, small sizes of circles are not

referred and their weights should be reduced, as they can be easily

ffected by many factors such as unusual staining color, inaccurate

egmentation results and image noise in our use case. Therefore, we

esigned two metrics to emphasize discriminative hash entries, with

eneralized notations for multi-class classification:

• Support: Given a specific hash value H, the number of cells

mapped into H should be considered. This indicates that such

amount of cells are used for the classification of this hash value,

each with contribution 1, while all remaining cells are irrelevant,

i.e., contribution 0. Therefore, we name this metric as “support”,

which is conventionally referred to the set of numbers having

non-zero values. Denote SH = {cell : h(cell) = H} as the set of cells

mapping into a specific hash value H, where h(cell) is the hash

value of the cell. The support WH of the hash value H is defined

as:

WH = |SH|∑2r−1
m=0 |Sm| (7)

where |S| is the number of element in set S and r is the number of

hash bits, representing 2r hash values.
• Certainty: Instead of assigning a certain category label to each hash

value, we should consider the confidence of such categorization

and assign a probabilistic label to each hash value. Therefore, this

“certainty” term defines the probability of a cell belonging to the

ith category when its hash value is H:

P(Li|H) = P(Li, H)

P(H)

= |{cell : l(cell) = Li, cell ∈ SH}|
|SH|

(8)

where l(cell) is the label of a cell image and Li means the ith label

or category.
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Fig. 3. Workflow of the weighted hashing-based classification. Starting from an unknown image to be categorized, each segmented cell is classified by searching the most similar

instances. Their results are combined via the content-aware weighting scheme, predicting the categorization for the whole image.
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We combine these two weights to advocate the importance of

ighly discriminative hash values with sufficient support. Specifically,

uring the training process, WH and P(Li|H) can be computed for all

ash values. The category of a whole testing image is decided by:

rg max
i

∑
cell∈query

WHcell
P(Li|Hcell) (9)

here Hcell is the hash value of the cell belonging to the query (test-

ng) image.

This content-aware weighting scheme effectively solves the issues

f using hashing-based retrieval methods for classification. The im-

ortance of each cell is decided case-specifically, and accumulating

he results of all cells provides accurate classification for the whole

mage. In addition, this framework is able to accommodate new sam-

les efficiently. The updating scheme can be achieved by storing not

nly the weights but also the number of cells in each category. Given

ew samples, we can update the cell number in their mapped hash

ntries, re-calculate and update the weights based on such informa-

ion. Regarding the computational complexity, the overhead during

he testing stage lies in the weighted combination, which is negli-

ible as demonstrated in the experiments. Therefore, this process is

omputationally efficient, same as traditional hashing methods. Fig. 3

ummarizes the classification procedure using weighted hashing. The

hole framework includes cell segmentation, hashing, and retrieval.

he probability scores are assigned to each hash entry, and they are

ggregated within the whole image for the final classification. Bene-

ted from this thorough analysis of each individual cell, this frame-

ork can achieve promising accuracy without sacrificing the effi-

iency.

. Experiments

.1. Data description

In this section, we conduct extensive experiments to evaluate

ur weighted hashing with multiple features for cell-level analy-

is. Our dataset is collected from the Cancer Genome Atlas (TCGA),

ational Cancer Institute (2013), including 57 adenocarcinoma and

5 squamous carcinoma. 10 patches with 1712 × 952 resolution,

.e., region-of-interests (ROIs), are cropped from each whole slide

canned pathology specimens, by consulting with certified pathol-

gists. Generally, the ROIs mainly consist of cancer cells. The lym-

hocytes regions which have different visual patterns than the repre-

entative tumor regions are avoided. All the data have been prepared

nd labeled based on the independent confirmation of the pathol-

gists. In each image, our algorithm detects and segments around
30 cells. In total, 484,136 cells are used to evaluate the segmenta-

ion accuracy (195,467 adenocarcinoma cells and 288,669 squamous

arcinoma cells). We evaluate the efficacy of our proposed frame-

ork in terms of the classification accuracy and computational ef-

ciency. The evaluations are conducted on a 3.40 GHz CPU with 4

ores and 16GB RAM, in MATLAB and C++ implementation. We em-

irically set the parameters for cell detection and segmentation algo-

ithms as: σ = 2, δ = 30, rmin = d/8, rmax = 7d/8 (d is the estimated

verage diameter of all cells in the image) and α = 4.2, β = 0, γ =
.7, λ = 1.5,ω = 0.5, respectively.

