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In this paper, we propose an efficient algorithm for MR image reconstruction. The algorithm minimizes a
linear combination of three terms corresponding to a least square data fitting, total variation (TV) and L1
norm regularization. This has been shown to be very powerful for the MR image reconstruction. First, we
decompose the original problem into L1 and TV norm regularization subproblems respectively. Then,
these two subproblems are efficiently solved by existing techniques. Finally, the reconstructed image
is obtained from the weighted average of solutions from two subproblems in an iterative framework.
We compare the proposed algorithm with previous methods in term of the reconstruction accuracy

and computation complexity. Numerous experiments demonstrate the superior performance of the pro-
posed algorithm for compressed MR image reconstruction.
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1. Introduction

Magnetic Resonance (MR) imaging has been widely used in
medical diagnosis because of its non-invasive manner and excel-
lent depiction of soft tissue changes. Recent developments in com-
pressive sensing theory (Candes et al., 2006; Donoho, 2006) show
that it is possible to accurately reconstruct the Magnetic Resonance
(MR) images from highly undersampled K-space data and therefore
significantly reduce the scanning duration.

Suppose x is a MR image and R is a partial Fourier transform, the
sampling measurement b of x in K-space is defined as b = Rx. The
compressed MR image reconstruction problem is to reconstruct x
given the measurement b and the sampling matrix R. Motivated
by the compressive sensing theory, Lustig et al. (Lustig et al.,
2007) proposed their pioneering work for the MR image recon-
struction. Their method can effectively reconstruct MR images
with only 20% sampling. The improved results were obtained by
having both a wavelet transform and a discrete gradient in the
objective, which is formulated as follows:

N . (1
—argmin {3 [Rx— P + 7l + lx], 1)

where o and p are two positive parameters, b is the undersampled
measurements of K-space data, R is a partial Fourier transform and
@ is a wavelet transform. It is based on the fact that the piecewise
smooth MR images of organs can be sparsely represented by the
wavelet basis and should have small total variations. The TV was de-
fined discretely as ||x||q, = Z,-Zj((le,-j)z + (sz,-j)z) where V; and
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V, denote the forward finite difference operators on the first and sec-
ond coordinates, respectively. Since both L1 and TV norm regulariza-
tion terms are nonsmooth, this problem is very difficult to solve. The
conjugate gradient (CG) (Lustig et al., 2007) and PDE (He et al., 2006)
methods were used to attack it. However, they are very slow and
impractical for real MR images. Computation became the bottleneck
that prevented this good model (1) from being used in practical MR
image reconstruction. Therefore, the key problem in compressed
MR image reconstruction is thus to develop efficient algorithms to
solve problem (1) with nearly optimal reconstruction accuracy.

Other methods tried to reconstruct compressed MR images by
performing L,-quasinorm (p < 1) regularization optimization (Ye
et al,, 2007; Chartrand, 2007; Chartrand, 2009). Although they
may achieve a little bit of higher compression ratio, these noncon-
vex methods do not always give global minima and are also
relatively slow. Trzasko et al. (Trzasko et al., 2009) used the homo-
topic nonconvex Lo-minimization to reconstruct MR images. They
created a gradual nonconvex objective function which may allow
global convergence with designed parameters. It was faster than
those L,-quasinorm regularization methods. However, it still
needed 1-3 min to obtain reconstructions of 256 x 256 images in
MATLAB on a 3 GHz desktop computer. Recently, two fast methods
were proposed to directly solve (1). In (Ma et al., 2008), Ma et al.
proposed an operator-splitting algorithm (TVCMRI) to solve the
MR image reconstruction problem. In Yang et al. (2010), a variable
splitting method (RecPF) was proposed to solve the MR image
reconstruction problem. Both of them can replace iterative linear
solvers with Fourier domain computations, which can gain substan-
tial time savings. In MATLAB on a 3 GHz desktop computer, they can
be used to obtain good reconstructions of 256 x 256 images in ten
seconds or less. They are two of the fastest MR image reconstruction
methods so far.


http://dx.doi.org/10.1016/j.media.2011.06.001
mailto:jzhuang@cs.rutgers.edu
http://dx.doi.org/10.1016/j.media.2011.06.001
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media

