Towards robust and effective shape modeling: Sparse shape composition

Shaoting Zhang CBIM Center Computer Science Department Rutgers University

Introduction Background

- Segmentation (finding 2D/3D region-of-interest) is a fundamental problem and bottleneck in many areas.
- We focus on learning-based deformable models with shape priors (2D contour or 3D mesh).

Introduction Background

• End-to-end, automatic, accurate, efficient.

<u>Robustness</u>

- Handle weak or misleading appearance cues.
- Handle diseased cases (e.g., with tumor/cancer).
- Leverage shape priors to improve the robustness (Active Shape Model, T. Cootes, CVIU'95; 3D ASM for cardiac segmentation, Y. Zheng, TMI'08)

Introduction Research Void

- Limitations of existing shape prior methods:
 - Assume Gaussian errors \rightarrow Sensitive to outliers

Introduction Research Void

- Limitations of existing shape prior methods:
 - Assume Gaussian errors \rightarrow Sensitive to outliers
 - Assume unimodal distribution of shapes → Cannot handle large shape variations, e.g., multimodal

Introduction Research Void

- Limitations of existing shape prior methods:
 - Assume Gaussian errors \rightarrow Sensitive to outliers
 - Assume unimodal distribution of shapes → Cannot handle large shape variations, e.g., multimodal
 - Only keep major variation \rightarrow Lose local shape detail

Introduction

Research Void 4

Need to solve all three challenges simultaneously in practice

- Handling gross errors or outliers.
 - RANSAC + ASM [M. Rogers, ECCV'02]
 - Robust Point Matching [J. Nahed, MICCAI'06]
- Handling multimodal distribution of shapes.
 - Mixture of Gaussians [T. F. Cootes, IVC'97]
 - Manifold learning for shape prior [Etyngier, ICCV'07]
 - Patient-specific shape [Y. Zhu, TMI'10]
- Preserving local shape details.
 - Sparse PCA [K. Sjostrand, TMI'07]
 - Hierarchical ASM [D. Shen, TMI'03]

Shape prior using sparse shape representation

- Our method is based on two observations:
 - An input shape can be approximately represented by a sparse linear combination of training shapes.

Shape prior using sparse shape representation

- Our method is based on two observations:
 - An input shape can be approximately represented by a sparse linear combination of training shapes.
 - The given shape information may contain gross errors, but such errors are often sparse.

Shape prior using sparse shape representation

• Formulation:

$$- Min_{\{x,\beta\}} \|T(y,\beta) - Dx\|_2$$

Shape prior using sparse shape representation

Number of nonzero

elements

- Formulation:
 - $Min_{\{x,\beta\}} \|T(y,\beta) Dx\|_2$
- Sparse linear combination:
 - $Min_{\{x,\beta\}} \|T(y,\beta) Dx\|_2, s.t. \|x\|_0 < k_1$

Shape prior using sparse shape representation

- Non-Gaussian errors:
 - $-Min_{\{x,e,\beta\}} \|T(y,\beta) Dx e\|_2, s.t. \|x\|_0 < k_1, \|e\|_0 < k_2$

Shape prior using sparse shape representation

- Why it works?
 - <u>Robust</u>: Explicitly modeling "e" with L0 norm constraint.
 Thus it can detect gross (sparse) errors, i.e., non-Gaussian
 - <u>General</u>: No assumption of any parametric distribution model (e.g., a unimodal distribution assumption in ASM). Thus it can model large shape variations.
 - <u>Lossless</u>: It uses all training shapes. Thus it is able to recover detail information even if the detail is not statistically significant in training data.

Applications – Part I

2D lung localization in X-ray

(Lung computer-aided diagnosis system, Siemens)

• Handling gross errors

					0	R	
Detection	PA	ASM	RASM	NN	TPS	Sparse1	Sparse2
Sensitivity	62	66	81	81	59	63	87
Specificity	99	99	99	99	99	98	99
Dice SC	76	78	88	87	74	71	91

• Multimodal shape distribution

Dice SC

			L			
Detection	PA	ASM/RASM	NN	TPS	Sparse1	Sparse2
Sensitivity	50	61	63	75	73	92
Specificity	99	99	98	99	99	99

• Recover local detail information

Detection	PA	ASM/RASM	NN	TPS	Sparse1	Sparse2
Sensitivity	93	93	87	97	97	98
Specificity	99	99	99	98	99	99
Dice SC	94	95	90	94	96	96

• Sparse shape components

0.5760

0.2156

• ASM modes:

• Mean values and standard deviations. ~1,000 cases.

Applications – Part II

3D liver segmentation in low-dose CT

Applications – Part II 3D liver segmentation in low-dose CT

• Shape refinement during segmentation

ASM-type [Zhan'09] Sparse shape

Ground truth

Summary of Robust Segmentation

- Robustly handle abnormal cases, such as diseased cases (liver tumor). <u>Critical to healthcare applications</u> such as computational diagnosis systems.
- <u>Patent with Siemens</u>. Used in several clinical applications. Key contribution for our awarded <u>NSF-MRI</u> grant ('12-'16).
- Relevant publications:
 - First author papers (**S. Zhang**, Y. Zhan, J. Huang, D. Metaxas):
 - MICCAI 2012 and 2011 (<u>MICCAI Young Scientist Award Finalist</u>)
 - CVPR 2011
 - Medical Image Analysis (Top 25 hottest articles in 2012)
 - Second author paper
 - Medical Physics 2013 (with my co-mentored student, G. Wang)
 - ISBI 2013, oral (with my co-mentored student, Z. Yan)

References

- [1] Shaoting Zhang, Yiqiang Zhan, Maneesh Dewan, Junzhou Huang, Dimitris N. Metaxas, Xiang Sean Zhou: Towards robust and effective shape modeling: Sparse shape composition. Medical Image Analysis 16(1): 265-277 (2012)
- [2] Shaoting Zhang, Yiqiang Zhan, Dimitris N. Metaxas: Deformable segmentation via sparse representation and dictionary learning. Medical Image Analysis 16(7): 1385-1396 (2012)
- [3] Yiqiang Zhan, Maneesh Dewan, Xiang Sean Zhou: Cross Modality Deformable Segmentation Using Hierarchical Clustering and Learning. MICCAI (1) 2009: 1033-1041
- [4] Yiqiang Zhan, Xiang Sean Zhou, Zhigang Peng, Arun Krishnan: Active Scheduling of Organ Detection and Segmentation in Whole-Body Medical Images. MICCAI (1) 2008: 313-321
- [5] Shaoting Zhang, Yiqiang Zhan, Xinyi Cui, Mingchen Gao, Junzhou Huang, Dimitris N. Metaxas: 3D anatomical shape atlas construction using mesh quality preserved deformable models. Computer Vision and Image Understanding 117(9): 1061-1071 (2013)
- [6] Dinggang Shen, Edward Herskovits, Christos Davatzikos: An Adaptive-Focus Statistical Shape Model for Segmentation and Shape Modeling of 3D Brain Structures. IEEE Trans. Med. Imaging 20(4): 257-270 (2001)
- [7] Mike Rogers, Jim Graham: Robust Active Shape Model Search. ECCV (4) 2002: 517-530
- [8] Timothy F. Cootes, Christopher J. Taylor, David H. Cooper, Jim Graham: Active Shape Models-Their Training and Application. Computer Vision and Image Understanding 61(1): 38-59 (1995)
- [9] Heimann, T.; Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: A review, Medical Image Analysis, Volume 13, Issue 4, Pages 543-563 (2009)