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Human Nonverbal Communication Computing aims to investigate how people exploit nonverbal aspects of
their communication to coordinate their activities and social relationships. Nonverbal behavior plays impor-
tant roles in message production and processing, relational communication, social interaction and networks,
deception and impression management, and emotional expression. This is a fundamental yet challenging re-
search topic. To effectively analyze Nonverbal Communication Computing, motion analysis methods have
been widely investigated and employed. In this paper, we introduce the concept and applications of Nonver-
bal Communication Computing and also review some of the motion analysis methods employed in this area.
They include face tracking, expression recognition, body reconstruction, and group activity analysis. In addi-
tion, we also discuss some open problems and the future directions of this area.

© 2013 Published by Elsevier B.V.
1. Introduction

Understanding how people exploit nonverbal aspects of their
communication to coordinate their activities and social relationships
is a fundamental scientific challenge. Deeper insights into nonverbal
communication can have a profound impact on how we link theories
of perception, learning, cognition and action to models of interactions
and groups at the social level. Models of nonverbal behaviors in inter-
action are essential for collaboration tools, human–computer and vir-
tual interaction and other assistive technologies designed to support
people in real-world activities. This knowledge is also useful to devel-
op models of the deficits of specific populations, such as autistic chil-
dren, and interventions that bring them into fuller participation in
communities. In general, nonverbal communication research offers
high-level principles that might explain how people organize, display,
adapt and understand such behaviors for communicative purposes
and social goals. However, the specifics are generally not fully under-
stood, nor is the way to translate these principles into algorithms and
computer-aided communication technologies such as intelligent
agents.

To model such complex dynamic processes effectively, novel com-
puter vision and learning algorithms are needed that take into ac-
count both the heterogeneity and the dynamicity intrinsic to
behavior data. As one of the most active research areas in computer
vision, human motion analysis has become a widely-used tool in
this area. It uses image sequences to detect and track people, and
y Matti Pietikainen.
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also to interpret human activities. Emerging automated methods for
analyzing motion [1] have been studied and developed to enable
tracking diverse human movements precisely and robustly as well
as correlating multiple people's movements in interaction. Some of
the applications of using motion analysis methods for Nonverbal
Communication Computing include deception detection, expression
recognition, sign language recognition, behavior analysis, and group
activity recognition. In the following we illustrate several examples
of Nonverbal Communication Computing.

Fig. 1 shows an example of deception detection during interactions
using an automated motion analysis system [2]. This work investigates
how degree of the interactional synchrony can signal whether an inter-
actant is truthful or deceptive. This automated, data-driven and unob-
trusive framework consists of several motion analysis methods such
as face tracking, gesture detection, facial expression recognition and in-
teractional synchrony estimation. It is able to automatically track ges-
tures and analyze expressions of both the target interviewee and the
interviewer, extract normalized meaningful synchrony features and
learn classification models for deception detection. The analysis results
show that these features reliably capture simultaneous synchrony. The
relationship between synchrony and deception is shown to be correlat-
ed and complex.

The second example is to use an automated motion analysis system
to recognize facial expressions of emotions and fatigue from sleep loss
in spaceflight [3]. Specifically, this research project aims to develop
non-obtrusive objective means of detecting and mitigating cognitive
performance deficits, stress, fatigue, anxiety and depression for the op-
erational setting of spaceflight. To do so, a computational model-based
tracker and an emotion recognizer of the human face have been
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Fig. 1. An example of the automated analysis for human Nonverbal Communication Computing [2]. Sample snapshots from tracked facial data showing an interviewee (left) and an
interviewer (right). Red dots represent tracked facial landmarks (eyes, eyebrows, etc.), while ellipse in top left corner depicts the estimated 3D head pose of the subject; top right
corners show the detected expressions and head gestures for subject and interviewer.
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developed to reliably identify when astronauts are displaying various
negative emotional expressions and ocular signs of fatigue from sleep
loss during space flight. Fig. 2 shows an illustration of using this system
to recognize the facial expression of emotion. This subject had an emo-
tion of sadness induced by guided recollection of negative memories.
The system scored the video clip for a 2 min period. Sad was the pre-
dominant selection for the frames in the clip. This agreed with the
human ratings of sadness as the dominant emotional expression during
this period, as well as with the emotion induced.