J. Huang et al. / Medical Image Analysis 15 (2011) 670-679 671

Model (1) can be interpreted as a special case of general optimi-
zation problems consisting of a loss function and convex functions
as priors. Two classes of algorithms to solve this generalized prob-
lem are operator-splitting algorithms and variable-splitting algo-
rithms. Operator-splitting algorithms search for an x that makes
the sum of the corresponding maximal-monotone operators equal
to zero. These algorithms widely use the Forward-Backward
schemes (Gabay, 1983; Combettes and Wajs, 2008; Tseng, 2000),
Douglas-Rachford splitting schemes (Spingarn, 1983) and projec-
tive splitting schemes (Eckstein and Svaiter, 2009). The Iterative
Shrinkage-Thresholding Algorithm (ISTA) and Fast ISTA (FISTA)
(Beck and Teboulle, 2009b) are two well known operator-splitting
algorithms. They have been successfully used in signal processing
(Beck and Teboulle, 2009b; Beck and Teboulle, 2009a) and multi-
task learning (Ji and Ye, 2009). Variable splitting algorithms, on
the other hand, are based on combinations of alternating direction
methods (ADM) under an augmented Lagrangian framework. It is
firstly used to solve the PDE problem in Gabay and Mercier
(1976), Glowinski and Le Tallec (1989). Tseng and He et al. ex-
tended it to solve variational inequality problems (Tseng, 1991;
He et al., 2002). Wang et al. (2008) showed that the ADMs are very
efficient for solving TV regularization problems. They also outper-
form previous interior-point methods on some structured SDP
problems (Malick et al., 2009). Two variable-splitting algorithms,
namely the Multiple Splitting Algorithm (MSA) and Fast MSA
(FaMSA), have been recently proposed to efficiently solve (1), while
all convex functions are assumed to be smooth (Goldfarb and Ma,
2009).

However, all these above-mentioned algorithms can not effi-
ciently solve (1) with provable convergence complexity. Moreover,
none of them can provide the complexity bounds of iterations for
their problems, except ISTA/FISTA in Beck and Teboulle (2009b)
and MSA/FaMSA in Goldfarb and Ma (2009). Both ISTA and MSA
are first order methods. Their complexity bounds are O(1/e) for
e-optimal solutions. Their fast versions, FISTA and FaMSA, have
complexity bounds O(1/+/€), which are inspired by the seminal re-
sults of Nesterov and are optimal according to the conclusions of
Nesterov (1983, 2007). However, both ISTA and FISTA are designed
for simpler regularization problems and can not be applied effi-
ciently to the composite regularization problem (1) using both L1
and TV norm. While the MSA/FaMSA assume that all convex func-
tions are smooth, it makes them unable to directly solve the prob-
lem (1) as we have to smooth the nonsmooth function first before
applying them. Since the smooth parameters are related to €, the
FaMSA with complexity bound O(1//€) requires O(1/e) iterations
to compute an e-optimal solution, which means that it is not opti-
mal for this problem. Section 2.1 will further introduce the related
algorithms in details.

In this paper, we propose a new optimization algorithm for MR
image reconstruction method. It is based on the combination of
both variable and operator splitting techniques. We decompose
the hard composite regularization problem (1) into two simpler
regularization subproblems by: (1) splitting variable x into two
variables {x;}i.1 2; (2) performing operator splitting to minimize to-
tal variation regularization and L1 norm regularization subprob-
lems over {x;};-1, respectively and (3) obtaining the solution x by
linear combination of {x;}i_1 2. This includes both variable splitting
and operator splitting. We call it the Composite Splitting Algorithm
(CSA). Motivated by the effective acceleration scheme in FISTA
(Beck and Teboulle, 2009b), the proposed CSA is further acceler-
ated with an additional acceleration step. Numerous experiments
have been conducted on real MR images to compare the proposed
algorithm with previous methods. Experimental results show that
it impressively outperforms previous methods for the MR image
reconstruction in terms of both reconstruction accuracy and com-
putation complexity.

The remainder of the paper is organized as follows. Section 2.1
briefly reviews the related acceleration algorithm FISTA which
motivates our method. In Section 2.2, our new MR image recon-
struction methods are proposed to solve problem (1). Numerical
experiment results are presented in Section 3. Finally, we provide
our conclusions in Section 4.