.2. Evaluation of cell segmentation

We demonstrate the performance of the cell detection by compar-

ng it with single-pass voting (SPV) and phase-coded Hough trans-

orm (PCHT) (Xie and Ji, 2002). We compute the mean, variance and

inimum of the deviation of the detected seeds with respect to their

round truth seeds. Note that only the detected seeds within an 8-

ixel circle of its ground truth seed are considered. To evaluate the

erformance more comprehensively, we define a set of metrics in-

luding missing rate (MR), over-detection rate (OR), precision, recall

nd F1 score. A positive detection is asserted if a detected seed lo-

ates within the 8-pixel circle around a ground truth seed, a miss is

sserted, otherwise. Over detection is considered as more than one

eed are detected in the 12-pixel circle of a ground truth seed. OR is

he ratio of the number of such cases over the number of the ground

ruth seeds. Precision (Prec), recall (Rec) and F1 score are defined as

ollows: Prec = TP
TP+FP , Rec = TP

TP+FN and F1 = 2·Prec·Rec
Prec+Rec , where TP, FP,

nd FN represent true positive, false positive and false negative, re-

pectively. Note that in our experiment, false positive is defined as

he case that a seed is detected out of the 8-pixel circle of a ground

ruth seed yet within its 12-pixel circle. The performance measure-

ents are shown in Table 1.

The performance of the segmentation algorithm is evaluated

hrough comparing our method with four existing methods (mean

hift (MS), isoperimetric (ISO) (Grady and Schwartz, 2006), graph-

ut and coloring (GCC) (Al-Kofahi et al., 2010), and repulsive level set

RLS) (Qi et al., 2012)), both qualitatively and quantitatively. The seg-

entation results of a randomly selected patch are shown in Fig. 4.

n our quantitative analysis, we define precision P = seg
⋂

gt
seg and re-

all R = seg
⋂

gt
gt , where seg represents the segmentation result and gt

epresents the ground truth. We show the mean, variance and 80% in

able 2. MS and ISO are general segmentation algorithms which need

urther postprocessing to achieve satisfied performance, and GCC suf-

ers from over-segmentation. RLS generates undesired small holes

nside or outside cells due to topology changes, while the proposed
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Fig. 4. Segmentation results of different methods on a randomly picked patch. From left to right: original image, MS, ISO, and GCC, and level set, and ours.

Table 1

Comparative performance evaluation of the detection ac-

curacy. SPV stands for single-pass voting, and PCHT stands

for phase-coded Hough transform. MR stands for the miss-

ing rate, and OR stands for the over-detection rate.

Mean Variance Min MR OR

PCHT 3.7 3.92 0.16 0.46 0.11

SPV 2.9 3.01 0.28 0.21 0.06

Ours 2.7 2.8 0.13 0.16 0.08

FP TP Prec Rec F1

PCHT 0 0.53 0.995 0.53 0.69

SPV 0.002 0.78 0.996 0.74 0.84

Ours 0.002 0.83 0.997 0.84 0.90

Table 2

Comparative performance evaluation of the segmentation ac-

curacy for mean shift (MS), ISO (Grady and Schwartz, 2006),

GCC (Al-Kofahi et al., 2010) and RLS (Qi et al., 2012). PM and

RM represent precision mean and recall mean. PV and RV de-

note variances of precision and recall. P80% and R80% denote

the sorted highest precision and recall, respectively.

PM PV P80% RM RV R80%

MS 0.73 0.08 0.92 0.79 0.03 0.89

ISO 0.72 0.09 0.96 0.81 0.02 0.92

GCC 0.80 0.05 0.95 0.77 0.02 0.89

RLS 0.84 0.02 0.96 0.85 0.01 0.92

Ours 0.87 0.01 0.95 0.95 0.01 0.96

Table 3

Quantitative comparisons of the classification accuracy (the mean

value and standard deviation) and running time. Compared methods

include kNN (Tabesh et al., 2007), PCA (Sertel et al., 2009), SVM (Doyle

et al., 2008), KSH (Liu et al., 2012) and ours.

Adeno Squam Average Time (s)

kNN 0.309 ± 0.058 0.710 ± 0.072 0.514 2605.80

PCA 0.458 ± 0.084 0.954 ± 0.057 0.711 460.20

SVM 0.929 ± 0.085 0.704 ± 0.092 0.816 46.82

KSH 0.861 ± 0.076 0.763 ± 0.084 0.812 1.22

Ours 0.887 ± 0.069 0.854 ± 0.062 0.873 1.68
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approach address this problem by taking advantage of known topol-

ogy such that it produces the best segmentation results.

