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Abstract. With a continuous growing amount of annotated histopathological
images, large-scale and data-driven methods potentially provide the promise of
bridging the semantic gap between these images and their diagnoses. The purpose
of this paper is to increase the scale at which automated systems can entail scal-
able analysis of histopathological images in massive databases. Specifically, we
propose a principled framework to unify hashing-based image retrieval and su-
pervised learning. Concretely, composite hashing is designed to simultaneously
fuse and compress multiple high-dimensional image features into tens of binary
hash bits, enabling scalable image retrieval with a very low computational cost.
Upon a local data subset that retains the retrieved images, supervised learning
methods are applied on-the-fly to model image structures for accurate classifi-
cation. Our framework is validated thoroughly on 1120 lung microscopic tissue
images by differentiating adenocarcinoma and squamous carcinoma. The average
accuracy is 87.5% with only 17ms running time, which compares favorably with
other commonly used methods.

1 Introduction

Lung cancer is one of the most common and deadly cancer in the world. There were an
estimated 228,190 new cases and 159,480 deaths in 2013 [12]. Four typical histologic
types of lung cancers include adenocarcinoma, squamous carcinoma, small cell carci-
noma, and large cell carcinoma with the 5-year survival rate below 20%, each of which
requires a different treatment [5]. Consequently, early diagnosing and differentiating
these histologic types is very important. Bronchial biopsy is one of the most effective
diagnosis methods for lung cancer. Traditional manual exams of microscopy are labor
intensive, time consuming, and not too accurate [2] as well. Therefore, Computer Aided
Diagnosis (CAD) systems have been investigated to automatically analyze histopatho-
logical images of lung cancer. For examples, Kayser et al. [6] employed textural and
morphometric features including image entropy and construction of skeleton to classify
tumor and non-tumor lung diseases. The validity of quantitative nuclear image features
is evaluated in discriminating small cell and non-small cell lung cancers [15]. Mijović
et al. [11] proposed a model to classify histopathological images by manually editing
the binary images, extracting seven nuclear variables (e.g., nuclear area, equivalent di-
ameter, volume of equivalent sphere, perimeter, etc.), and analyzing the statistics with
stepwise linear discriminant analysis and the Mann-Whitney test. Promising experi-
mental results are shown in classifying small cell and non-small cell lung cancers.
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Most existing systems have focused on the classification of small cell vs. non-small
cell (i.e., adenocarcinoma, squamous carcinoma, and large cell carcinoma) lung can-
cers, since the treatment plan is mainly decided by this result. However, it is also clin-
ically important to differentiate the adenocarcinoma and squamous carcinoma, both of
which belong to non-small cell lung cancer, because the management protocols might
differ in different tumour types [4]. Unfortunately, there are few attempts in dealing
with this problem, due to the subtle differences of their histopathological images which
make a large obstacle for classification [11]. In addition, most systems in this area can
only handle relatively small datasets. The development of scalable image analysis al-
gorithms does not keep pace with the increasing quantity of histopathological images.
Hence, there is an urgent need to build a more innovative framework to entail efficient
analysis in massive-scale databases.

In this paper, we tackle the challenging scalability issue and propose a scalable
framework for the early diagnosis of two non-small cell types, i.e., adenocarcinoma
and squamous carcinoma. Specifically, we design an effective framework to couple
scalable content-based image retrieval (CBIR) and online learning via a “coarse-to-
fine” scheme. In contrast to traditional classification methods that directly compute the
likelihood of the diagnostic results, scalable CBIR approaches open a new avenue for
analyzing images in potentially massive databases. We develop a Composite Anchor
Graph Hashing algorithm to simultaneously fuse multiple high-dimensional image fea-
tures and compress them into tens of binary hash bits, thereby enabling rapid retrieval
(in sublinear or even constant time) of relevant instances among large database. Such
retrieved results can be utilized to support clinical decisions or indicate the most likely
diagnosis using the majority logic. After discovering the subset of images, we are able
to apply data-driven supervised learning methods that are specific to the input image
(i.e., queries) on-the-fly to achieve accurate classification. We conduct extensive ex-
periments on thousands of lung microscopic tissue images for the differentiation of
adenocarcinoma and squamous carcinoma. The experimental results demonstrate high
classification accuracy and favorable computational efficiency of our proposed frame-
work.