The conference version of this submission has appeared in MIC-
CAI'10 (Huang et al., 2010). This submission has undergone sub-
stantial revisions and offers new contributions in the following
aspects:

1. The introduction section is rewritten to provide an extensive
review of relevant work and to make our contributions clear.
Two important optimization techniques are explained for the
motivation purpose. Their convergence complexity is also
analyzed.

2. We provide the theoretical proof of the algorithm convergence
in the methodology section. It mathematically demonstrates
the benefit of the proposed method.

3. The experiment section is substantially extended by adding
numerous comparisons, such as new data, CPU time, SNR and
sample ratio. The extensive comparisons further demonstrate
the superior performance of the proposed method.

2. Methodology
2.1. Related acceleration algorithm

In this section, we briefly review the FISTA in Beck and Teboulle
(2009b), since our methods are motivated by it. FISTA considers to
minimize the following problem:

min{F(x) = f(x) + g(x),x € R’} @)

where f is a smooth convex function with Lipschitz constant Ly, and
g is a convex function which may be nonsmooth.

e-optimal solution: Suppose x* is an optimal solution to (2).
x € RP is called an e-optimal solution to (2) if F(x) — F(x*)< €
holds.

Gradient: Vf(x) denotes the gradient of the function f at the
point x.

The proximal map: given a continuous convex function g(x) and
any scalar p > 0, the proximal map associated with function g is
defined as follows (Beck and Teboulle, 2009b; Beck and
Teboulle, 2009a):

prov,(&)(x) = argmin { gu) + 5 u - xI°} 3)

Algorithm 1 outlines the FISTA. It can obtain an e-optimal solution
in O(1/+/€) iterations.

Theorem 2.1. (Theorem 4.1 in Beck and Teboulle, 2009b): Suppose
{x} and {r*} are iteratively obtained by the FISTA, then, we have

0 _ |2
Fx) - Fx) < 2= X0
(k+1)

The efficiency of the FISTA highly depends on being able to quickly
solve its second step x*= prox,(g)(xg). For simpler regularization
problems, it is possible, i.e., the FISTA can rapidly solve the L1 reg-
ularization problem with cost O(plog(p)) (Beck and Teboulle,
2009b) (where p is the dimension of x), since the second step
xk= prox,(B||Px||1)(xg) has a close form solution; It can also quickly
solve the TV regularization problem, since the step x*=prox-
o(oIX]|7v)(%g) can be computed with cost O(p) (Beck and Teboulle,

. WX e X,
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Fig. 1. MR images: (a) cardiac; (b) brain; (c) chest and (d) artery.

2009a). However, the FISTA cannot efficiently solve the composite
L1 and TV regularization problem (1), since no efficient algorithm
exists to solve the step

Algorithm 1. FISTA (Beck and Teboulle, 2009b)

Input: p=1/L; r' =x°% t' =1
for k=1 to Kdo

Xg =18 — pVf(r¥)

XK= proxp(g)(xg)

el — 1+4/1+4(t4)?

=2
k1 — xk t'j(;ll (Xk _ Xk—l)
t/ +

end for

Algorithm 2. CSD

Input: p=1/L, o, B, 20 =20 =x,
forj=1toJdo

X1 = prox, 2«|x|n,) (2 )

Xa = prox, (2| ex],)(Z, ')

X = (X1 +x2)2

2 -0

Z=Z X —x
end for

X = prox, (oxlpy + B LX] 1) (Xg)- (4)

To solve the problem (1), the key problem is thus to develop an effi-
cient algorithm to solve problem (4). In the following section, we
will show that a scheme based on composite splitting techniques
can be used to do this.

2.2. CSA and FCSA

From the above introduction, we know that, if we can develop a
fast algorithm to solve problem (4), the MR image reconstruction
problem can then be efficiently solved by the FISTA, which obtains
an e-optimal solution in O(1/+/€) iterations. Actually, problem (4)
can be considered as a denoising problem:

.1
x* = argmin {jux—xguz + Py +pﬁII<PXII1}~ (5)

We use composite splitting techniques to solve this problem: (1)
splitting variable x into two variables {x;};-1 »; (2) performing oper-
ator splitting over each of {x;};-1> independently and (3) obtaining
the solution x by linear combination of {x;};-1 .. We call it Composite
Splitting Denoising (CSD) method, which is outlined in Algorithm 2.
Its validity is guaranteed by the following theorem:

Theorem 2.2. Suppose {x'} the sequence generated by the CSD. Then,
* will converge to prox(a|x|irv + || ®x||1)(xg), which means that we
have ¥ — prox,(ox||rv + Bl| ®x||1)(xe).