The third application is an automated detection of non-manual gram-
maticalmarkings in American Sign Language (ASL) [4], as shown in Fig. 3.
Facial expressions and head gestures convey important linguistic infor-
mation, including cues to the locations of word and phrase boundaries,
emphasis on particular sentence parts, affective/emotional state, and
Fig. 2. A system of recognizing a specific facial expression of emotion [3]. The system scored
the Y axis) for each of seven emotional expressions (X axis) for this specific video frame. The
that was scored by the system (lower right) as well as all results over the 2 min clip.
attitude. They can offer backchannel information, regulate turn-taking,
and provide indicators of speaker confidence, uncertainty, or deception.
Using a robust face tracker and 3D warping [5] to extract and combine
geometric and appearance features, this system can effectively recognize
the eyebrows and the head gestures, as well as their temporal phases.
After detecting the linguistically relevant portion of the eyebrow and pe-
riodic head gestures, it further leverages this information to improve the
detection of non-manual grammatical markers in ASL.

Besides using the non-manual grammatical markings, the hand
movement information can also be employed for the discrimination
between fingerspelling and continuous signs in American Sign Lan-
guage. In ASL, fingerspelled words are articulated using one hand
(usually the dominant one) in a specific area of the signing space
(in front of and slightly above the signer's shoulder). However,
the videos clip for a 2 min period. The graph (lower right) shows the probabilities (on
upward arrow in the upper right graph indicates the time at which the frame occurred
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Fig. 4. Left: Demonstration of the skin blob tracking (magenta ellipses) and shrug detection (green circles) [6]. For each frame, the program records blob velocity, blob size and
orientation. Right: Hand tracking results by coupling dynamically the discrete and continuous trackers [7].

Fig. 3. An example of using an automated system to detect the nonmanual grammatical markings in ASL [4]. In this sentence (meaning ‘If you want to walk, the two of us could go
out to the park,’), the first clause is marked with a typical non-manual expression for conditional modality, which includes raised eyebrows. Inner, middle, and outer eyebrow
heights are shown by the blue, green, and red curves; the green, red, and blue bars identify the temporal phases of the eyebrow movement: onset, apex, and offset, respectively.
The yellow bars identify the durations of the manual signs, as glossed.
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automatic identification of fingerspelling portions within a fluent
stream of signing is non-trivial, as many of the same handshapes
that are used as letters are also used in the formation of other types
of signs. Fig. 4 shows examples of gesture recognition (Left) and
hand tracking results (Right) by coupling dynamically the discrete
and continuous trackers [7], using videos of native ASL signers col-
lected and annotated at Boston University as part of the American
Sign Language Linguistic Research Project (http://www.bu.edu/
asllrp/), in conjunction with the National Center for Sign Language
and Gesture Resources.1 Since this method robustly handles
1 The video data and annotations associated with this project are available to the re-
search community from http://www.bu.edu/asllrp/cslgr/.
articulations, rotations, abrupt movements and cluttered background,
it can accurately discriminate between fingerspelling and non-
fingerspelled signs in ASL.

The above examples demonstrate that motion analysis methods
such as face tracking are critical to Nonverbal Communication Comput-
ing. In this paper, we focus on reviewing the research in the area of
human Nonverbal Communication Computing, and especially the mo-
tion analysis tools developed to address this problem. We discuss
methods to analyze Nonverbal Communication Computing in multiple
scales, including face, head, full body and group activities. The remain-
der of this paper is organized as follows. Section 2 reviews relevant
work in human motion analysis and Nonverbal Communication Com-
puting, and also introduces our recent achievements. Section 2.1 covers
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Fig. 5. Top: The face shape manifold is approximated by piecewise linear sub-regions.
Bottom: This method [20] searches across multiple clusters to find the best local linear
model.

424 D. Metaxas, S. Zhang / Image and Vision Computing 31 (2013) 421–433
face tracking methods; Section 2.2 discusses expression recognition;
body reconstruction is presented in Section 2.3; and human activity rec-
ognition is introduced in Section 2.4. Section 3 summarizes this paper
and discusses future directions and open problems.