2 Methodology

2.1 Overview

Fig. 1 shows two main phases of our proposed framework. The offline phase compresses
texture features into short binary codes, which enables real-time search even among
large-scale databases and high-dimensional features. Specifically, Difference of Gaus-
sians is used to detect interest points, as shown in Fig. 2. These points approximately
indicate the locations of nuclei. Then, two types of texture features [9,3] are extracted
at each point. In fact, this setting of detections and features has been widely used in
both general image analysis and histopathological images [1]. In this specific problem,
it is desired to maximally utilize these millions of cell-level features (thousands in each
image). Therefore, we quantize them into high-dimensional feature vectors, i.e., 10,000
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Fig. 1. Overview of our proposed framework for scalable analysis of histopathological images

length, via bag-of-words [13]. However, using features with such large size may ad-
versely affect the computational efficiency. Therefore, we propose to simultaneously
fuse and compress them into tens of bits using Composite Anchor Graph Hashing algo-
rithm.

Fig. 2. Detected interest points
(marked as yellow stars)

During the online phase, we extract same types
of texture features from the input image (i.e.,
query) and compress them as binary bits using the
same algorithm. By comparing this with the bi-
nary bits extracted offline, we can efficiently re-
trieve images with morphological profiles most
relevant and consistent to the query, and the re-
trieved images indicate the most likely diagnosis.
In fact, this is an example of scalable content-
based image retrieval (CBIR). However, despite
the efficiency and scalability of our composite
hashing method, it may result in an unordered set
where exact or near-exact matches may be obscured within a large database due to
noisy features or similar instances. Therefore, we further propose to employ supervised
learning methods on-the-fly to build a finer model in the retrieved set for accurate clas-
sification and diagnosis.

2.2 Hashing via Composite Graphs

For scalable analysis of histopathological images, we develop an efficient algorithm to
search among the high-dimensional and large-scale feature space, i.e., locate visually-
similar images in real-time. Specifically, hashing algorithm is employed to map the
neighbors in the high-dimensional feature space into similar binary codes in the Ham-
ming space.

Notations and Problem Definition: Denote x ∈ R
n×d as the d-dimensional texture

features of n histopathological images, Y as the r bits binary code compressed from x,
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and A as the n×n similarity matrix in which Aij means the similarity between features
(xi and xj). The objective function of such mapping is usually formulated as:

min
Y

1

2

n∑

i,j=1

‖Yi − Yj‖2Aij = tr(Y �LY )

s.t. Y ∈ {1,−1}n×r, 1�Y = 0, Y �Y = nIr×r

(1)

where L is the graph Laplacian that is defined as L = D − A, and D = diag(A1)
with 1 = [1, · · · , 1]� ∈ R

n. To solve this NP-hard problem, we can apply spectral
relaxation to drop the integer constraint and allow Y ∈ R

n×r.

Composite Graphs: An important module of this hashing formulation is to compute
the graph Laplacian, i.e., building the underlying nearest neighbor graph. Traditional
methods are not computationally efficient, especially for a large number of high-
dimensional features. In fact, its computational complexity is O(dn2), which is in-
tractable for large n and d. Recently proposed Anchor Graph Hashing [8] is able to
alleviate this computational bottleneck by approximating the data neighborhood struc-
ture with a small set of “anchors”. However, same as most previous hashing algorithms,
it focuses on modeling and compressing a single type of feature, while it is necessary to
fuse multiple features in histopathological image analysis to achieve a better accuracy of
diagnosis. Therefore, we propose Composite Anchor Graph to efficiently fuse multiple
features and build a unified graph. Specifically, m anchors (U = {uj ∈ R

d}mj=1 (m �
n)) are chosen to construct the graph:

Zi,j =

{
exp(−D2(xi,uj)/t)∑

j′∈〈i〉 exp(−D2(xi,uj′ )/t)
, ∀j ∈ 〈i〉

0, otherwise
(2)

where Z is a highly sparse n×m matrix that represents truncated similarities between
all n data points and m, t denotes the bandwidth parameter anchors, 〈i〉 ⊂ [1 : m] is the
indices of s (s � m) nearest anchors of point xi in U according to a distance function
D(). Compared with constructing a exact kNN graph with a quadratic cost O(dn2),
the cost for constructing an Anchor Graph is linear to n when m is small, which is
significantly faster.