Sketch Proof of The Theorem 2.2:

Consider a more general formulation:

m

ggli{l,} F) =f(x)+ > gi(Bx) (6)
i=1

where f is the loss function and {g;}i-1.. . are the prior models,

both of which are convex functions; {B;}i-1...m are orthogonal

matrices.

Proposition 2.1. (Theorem 3.4 in Combettes and Pesquet, 2008):
Let H be a real Hilbert space, and let g = >"",g; in To(H) such that
dom gindom g; # 0. Let r € H and {x;} be generated by the Algorithm
3. Then, x; will converge to prox(g)(r).

The detailed proof for this proposition can be found in Comb-
ettes and Pesquet (2008) and Combettes (2009).

Algorithm 3. (Algorithm 3.1 in Combettes and Pesquet, 2008)

Input: p,{zi}i-1, .m=T1, (Wiliz1,.. m=1/m,
forj=1toJdo
fori=1tomdo
Pij = prox(&ifwi)(z;)

end for

pj= Zglwipi,j
q=z+q—x
/lj € [0,2]

fori=1tomdo
Zije1 = Ziger + A{(2D; — X; — Dij)
end for
Xjr1 =X+ /lj(pj — Xj)
end for

Suppose that y; = Bix,s; = BiTr and hy(y;) = mpgi{Bix). Because the
operators {B;}i.1, .m are orthogonal, we can easily obtain that
251X — i =r, g Vi — si||>. The above problem is transferred
to:

m
. . 1 .
yi—argmin Y- [l -si* b, x=Bly i=1...m
b=t

(7)

Obviously, this problem can be solved by Algorithm 3. According to
Proposition 2.1, we know that x will converge to prox(g)(r). Assum-
ing g1(x) = al|x||7v, &2(x) = B|X[l1, m=2, wy =w,=1/2 and %=1, we
obtain the proposed CSD algorithm. x will converge to prox(g)(r),
where g =g + g = al|x||lrv + B[ Dx(. O

Combining the CSD with FISTA, a new algorithm FCSA is pro-
posed for MR image reconstruction problem (1). In practice, we
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Fig. 2. Cardiac MR image reconstruction from 20% sampling (a) original image; (b-f) are the reconstructed images by the CG (Lustig et al., 2007), TVCMRI (Ma et al., 2008)
RecPF (Yang et al., 2010), CSA and FCSA. Their SNR are 9.86, 14.43, 15.20, 16.46 and 17.57 (db). Their CPU time are 2.87, 3.14, 3.07, 2.22 and 2.29 (s)

1
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Fig. 3. Brain MR image reconstruction from 20% sampling (a) original image; (b-f) are the reconstructed images by the CG (Lustig et al., 2007), TVCMRI (Ma et al., 2008)
RecPF (Yang et al., 2010), CSA and FCSA. Their SNR are 8.71, 12.12, 12.40, 18.68 and 20.35 (db). Their CPU time are 2.75, 3.03, 3.00, 2.22 and 2.20 (s).

found that a small iteration number J in the CSD is enough for the
FCSA to obtain good reconstruction results. Especially, it is set as 1
in our algorithm. Numerous experimental results in the next

section will show that it is good enough for real MR image
reconstruction.

Algorithm 5 outlines the proposed FCSA. In this algorithm, if we
remove the acceleration step by setting t*! = 1 in each iteration,
we will obtain the Composite Splitting Algorithm (CSA), which is
outlined in Algorithm 4. A key feature of the FCSA is its fast conver-
gence performance borrowed from the FISTA. From Theorem 2.1,
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Fig. 4. Chest MR image reconstruction from 20% sampling (a) original image; (b-f) are the reconstructed images by the CG (Lustig et al., 2007), TVCMRI (Ma et al., 2008),
RecPF (Yang et al., 2010), CSA and FCSA. Their SNR are 11.80, 15.06, 15.37, 16.53 and 16.07 (db). Their CPU time are 2.95, 3.03, 3.00, 2.29 and 2.234 (s).