2. Application domains and developed methodologies

Research in the area of humanNonverbal Communication Computing
can be categorized in two main categories: a) highly structured such as
American Sign Language (ASL) and, b) less structuredwhich includes ap-
plication domains such as detection of deception, emotional expressions,
stress, and impairmentswith respect to cognitive and social skills. Both of
them rely on robust motion analysis methods such as tracking, recon-
struction and recognition. In the following, we will present the motion
analysis methods needed for this line of work and several examples to
demonstrate the complexity of the problems.

2.1. Face tracking

One of themost important cues for Nonverbal Communication Com-
puting comes from facial motions. Thus accurately tracking headmove-
ments and facial actions is very important and has attracted much
attention in computer vision and graphics community. Early work typ-
ically focused on either rigid head tracking with no facial expres-
sion [8,9], or recognizing expressions of a roughly stationary head
[10,11]. In contrast, contemporary face tracking systems need to track
facial features (e.g. eye corners, nose-tip etc.) under both head motion
and varying expressions. A series of face models and tracking algo-
rithms have been developed in recent years. We will introduce face
tracking methods based on parametric models, statistical models (Ac-
tive Shape Models, Constrained Local Models and Active Appearance
Models), as well as face tracking from range data.

2.1.1. 3D morphable model-based methods
Parametric face models were first explored to track facial features.

Black and Yacoob [12,13] explored the use of local parameterized
models and image motion for recovering and recognizing non-rigid
and articulated motion of human faces. De Carlo and Metaxas
[14,15] described the 3D shape of the face as a polygon mesh, and ap-
plied optical flow as a non-holonomic constraint solved by using the
least square method. Pighin et al. [16] proposed to use a linear combi-
nation of 3D texture-mapped models, each corresponding to a partic-
ular basic facial expression. They used a scattered data interpolation
technique to deform the face mesh to fit the subject's face from
photographs.

The parametric face models have to be carefully designed before-
hand, with a set of parameters controlling the deformations driven
by elastic forces or image motion. Since the models cannot exactly
represent anatomical structures of bones and muscles, unrealistic
shapes may be generated. An alternative approach is to learn 3D
morphable models from a group of face shapes and textures [17,18],
which are usually acquired by high accuracy 3D scans. These 3D
face models can represent a wide variety of faces and facial motions.
On the other hand, it is computationally expensive and unable to
run in real time.

2.1.2. Active shape model-based methods
The Active Shape Models (ASMs) [19] learn statistical distribu-

tions of 2D feature points, which allow shapes to vary only in ways
seen in a training set. Kanaujia and Metaxas [20] built a real-time
face tracking system based on ASM. They trained a mixture of ASMs
for pre-aligned faces of different clusters, each corresponding to a dif-
ferent pose, as shown in Fig. 5. The target shape is fitted by first
searching the local features along the normal direction, followed by
constraining the global shape using the most probable cluster.
2D ASM based methods are also combined with 3D face models,
which govern the overall shape, orientation and location. Vogler et al.
[21] developed a framework to integrate both 2D ASM and 3D deform-
able models, which allows robust tracking of faces and estimation of
both rigid and non-rigid motions. The displacements between the actu-
al projected model points and the identified correspondences are de-
fined as image forces to update the deformation parameters. Yang et
al. [22,23] built a face tracker by combining statistical models of both
2D and 3D faces. Shape fitting was performed by minimizing both fea-
ture displacement errors and subspace energy terms with temporal
smoothness constraints.

Given the limited number of training samples, traditional statisti-
cal shape models may overfit and generalize poorly for new samples.
Instead of building models on the entire face, Huang et al. [24] built
separate ASMmodels for face components to preserve local shape de-
formations. They applied Markov Network to provide global geome-
try constraints. Some recent research work enhanced the ASM
fitting by using sparse displacement errors [25–28]. These models
are more robust to outliers and partial occlusions.