4.3. Evaluation of image classification

In our framework, the image classification (i.e., differentiation

of adenocarcinoma and squamous carcinoma) is conducted by ex-

amining all cells using hashing-based large-scale image retrieval

with content-aware weighting. We compare our hashing-based clas-

sification scheme with several effective classifiers employed for

histopathological image analysis. Following the convention, k-nearest
eighbor (kNN) method is used as the baseline of analyzing

istopathological images (Tabesh et al., 2007), owing to its simplic-

ty and efficacy. Dimensionality reduction methods such as princi-

al component analysis (PCA) are effective approaches to improve

he computational efficiency and have been employed to analyze

istopathological images using high-dimensional features (Sertel

t al., 2009). Support Vector Machine (SVM) is a supervised classi-

cation method and widely used in grading systems for breast and

rostate cancer diagnosis (Doyle et al., 2008). We also compare with

he traditional kernelized and supervised hashing (KSH) (Liu et al.,

012). For fair comparison, same features are used for all compared

ethods, and their parameters and kernel selections are optimized

y cross-validation. Specifically, we use an RBF kernel with optimized

amma value for SVM, and k = 9 for kNN. Regarding dimensionality

eduction, PCA compresses the original features (i.e., 144 dimensional

exture feature base on Histogram of Oriented Gradients; Dalal and

riggs, 2005) into 12 floats, and our hashing method generates 12 bits

rom each original feature.

To conduct the comparison, we randomly select 20% patients as

esting data (around 230 images, or 96, 000 cells), and use the images

rom remaining patients as training. This procedure is repeated for 30

imes to obtain the mean and standard deviation. Table 3 shows the

uantitative results of the classification accuracy. Despite the efficacy

f kNN in many applications, it fails to produce reasonable results

n this challenging problem, due to the large variance of cell images,

oise in such large-scale database and unbalanced number of two
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Fig. 5. Some failure cases of our cell segmentation algorithms, including under-segmentation and misdetection.
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lasses. PCA reduces the feature dimensions, which could be redun-

ancy information or noise. The classification accuracy is significantly

mproved, while still only around 70%. SVM incorporates supervised

nformation, i.e., labels of adenocarcinoma and squamous carcinoma.

ot surprisingly, it largely outperforms unsupervised methods, with

n accuracy of 81.6%. KSH has the same merit of using supervised in-

ormation, and hence achieves comparable accuracy as SVM. Our pro-

osed hashing method not only utilizes kernels and supervision, but

lso is equipped with the content-award weighting scheme to solve

he inherent problems of hashing methods. Therefore, it outperforms

ll other methods, with an accuracy of 87.3%. In addition, the stan-

ard deviation of our algorithm is also relatively small, indicating the

tableness of our algorithm. Table 3 also shows the individual accu-

acy of adenocarcinoma and squamous carcinoma. Besides the supe-

ior accuracy, our method also achieves the most balanced results for

oth cases, which is important to this clinical problem as both cases

hould be recognized and sacrificing the accuracy of one case is not

cceptable.

Table 3 also compares the computational efficiency of these meth-

ds, i.e., the testing time for classification. Our hashing method com-

resses each feature into merely 12 bits, resulting in a hash table with

096 values, which allow instant access to images mapped into any

ash value. Therefore, KSH and our method is real-time, i.e., around

–2 s. Our method uses content-aware weighting and is slightly

lower than KSH, due to a small overhead for computing the weighted

verage. Such computational overhead (i.e., 0.4s) is negligible in prac-

ice. Other methods are all significantly slower, ranging from 46 to

600 s. This is the main factor preventing previous methods from

eing used for cell-level analysis. Note that the detection and seg-

entation takes around tens of seconds for each image, and feature

xtraction takes half second, both of which are the same for all com-

ared methods. The overall speed is quite efficient for practical use.

.4. Discussions

In this section, we discuss the parameters, implementation issues

nd some limitations of our system, and their potential solutions.

ig. 5 shows several failure cases of our cell segmentation algorithm.

he first two cases have under-segmentation problem. This issue is

aused by the following reasons: (1) weak boundaries of cell images,

2) and the significantly strong edges within the cells that can mis-

ead the evolution process of the active contours. Note that although

ur algorithm fails to accurately delineate the cell boundaries, the

esults still implicitly preserve structure of the cell images. A pos-

ible improvement is to incorporate the output of a learning based

dge detector into Eq. (4). The other two cases in Fig. 5 fail to de-

ect several cells. This is possibly caused by the largely overlapped

ells and/or high similarity with the background, which may intro-

uce uncertainty for cell detection. Note that these are challenging

ases to segment. For those densely clustered cells with missing cell

oundaries, the cell detection and segmentation algorithms may fail

n some cases. Particularly, the current model can effectively handle
ouching cells, but not largely occluded or overlapped cells. One po-

ential solution to tackle the occlusion is to incorporate shape prior

odeling. In fact, our segmentation framework can accurately seg-

ent the majority of images, demonstrated in Table 2.