Fig. 5. Artery MR image reconstruction from 20% sampling (a) original image; (b-f) are the reconstructed images by the CG (Lustig et al., 2007), TVCMRI (Ma et al., 2008),
RecPF (Yang et al., 2010), CSA and FCSA. Their SNR are 11.73, 15.49, 16.05, 22.27 and 23.70 (db). Their CPU time are 2.78, 3.06, 3.20, 2.22 and 2.20 (s).

we know that the FISTA can obtain an e-optimal solution in O(p) or O(1). In step 1, VA*=R(R *—b)) since f(r*) =
O(1/+/€) iterations. 1R — b|)* in this case. Thus, this step only costs O(plog(p)). As

Another key feature of the FCSA is that the cost of each iteration introduced above, the step x* = prox,(2o|x|rv)(x¢) can be computed
is O(plog(p)), as confirmed by the following observations. The step quickly with cost O(p) (Beck and Teboulle, 2009a); The step
4, 6 and 7 only involve adding vectors or scalars, thus cost only x"=proxp(2[3||<15x||1)(xg) has a close form solution and can be
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Fig. 6. Performance comparisons (CPU-Time vs. SNR) on different MR images: (a) cardiac image; (b) brain image; (c) chest image and (d) artery image.

Table 1
Comparisons of the SNR (db) over 100 runs.
CG TVCMRI RecPF CSA FCSA
Cardiac 12.43+1.53 17.54+0.94 17.79+2.33 18.41+0.73 19.26+0.78
Brain 10.33+1.63 14.11+£0.34 1439+2.17 15.25+0.23 15.86+0.22
Chest 12.83+2.05 16.97+0.32 17.03+2.36 17.10£0.31 17.58+0.32
Artery 13.74+228 18.39+047 19.30+2.55 22.03+0.18 23.50+0.20
Table 2
Comparisons of the CPU Time (s) over 100 runs.
CG TVCMRI RecPF CSA FCSA
Cardiac 2.82+0.16 3.16+0.10 297+0.12 2.27+0.08 2.30x0.08
Brain 281+£0.15 3.12+£0.15 295+0.10 2.27+0.12 2.31+0.13
Chest 2.79+0.16 3.00£0.11 2.89+0.07 221+0.06 2.26+0.07
Artery 2.81+0.17 3.04+£0.13 294+0.09 222+0.07 2.27%0.13

computed with cost O(plog(p)). In the step x* = project(x¥,[I,u]), the
function x = project(x,[l,u]) is defined as: (1) x=x if I<x<u; (2)
x=1if x<u; and (3) x = u if x> u, where [Lu] is the range of x. For
example, in the case of MR image reconstruction, we can let [=0
and u =255 for 8-bit gray MR images. This step costs O(p). Thus,
the total cost of each iteration in the FCSA is O(plog(p)).

With these two key features, the FCSA efficiently solves the MR
image reconstruction problem (1) and obtains better reconstruc-
tion results in terms of both the reconstruction accuracy and com-
putation complexity. The experimental results in the next section

demonstrate its superior performance compared with all previous
methods for compressed MR image reconstruction.

Algorithm 4. CSA

Input: p=1/L, o, p, t1 =1x°= 1!
for k=1 to Kdo

Xg =T — pVfir¥)

x1 = proxp(20/|X||v)(xg)

Xa = prox (2| Px||1)(xg)

X = (%1 +x,)[2

x*=project (x*,[1,u])

rJ<+1 = Xk
endfor

Algorithm 5. FCSA

Input: p=1/L, «, f, t' = 1x° =11
for k=1 to K do

Xg =18 — pVfr¥)

X1 = prox(2o|x||rv)(xg)

X = prox (2| ®x||1)(Xg)

X= (X1 +%2)[2;

x*=project (x*,[1,u])

= (14 /1 +4(t%)%)/2
rk+1 =Xk + ((tk _ 1)/tk+1 )(Xk _ Xk—l)
end for
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(b)

(d)

Fig. 7. Full Body MR image reconstruction from 25% sampling (a) original image; (b-e) are the reconstructed images by the TVCMRI (Ma et al., 2008), RecPF (Yang et al., 2010),
CSA and FCSA. Their SNR are 12.56, 13.06, 18.21 and 19.45 (db). Their CPU time are 12.57, 11.14, 10.20 and 10.64 (s).