2.1.3. Constrained local model-based methods
The constrained local models (CLMs) are extensions of ASM, and

they use an independent set of local detectors for landmark detection
[29]. CLM fitting is generally posed as the search for the point distri-
bution model (PDM) parameters p, and it jointly minimizes
the misalignment error over all landmarks: Q(p) = R(p) + ∑ i =

1
n Di(xi), where R(p) measures the distance of the current shape
from the shape distribution, which is often modeled as Gaussian
[30] and Gaussian mixture model (GMM) [31]. Di(xi) measures the
misalignment of the ith landmark at position xi. Examples of the
misalignment error functions include the Mahalanobis distance for
local patch appearances [19], as well as the boosted Harr-like feature
based classifiers [29].

As the local landmark detectors are learned from small image re-
gions with limited structures, the maximum responses may not coin-
cide with the correct landmark locations. Some recently proposed
methods try to alleviate this problem. Wang et al. [32] proposed a
convex quadratic function to fit to the negative log of the response
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map, from which the mean and covariance of the approximating den-
sity can be inferred. Zhou et al. [33] used the summed-squared-
difference as a measure of landmark fit, and applied Laplace's approx-
imation to find the covariance estimate. Saragih et al. [34,35]
proposed an optimization strategy where a nonparametric represen-
tation of the landmark distributions is maximized within a hierarchy
of smoothed estimates. The resulting update equations are reminis-
cent of mean-shift but with a subspace constraint placed on the
shape's variability.

2.1.4. Active appearance model-based methods
The ASM and CLM introduced above only model statistical distri-

butions of the shapes. In contrast, AAM decouples the shape and tex-
ture of the deformable object, and is able to generate a variety of
photo-realistic instances [36]. Fitting an AAM to an image consists
of minimizing the error between the input image and the closest
model instance, i.e. solving a nonlinear optimization problem. Mat-
thews and Baker [37] suggested to reformulate AAM model fitting
as an image alignment problem, which can be efficiently solved by
Lucas–Kanade inverse compositional algorithm [38]. The proposed
method avoids updating texture parameters and turns out to be the
fastest fitting algorithm for AAM.

AAM has been successfully used for real time face tracking. To deal
with pose variations, Cootes et al. [39] proposed view based AAM
models, which are a combination of a few 2D models. Sung et al. [40]
combined AAMwith a cylinder headmodel, where the global headmo-
tion parameters obtained from the cylinder model are used as the cues
of the AAM parameters for a good fitting or re-initialization. Xiao et al.
[41,42] proposed a real time face tracking algorithm by combining
2D + 3D AAM models. Zhou et al. [43] introduced temporal matching
constraints to enforce inter-frame coherence in AAM fitting. A compre-
hensive review is provided by Gao et al. [44].

2.1.5. Face tracking from range data
The face tracking systems using optical cameras suffer from bad

lighting conditions, which significantly alter the appearance of fea-
ture and cast shadows on faces. In contrast, face tracking systems by
using range data are more robust in such conditions. Structured
light stereo methods have been applied for capturing depth maps of
moving faces [45,46]. Zhang et al. [47] developed a 3D face tracking
system by employing synchronized video cameras and structured
light projectors to capture streams of images from multiple view-
points, and the 3D shapes were matched to a template by using
both depth error and shape regularization.

Following the recent development of inexpensive depth cameras,
there is rapidly growing interest in exploring depth information in vi-
sion systems. Fanelli et al. [48] developed a random forest algorithm
to estimate head orientations from the range data. Cai et al. [49] de-
veloped a maximum likelihood solution to track face shapes from
the noisy input depth data. Weise et al. [50] developed a realtime sys-
tem to reconstruct 3D head shapes from the range data, and used
them to generate face animations. Baltrusaitis et al. [51] extended
the Constrained Local Model approach to use depth information
alongside intensity for facial feature point tracking. Microsoft also
published its official Face Tracking SDK that is able to track facial
landmark and detect head pose and face expressions in realtime by
using a Kinect camera [52].