Based on this efficient graph construction, we fuse multiple types of features on the
distance level, by normalizing and averaging them with the assumption that each indi-
vidual feature contributes equally [10] or using weights learned from training data [18].
This scheme naturally fuses multiple features in the anchor graph and hence approxi-
mates the similarity matrix A by Â = ZΛ−1Z�, where Λ = diag(Z�1) ∈ R

m×m.
Subsequently, the graph Laplacian is represented as L = I − Â. The eigenvectors of
Â can be easily solved by utilizing its low-rank property. The results of m×m matrix
Λ−1/2Z�ZΛ−1/2 are eigenvector-eigenvalue pairs {(vk, σk)}rk=1, where 1 > σ1 ≥
· · · ≥ σr > 0. Denote V as [v1, · · · ,vr] ∈ R

m×r, Σ as diag(σ1, · · · , σr) ∈ R
r×r, W

as
√
nΛ1/2V Σ−1/2. Therefore, the spectral embedding matrix Y is computed as:

Y =
√
nZΛ−1/2V Σ−1/2 = ZW (3)
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Hash Function: Using the Laplacian of this Composite Anchor Graph, a general hash
function hk(x) = sgn(φk(x)) can be obtained by generalizing its eigenvectors to the
eigenfunctions with Nyström method [16].

hk(x) = sgn(w�
k z(x)), k = 1, · · · , r (4)

where wk =
√

n
σk

Λ−1/2vk, z(x) =
[δ1exp(−D2(x,u1)/t),··· ,δmexp(−D2(x,um)/t)]

�
∑m

j=1 δjexp(−D2(x,uj)/t)
,

δj ∈ {1, 0} and δ = 1 if and only if anchor uj is one of s nearest anchors of sam-
ple x in U .

Consequently, hashing with Composite Anchor Graphs can be formulated as first
calculating the sparse similarity matrix Z between fused texture features and anchors,
and then projecting each Zi onto the vectors in W .

The computational complexity of this module is O(dmn+m2n+(s+1)rn), where
O(dmn) is the time to build the composite anchor graph, O(m2n + srn) is to solve r
graph Laplacian eigenvectors retained in the spectral embedding matrix Y , and O(rn)
represents the time for compressing Y into binary code. The query time is sublinear
or even constant when using a hash table. Therefore, the resulting tens of bits signifi-
cantly improve the computational efficiency of image retrieval, without sacrificing the
accuracy.

2.3 Learning on Retrieved Images

Our composite hashing method is able to effectively retrieve a set of visually similar
images via simultaneously unifying and compressing multiple features. These retrieved
images can be directly used for decision support or diagnosis using the majority logic.
Despite the efficacy of hashing methods and their successful uses in medical image
analysis [19,7], this scheme still may not be accurate enough since they tend to produce
unordered results, i.e., same hamming distance or hash entries for different images.
In addition, the “semantic gap” problem also exists in our hashing method as there is
no association between the texture features and the diagnosis information. Supervised
learning methods such as Support Vector Machine (SVM) may alleviate this seman-
tic gap problem, but they may not be able to learn an effective model over the whole
dataset due to the complexity of histopathological images. Furthermore, the computa-
tional complexity and scalability is also an issue.

Since our hashing method is able to locate a small number of images with negligible
cost in running time, we propose to apply supervised learning methods (SVM in our
system) on-the-fly among the local set of images. This “coarse-to-fine” and “online”
scheme is able to build local models adaptively and accurately, while still maintain-
ing the computational efficiency. In addition, this model can incorporate new samples
online without any retraining, as supervised learning is only performed locally during
runtime. In the experiments, we demonstrate that our framework significantly outper-
forms traditional hashing algorithms or supervised learning in the global-level.
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Fig. 3. Examples in retrieval. Query marked in yellow, and retrieved images marked in blue. The
first two rows are adenocarcinoma, and the last two rows are squamous carcinoma.

3 Experiments

In this section, we discuss the experimental setting and results on lung microscopic
tissue images.