Since the image classification relies on the features extracted from

he segmented cells, inaccurate segmentation may adversely affect

he classification accuracy. Nonetheless, our system still generates

ccurate classification results, because of two reasons: (1) most seg-

ented cells are correct, which is reflected by the high precision and

ecall. (2) More importantly, the weighting scheme reduces the im-

ortance of unreliable features, most of which are extracted from in-

ccurate segmentations. Particularly, this weighting scheme ensures

he robustness of the classification module, making it less sensitive

o the segmentation precision. Therefore, our content-aware hashing

ethod not only benefits the classification accuracy, but also is com-

atible with the paradigm of cell-level analysis, given the fact that

ost existing cell segmentation methods are still not perfect.

Our hashing-based classification has a few parameters that are

asy to choose and not sensitive. This is critical to an automatic

ramework for histopathological image analysis, since tuning sensi-

ive parameters is infeasible when conducting this large-scale and

ell-level analysis. Particularly, our hashing-based classification only

as one parameter, i.e., the number of hash bits. In our experiments,

e have used 12 bits for classification, indicating 4096 hash values.

heoretically, using one bit is already sufficient for binary classifica-

ion purpose, i.e., differentiation of two types of cells. However, as

hown in Fig. 2, some hash values may not be reliable and have to

e pruned, due to image noise and several inaccurate segmentations.

herefore, it is necessary to use many hash values, which also en-

ble multi-label classification. On the other hand, it is also desired to

ave enough samples mapped into each hash value, so the support

eight W s
i

can be effective and benefit the classification accuracy.

herefore, the number of hash bits should not be very large either. In

act, using 20 hash bits can result in one million different hash values,

ufficiently representing half million cells in our dataset. In addition,

sing a large number of hash bits (e.g., 64 bits) may reduce the com-

utational and memory efficiency, since the hash table is no longer an

ption owing to the memory constraint. Therefore, we have chosen

2 bits for this task, mapping half million cells to 4096 hash values

nd hence ensuring sound accuracy of classification without sacri-

cing the computational and memory efficiency. This is also demon-

trated by our experiments shown in Fig. 6. Note that our model is

ble to generate accurate results within a certain range of parameter

alues, i.e., not that sensitive to parameters, making it suitable for the

arge-scale analysis. Furthermore, Fig. 6 also shows that our content-

ware weighting scheme consistently improves the hashing method

or classification accuracy, when using different number of hash

its.

Currently, we have validated our framework on around one thou-

and images with half million cells. We expect to apply it on much

arger databases (e.g., hundreds of millions cells) or whole slide im-

ges in the future. In this case, parallel computing may be necessary
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Fig. 6. Classification accuracy of our content-aware hashing and KSH (Liu et al., 2012),

using different number of hashing bits (2–20).
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to ensure the computational efficiency. Our framework for cell-level

analysis can be straightforwardly paralleled. For example, the whole

slide image can be divided as multiple patches, and each patch can be

processed by one node of the cluster for cell segmentation and clas-

sification independently. Note that if holistic features are used, e.g.,

architecture features, such parallel computing can only be applied on

the cell detection and segmentation, but not the feature extraction,

which needs to analyze the whole image simultaneously. In general,

the computational efficiency of our framework is very promising and

has the potential to handle large-scale databases.

5. Conclusions

In this paper, we proposed a robust and efficient framework to

analyze histopathological images at cell-level. This is achieved by

segmenting all cells and discovering the most relevant instances for

each cell among a massive database. The main contribution of this

proposed framework is to enable real-time and cell-level analysis

of histopathological images, benefited from our weighted hashing-

based classification. This weighting scheme alleviates the intrinsic

problems of traditional hashing methods. It significantly improves

the diagnosis accuracy of a challenging clinical problem, i.e., differ-

entiating two types of lung cancers as the adenocarcinoma and squa-

mous carcinoma using histopathological images. We envision that it

can provide usable tools to assist clinicians’ diagnoses of cellular im-

ages and support efficient data management. In the future, we plan

to investigate various types of features, such as geometry features

and cell shapes, and fuse them in the supervised hashing framework

to boost the accuracy. Although this weighting scheme is specifically

designed for cell-level analysis of histopathological images, resulting

in promising performance in this challenging application, it may also

benefit the classification accuracy of other applications such as natu-

ral image categorization. We plan to investigate this in the future as

well.
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