2.2. Facial expression recognition

Based on the tracked face region, we are able to analyze facial ex-
pressions. Facial expression recognition has attracted much attention
since as early as 1970s, and it has still been widely investigated in the
past decade [53–59], for there remain a lot of opening issues due to
the complexity and variety of facial expressions.
Thepreviousworks of automatic facial expression recognition can be
categorized into two main categories: image based methods [60–62]
and video-based methods [63,64,53]. The image based methods take
only mug shots as observations which capture characteristic images at
the apex of the expressions, and recognize expressions according to ap-
pearance features [61,65–67,60,53]. For examples, Gabor features were
used in [60] and demonstrated to be more robust in low-resolution fa-
cial expression recognition [62]. However, it is computationally expen-
sive to convolve face images with multi-banks of Gabor filters in order
to extract multi-scale and orientational coefficients. Haar features
were employed in [68] and the Haar + Adaboost method is proved to
operate at least two orders of magnitude faster than Gabor + SVM
method with a comparable recognition rate. Local Binary Pattern fea-
tures are used to efficiently represent the facial images [69]. In some
cases, it is sufficient to do expression recognition based on the informa-
tion on a single static image. However, a natural facial expression is dy-
namic, which evolves over time from the onset, the apex, to the offset.
The image based methods ignore such dynamic characteristics, so they
cannot perform well in most real world settings. In [53], it states that
spontaneous deliberately displayed facial behavior has differences
both in utilized facial muscles and their dynamics. Psychological re-
searches have also demonstrated that besides the categories of express-
ion, facial expression dynamics is important to decipher its meaning
[70]. Therefore, the video-based methods become much popular in
recent years [13,71,53], which aim to analyze the dynamics of facial
expression for recognition.

For the video-based methods, how to extract and represent the
dynamics of facial expression is a key issue. The typical approaches
track facial key points, and analyze their motion and geometric vari-
ation of facial appearance [72,73]. These approaches highly depend
on the facial key point detection and tracking, which should be invari-
ant to occlusions like glasses and facial hair as long as these do not en-
tirely occlude facial key points. On the other hand, they are easily
influenced by illumination. Some researchers assume that the dy-
namics of facial expression are embedded in a manifold subspace,
and such manifold subspace can be learned for facial expression rec-
ognition [61,74,75]. However, how to decide the dimension of mani-
fold is still an open problem. In [76], Zhao and Peitikainen proposed
Volume Local Binary Pattern (VLBP) and LBP-TOP (LBP from three or-
thogonal planes) descriptors to capture the dynamics of facial expres-
sion, which take the video as a volumetric data in the spatio-temporal
domain. The volume feature has the advantage of coupling temporal
dynamics with spatial appearance tightly. Similar volume features
have also been introduced to action recognition [77], video-based
face recognition [78], and pedestrian detection [79]. The performance
of volume features suffers from the varying speed at which the facial
expressions or actions performed by different people at various situ-
ations. One solution is to employ a dynamic time warping preprocess-
ing step, but in literature few work discussed this. The other approach
is to make the volume feature detectors robust to such variations. For
instance, in [77] the sequences are aligned at the start of the motion
but diverge at the end of the sequences, and their work automatically
learns to ignore the noisy tail ends of the sequences.

Most of the existing 2D intensity image or video feature-based
methods are suitable for the analysis of facial expressions under a
small range of head motions. Some attempts have been made to pro-
duce pose invariant facial expression classifiers. However, most of
these attempts have only considered yaw variations of up to 45°,
where the whole face is still visible [80]. They do not consider views
greater than 45°, when part of the face is occluded. In order to deal
with the inherent pose and illumination variations, 3D and 4D (dy-
namic 3D) recordings are increasingly used in expression analysis re-
search [81]. Zafeiriou and Yin [82] also present a brief overview on
this direction. The first systematic effort to collect 3D facial data for
facial expression recognition resulted in the creation of BU-3DFE
dataset [83], and they also collected a high-resolution 3D dynamic
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facial expression database BU-4DFE (3D + time) [84] two years later.
The majority of systems developed have attempted the recognition of
expressions from static 3D facial expression data [85–89], however,
more recent methods employ dynamic 3D facial expression data for
this purpose [90,91,88,92]. Most methods in the field of facial expres-
sions in 3D are all based on databases of acted, exaggerated expres-
sions of the six basic emotions, although these are significantly
different from natural facial expressions occurring in everyday life.