3. Experiments
3.1. Experiment setup

Suppose a MR image x has n pixels, the partial Fourier trans-
form R in problem (1) consists of m rows of a n x n matrix corre-
sponding to the full 2D discrete Fourier transform. The m selected
rows correspond to the acquired b. The sampling ratio is defined
as m/n. The scanning duration is shorter if the sampling ratio is
smaller. In MR imaging, we have certain freedom to select rows,
which correspond to certain frequencies. In the following experi-
ments, we select the corresponding frequencies according to the
following manner. In the k-space, we randomly obtain more sam-
ples in low frequencies and less samples in higher frequencies.
This sampling scheme has been widely used for compressed MR
image reconstruction (Lustig et al., 2007; Ma et al., 2008; Yang
et al., 2010). Practically, the sampling scheme and speed in MR
imaging also depend on the physical and physiological limitations
(Lustig et al., 2007).

We implement our CSA and FCSA for problem (1) and apply
them on 2D real MR images. The code that was used for the
experiment is available for download at the link listed in foot-
note.! All experiments are conducted on a 2.4 GHz PC in Matlab
environment. We compare the CSA and FCSA with the classic MR
image reconstruction method based on the CG (Lustig et al,
2007). We also compare them with two of the fastest MR image

1 http://paul.rutgers.edu/jzhuang/R_FCSAMRILhtm.

reconstruction methods, TVCMRI?> (Ma et al., 2008) and RecPF
(Yang et al., 2010). For fair comparisons, we download the codes
from their websites and carefully follow their experiment setup.
For example, the observation measurement b is synthesized as
b=Rx+n, where n is the Gaussian white noise with standard
deviation ¢ =0.01. The regularization parameter « and f are set
as 0.001 and 0.035. R and b are given as inputs, and x is the un-
known target. For quantitative evaluation, the Signal-to-Noise Ra-
tio (SNR) is computed for each reconstruction result. Let xo be the
original image and x a reconstructed image, the SNR is computed
as: SNR=10 logyo(Vs/V,), where V, is the Mean Square Error be-
tween the original image xo and the reconstructed image x;
Vs = var(xo) denotes the power level of the original image where
var(xp) denotes the variance of the values in xo.

3.2. Visual comparisons

We apply all methods on four 2D MR images: cardiac, brain,
chest and artery respectively. Fig. 1 shows these images. For conve-
nience, they have the same size of 256 x 256. The sample ratio is
set to be approximately 20%. To perform fair comparisons, all
methods run 50 iterations except that the CG runs only eight iter-
ations due to its higher computational complexity.

Figs. 2-5 show the visual comparisons of the reconstructed re-
sults by different methods. The FCSA always obtains the best visual

2 http://www.columbia.edu/sm2756/TVCMRLhtm.
3 http://www.caam.rice.edu/optimization/L1/RecPF/.
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Fig. 8. Performance comparisons on the full body MR image with different sampling ratios. The sample ratios are: (1) 36%; (2) 25% and (3) 20%. The performance: (a)

Iterations vs. SNR (db) and (b) iterations vs. CPU time (s).

effects on all MR images in less CPU time. The CSA is always infe-
rior to the FCSA, which shows the effectiveness of acceleration
steps in the FCSA for the MR image reconstruction. The classical
CG (Lustig et al., 2007) is far worse than others because of its high-
er cost in each iteration, the RecPF is slightly better than the
TVCMRI, which is consistent with observations in Ma et al.
(2008) and Yang et al. (2010).

In our experiments, these methods have also been applied on
the test images with the sample ratio set to 100%. We observed
that all methods obtain almost the same reconstruction results,
with SNR 64.8, after sufficient iterations. This was to be expected,
since all methods are essentially solving the same formulation

“Model (1)".