Experimental Setting: 1120 images (2K × 1K pixels each) are sampled from 112 pa-
tients (57 adenocarcinoma and 55 squamous carcinoma). Leave-one-patient-out
validation is used to evaluate the accuracy of classification. All the experiments are
conducted on a 3.40GHz CPU with 4 cores and 16G RAM, in a MATLAB implemen-
tation. Around 3000 keypoints are detected in each image, which result in millions of
texture descriptors in the whole dataset. To effectively leverage such massive infor-
mation, we use high-dimensional features. Specifically, we extract widely-used texture
descriptors [9,3] from each image and quantized each type of descriptors with 10,000
dimensional bag-of-words. We validate the efficacy of our Composite Anchor Graph
by fusing different types of descriptors, and also compare the proposed framework with
the classical classifiers such as SVM and k-nearest neighbors (kNN), which have been
used for histopathological image analysis [17,14].

Evaluation of Composite Hashing: We validate our composite hashing by compar-
ing the average accuracy of differentiating adenocarcinoma and squamous carcinoma
using single feature or fused features. Concatenating feature vectors with proper nor-
malization is chosen as the baseline as this is the most-widely used approach for feature
fusion. However, this scheme does not consider the preservation of local graph struc-
tures and hence only marginally improves each feature by less than 1%, i.e., 73.4%,
72.6% and 74.1% for two types of features and the fused one, respectively. In contrast,
our composition scheme considers such local manifold information and fuse features
in the distance level. Therefore, it achieves a higher accuracy (76.8%). In addition, we
also show the retrieved images using our composite hashing algorithm in Fig. 3. In fact,
this CBIR task is very challenging since the visual dissimilarity of certain images in
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different categories is quite subtle. Our accurate results demonstrate the efficacy of the
composite hashing and the texture features. These retrieved results are clinically rele-
vant to the query and thus potentially useful for decision support.
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Fig. 4. Comparison of the accuracy using
different classification models

Evaluation of the Framework: Fig. 4 shows
the comparison of different classification
methods, measured by the diagnosis accuracy
of the adenocarcinoma and squamous carci-
noma. kNN is an effective approach for clas-
sification and CBIR, and always serves as
the baseline. Here we use Euclidean distance
and set the k as 5. However, it is not able
to achieve high accuracy in this challenging
problem (61.6% in average), due to the large
variations of the staining and cell distribution.
In addition, it is not computationally efficient
and hence adversely affect its scalability, i.e.,
linear to the number of images and feature
dimensions. Our composite hashing method
significantly improves the efficiency, i.e., sub-
linear when using hamming distance or even constant time when using hash table. In
our experiments, it merely takes 2ms for each query with 100 anchors and 36 bits,
which is around 50 times faster than kNN. Furthermore, these compressed features even
achieve higher accuracy (76.8% in average), owing to the preservation of local struc-
tures (i.e., manifold) when constructing anchor graphs, and the effective feature fusion
scheme. Not surprisingly, SVM with RBF kernel outperforms both kNN and hashing,
as it leverages the supervised information to bridge the semantic gap. The average ac-
curacy of SVM is 82.1%. However, learning a classification hyper plane on the whole
dataset results in a highly unbalanced result, i.e., 75.4% for adenocarcinoma and 89.0%
for squamous carcinoma. Furthermore, SVM requires offline training upon the whole
dataset, which sacrifices the scalability for appending new data. Our proposed frame-
work achieves the best accuracy, with 87.5% in average, 84.2% for adenocarcinoma,
and 90.9% for squamous carcinoma. This is substantially better than other methods,
and is also much more balanced than SVM. This improvement demonstrates the ef-
ficacy of applying supervised learning method on the local set of images discovered
by our hashing method. The additional computational complexity is from the learning
method applied on-the-fly, which takes 15ms for each image and is independent of the
database’s size. Therefore, the running time of our proposed framework is 17ms, and
there is no extra cost in the asymptotic analysis when expanding the size of database,
which is a significant benefit compared to traditional methods.

4 Conclusion

In this paper, we proposed a scalable framework for histopathological image analy-
sis, and validated the efficacy of our framework on thousands of lung microscopic tis-
sue images. The main contribution lies in unifying scalable CBIR based on hashing
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and supervised learning methods on-the-fly, which turns out to exhibit high classifica-
tion accuracy and computational efficiency. Furthermore, the Composite Anchor Graph
Hashing algorithm was developed to improve hashing quality by simultaneously fusing
and compressing multiple high-dimensional image features. In the future, we intend to
investigate visual analytical methods for the intelligent and interactive visualization of
histopathological images, based on the outcome of this paper.
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