Furthermore, focus is now shifting towards the recognition of
spontaneous facial micro-expressions very recently [56,93–97]. Facial
micro-expressions are rapid involuntary facial expressions which re-
veal suppressed affect. In contrast to the large number of facial ex-
pression recognition publications, only a few studies have been
done on recognizing micro-expressions. Michael et al. [93] proposed
a method for automated deception detection using body movement
and extracted motion profiles to capture micro-expressions. In [56],
they show how temporal interpolation model together with the first
comprehensive spontaneous micro-expression corpus enable them
to accurately recognize these very short expressions. Shreve et al.
[94] used strain patterns as a feature descriptor for spotting micro-
expressions in videos. While more recently Wu et al. [95] used
GentleSVM, which is a combination of Gentleboost algorithm and
SVM classifier, for spotting and recognizing micro-expressions. How-
ever, the biggest obstacle of micro-expression recognition to date has
been the lack of a suitable database. In [97], they present a novel
Spontaneous Micro-expression Database, which is available online
to foster the research in this branch.

We have begun our work on facial expression from synthesizing the
3D facial expressions [98]. In this work, the deformable mesh was used
to track the facial motions, and the novel expressions can be synthe-
sized after the facial motion was mapped into low dimensional space.
The synthesis work was later extended in [99] for visual interactions.
We also perform expression classification in the real data [20], based
on our facial tracker. Fig. 6 shows an example of estimating facial ex-
pression. The facial motion is estimated by tracking the landmarks on
the faces, and the shape information is also integrated into expression
analysis. In order to further analyze the facial expression in the video,
the encoded dynamic features, which contain both spatial and temporal
information, were developed, and boostingmethodwas applied to han-
dle the large dimension problem [100,101]. In order to handle the time
Fig. 6. Sample processed frames showing tracked landmarks, estimated
resolution problem, the dynamic binary pattern was further proposed
[102,103]. Besides the expression classification, the continuous change
of expression also plays a key role in lots of applications. Therefore,
we further proposed the ranking model to estimate the expression in-
tensity [104]. Comparing with the previous methods, it was the first
time that the intensity order was exploited into a learning phase, and
this method achieved state-of-the-art performance.

2.3. Full body reconstruction and pose estimation

In addition to face modeling and analysis, whole body motions and
gestures are also important factors for Nonverbal Communication Com-
puting. Many applications of Nonverbal Communication Computing,
such as the recognition of ASL, need to combine the nonmanualmarkers
(e.g., facial expression) with body movements and gestures to improve
the recognition accuracy. Therefore, we have included the discussion of
full body reconstruction and 3D pose estimation.

A series of methods have been developed to reconstruct 3D body
gesture from monocular video sequences [105–110]. The general
framework for 3D pose recovery from monocular sequence has been
inspired by the gaining popularity of part-based methods for the
problem of 2D human pose alignment in the images. There exists ex-
tensive literature on part-based models for the detection and localiza-
tion of 2D human body parts in images. A few recent works on 2D
human pose estimation are [111–117]. Most of these approaches
focus on either improving feature extraction to improve part detec-
tion confidence or learning efficient priors to model plausible spatial
configurations of parts in 2D. Prominent among them is Yang and
Ramanan [112] which further enhanced the pictorial structure frame-
work by modeling contextual co-occurrence relations between differ-
ent part configurations. Poselet based approach [114] uses 3D human
pose dataset to improve part detectors and uses Hough transform to
vote for the 2D pose configuration. However, all the above ap-
proaches focus on estimating 2D pose which is significantly difficult
to constrain using standard anthropometric priors.

A much richer literature is in the domain of 3D human pose recov-
ery from monocular images. Several generative [118–121] as well as
discriminative [122–125] methods have been proposed for 3D
human pose prediction. One major challenge of resolving 3D-pose is
that the inverse mapping from observations to (3D pose) states is
head pose (top left corner) and predicted facial expression scores.

image of Fig.�6
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multi-valued and cannot be functionally or globally approximated
[123]. Therefore, these methods primarily focus on resolving ambigu-
ities due to multi-valuedness [122,123,125], and are based on coarse,
global feature encodings [124,123,125] such as silhouettes that are
often noisy and cannot resolve depth ambiguities in images. Lee and
Cohen [126] used local likelihood distribution for body parts to locally
refine 3D pose. However, their part appearance modeling is based on
skin pixel extraction that has limited application to detecting body
parts. More recently the work by Serra et al. [127] investigates 3D
pose estimation using 2D part-based models. Off-the-shelf articulated
2D pose detector is used to generate initial hypotheses for the 3D
pose estimation framework. Recent studies in feature extraction and
depth estimation from a single image [128,129] have also shown
that image encodings at multiple scale space can be used to estimate
depth.