3.3. CPU time and SNRs

Fig. 6 gives the performance comparisons between different
methods in terms of the CPU time over the SNR. Tables 1 and 2 tab-

ulate the SNR and CPU Time by different methods, averaged over
100 runs for each experiment, respectively. The FCSA always ob-
tains the best reconstruction results on all MR images by achieving
the highest SNR in less CPU time. The CSA is always inferior to the
FCSA, which shows the effectiveness of acceleration steps in the
FCSA for the MR image reconstruction. While the classical CG (Lus-
tig et al., 2007) is far worse than others because of its higher cost in
each iteration, the RecPF is slightly better than the TVCMRI, which
is consistent to observations in Ma et al. (2008) and Yang et al.

(2010).

3.4. Sample ratios

To test the efficiency of the proposed method, we further per-
form experiments on a full body MR image with size of
924 x 208. Each algorithm runs 50 iterations. Since we have shown
that the CG method is far less efficient than other methods, we will
not include it in this experiment. The sample ratio is set to be
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approximately 25%. To reduce the randomness, we run each exper-
iment 100 times for each parameter setting of each method. The
examples of the original and recovered images by different algo-
rithms are shown in Fig. 7. From there, we can observe that the re-
sults obtained by the FCSA are not only visibly better, but also
superior in terms of both the SNR and CPU time.

To evaluate the reconstruction performance with different
sampling ratio, we use sampling ratio 36%, 25% and 20% to obtain
the measurement b respectively. Different methods are then used
to perform reconstruction. To reduce the randomness, we run
each experiments 100 times for each parameter setting of each
method. The SNR and CPU time are traced in each iteration for each
methods.

Fig. 8 gives the performance comparisons between different
methods in terms of the CPU time and SNR when the sampling ra-
tios are 36%, 25% and 20% respectively. The reconstruction results
produced by the FCSA are far better than those produced by the
CG, TVCMRI and RecPF. The reconstruction performance of the
FCSA is always the best in terms of both the reconstruction accu-
racy and the computational complexity, which further demon-
strates the effectiveness and efficiency of the FCSA for the
compressed MR image construction.

3.5. Discussion

The experimental results reported above validate the effective-
ness and efficiency of the proposed composite splitting algorithms
for compressed MR image reconstruction. Our main contributions
are:

e We propose an efficient algorithm (FCSA) to reconstruct the
compressed MR images. It minimizes a linear combination
of three terms corresponding to a least square data fitting,
total variation (TV) and L1 norm regularization. The computa-
tional complexity of the FCSA is O(plog(p)) in each iteration
(p is the pixel number in reconstructed image). It also has fast
convergence properties. It has been shown to significantly
outperform the classic CG methods (Lustig et al., 2007) and
two state-of-the-art methods (TVCMRI (Ma et al., 2008) and
RecPF (Yang et al, 2010)) in terms of both accuracy and
complexity.

The step size in the FCSA is designed according to the inverse
of the Lipschitz constant Ln Actually, using larger values is
known to be a way of obtaining faster versions of the algo-
rithm (Wright et al, 2009). Future work will study the
combination of this technique with the CSD or FCSA, which is
expected to further accelerate the optimization for this kind of
problems.

In this paper, the proposed methods are developed to efficiently
solve model (1), which has been addressed by SparseMRI,
TVCMRI and RecPF. Therefore, with enough iterations, Sparse-
MRI, TVCMRI and RecPF will obtain the same solution as that
obtained by our methods. Since all of them solve the same for-
mulation, they will lead to the same gain in information con-
tent. In our future work, we will develop new effective
models for compressed MR image reconstruction, which can
lead to more information gains.

4. Conclusion

We have proposed an efficient algorithm for the compressed
MR image reconstruction. Our work has the following contribu-
tions. First, the proposed FCSA can efficiently solve a composite
regularization problem including both TV term and L1 norm term,
which can be easily extended to other medical image applications.
Second, the computational complexity of the FCSA is only

O(plog(p)) in each iteration where p is the pixel number of the
reconstructed image. It also has strong convergence properties.
These properties make the real compressed MR image reconstruc-
tion much more feasible than before. Finally, we conduct numer-
ous experiments to compare different reconstruction methods.
Our method is shown to impressively outperform the classical
methods and two of the fastest methods so far in terms of both
accuracy and complexity.
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