We have developed a discriminative approach— Bayesian Mixture
of Experts (BME) [123]. BME models multivalued image-to-pose rela-
tions using several experts. Predictions from these experts are com-
bined in a probabilistic Gaussian mixture, with centers at predicted
values. However, the predicted 3D pose is sensitive to image ambigu-
ities and lacks true geometric or kinematic constraints. Therefore, we
can use the BME model as an efficient (but approximate) prior to a
search space in the greedy optimization framework that we have de-
veloped. Fig. 7 shows examples of BME predictions. The new frame-
work involves using both global shape cues and local alignment
features to search for the optimal 3D pose that best matches a given
2D observation, as shown in Fig. 8. Our 3D search framework intro-
duces a new method of 2D to 3D pose reconstruction that is flexible
and can be applied to cluttered real-world images. We combine dis-
criminative and generative approaches that include both local/
part-based fitting, as well as global shape, into a single framework.
The discriminative initialization can provide efficient robust approxi-
mation(s) while the generative 3D model will enable us to resolve
ambiguities due to depth and occlusion.

2.4. Activity recognition

Besides analyzing Nonverbal Communication Computing at the
level of individual persons, many researchers have also investigated
the group activities employing motion analysis and/or machine learn-
ing methods [131–139]. Modeling group activities plays an important
role in video surveillance and smart camera systems, and there are
many promising applications. For examples, automated recognition
and classification of videos enable more efficient video searching, e.g.
finding tackles in soccermatches, handshakes in news footage or typical
dance moves in music videos. It is also important for automatic surveil-
lance, e.g. monitoring shopping malls. Another example is to support
Fig. 7. Bayesian Mixture of Experts (BME) p
aging in places for the elderly in smart homes. Interaction applications
like human–computer interactions also benefit from the advances in
automatic human action recognition. Various abnormal activities have
been studied, including restricted-area access detection [140], car
counting [141], detection of people carrying cases [142], abandoned ob-
jects [143], group activity detection [144,145], social networkmodeling
[146], monitoring vehicles [147], scene analysis [148] and so on. Fig. 9
shows two sample frames from the BEHAVE dataset [130].

In recent years, a lot of algorithms have been proposed to improve
the performance of action/activity analysis.Many of them focus on find-
ing better image representation and features extracted from the image
sequences. Ideally, these should generalize over small variations in per-
son appearance, background, viewpoint and action types. At the same
time, the representationsmust be sufficiently rich for robust action clas-
sification. Using local descriptors or patches is a popular way to repre-
sent human actions. A video sequence is then represented by a
collection of independent patches. Accurate localization and back-
ground subtraction are not required. The local representations are in-
variant to changes in viewpoint, person appearance and partial
occlusions. Space–time interest points are the locations in space and
time where sudden changes of movement occur in the video. Laptev
and Lindeberg [149] extended the Harris corner detector [150] to 3D.
Space–time interest points are those points where the local neighbor-
hood has a significant variation in both the spatial and the temporal do-
mains. Dollár et al. [151] used dense sampling instead of sparse interest
points for feature representation. Thismethod applies Gaborfiltering on
the spatial and temporal dimensions individually. In addition to intensi-
ty and motion cues, Rapantzikos et al. [152] also incorporated color
information.

After local interest point detection, local descriptors are applied to
summarize an image/video patch. The spatial and temporal size of a
patch is usually determined by the scale of the interest point. Schuldt
et al. [153] calculated patches of normalized derivatives in space and
time. Niebles et al. [154] took the same approach but apply smoothing
before reducing the dimensionality using PCA. Dollar et al. [151] tested
with both image gradients and optical flow (refer to Mikolajczyk et al.
[155] for a detailed survey on features). How to model the relationship
among local features is also very important. One solution is to build
grids over spatial/temporal domain. Ikizler and Duygulu [156] sampled
oriented rectangular patches and bin them into a grid. Zhao and
Elgammal [157] used local descriptors around interest points in a histo-
gram with different levels of granularity. Nowozin et al. [158] used a
temporal instead of a spatial grid. Another way is to exploit correlations
between local descriptors to construct higher-level descriptors.
Scovanner et al. [159] constructed aword co-occurrencematrix for a re-
duced codebook size. Liu et al. [160] used a combination of the space–
time features and spin images to represent the correlations of features.
redictions from the top 5 experts [123].
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Fig. 8. An example of search for the optimal 3D pose that best matches a given 2D observation.
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These algorithms have been successfully applied to action recognition
problems. They focus on single action with one person (hand-waving,
running… [153]) or pair-wise action recognition (answer phone [161],
horse riding [162]). However, they do not consider interactions among
multiple people. For most of the surveillance systems in public area, it
is also important to identify group activities. Events likefighting or escap-
ing often involve multiple people and their interactions. Several algo-
rithms for group activity modeling have been proposed in recent years.
Different features are used for group activity: human body/body parts
[163,164], opticalflow [165] and detectingmoving regions [166]. Recent-
ly, Zhou et al. [144] and Ni et al. [145] used trajectory analysis to describe
different group activities.

Modeling social behaviors of people is an important branch to repre-
sent group activity, and it has beenwidely used in evacuation dynamics,
traffic analysis and graphics. Pedestrian behaviors have been studied
from a crowd perspective, with macroscopic models for crowd density
and velocity. On the other end,microscopicmodels dealwith individual
pedestrians. A popular model is the Social Force Model [167]. In the So-
cial Force Model, pedestrians react to energy potentials caused by other
pedestrians and static obstacles through a repulsive force, while trying
to keep a desired speed and motion direction. Helbing and Molnar
[167] originally introduced this concept to investigate people move-
ment dynamics. It is also applied to the simulation of crowd behavior
[168], virtual reality and studies in computer graphics for creating real-
istic animations of the crowd [169].
Fig. 9. Two samples from the
Social behavior analysis has also attracted much attention in the
computer vision community. Ali and Shah [170] used the cellular au-
tomaton model to track in extremely crowded situations. Antonini et
al. [171] proposed a variant of Discrete Choice Model to build a prob-
ability distribution over pedestrian positions in next time step.
Scovanner and Tappen [172] modeled pedestrians' dynamics and mo-
tions as a continuous optimization problem. Pellegrini et al. [173] pro-
posed a Linear Trajectory Avoidance (LTA) method to track multiple
targets. Predictions of velocities are computed by the minimization
of energy potentials. Recently, Mehran et al. [174] proposed a method
to model behaviors among a group of people. It represents the abnor-
mal patterns in a local region based on moving particles. Wu et al.
[175] used chaotic invariants of Lagrangian Particle Trajectories to
model abnormal patterns in crowded scenes. They have been success-
fully used in crowded scene modeling. We have also proposed a
method named as Interaction Energy Potential to model such interac-
tions [176]. It is based on the relationship between the current state
of a person and his/her reactions. Specifically, the relationship be-
tween the current state of a subject and the corresponding reaction
is explored to model the normal/abnormal patterns. The framework
will learn and recognize abnormal events in different environmental
contexts.

Although a significant amount of progress on activity recognition
has been achieved, there are still many open problems. First, accurate
segmentation and tracking are still a challenging task, which are
BEHAVE dataset [130].
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caused by the poor lighting, crowded environments, noisy images,
and camera movements. Therefore, developing robust segmentation
and tracking methods is always important. Furthermore, most public
databases are still based on experimental settings. There is still a big
gap between the research and practice. Thus it is necessary to validate
current approaches on real-world applications. New applications are
also encouraged, such as monitoring doctors and patients in the hos-
pital environment or other health-care facilities.

3. Future work and open problems

Research in Nonverbal Communication Computing and motion
analysis is maturing, and there are many exciting methods and appli-
cations that need to be addressed. Most current systems suffer from
the lack of accuracy and robustness, which is a major obstacle when
dealing with large data and complex motions. Analytic methods
should employ robust tracking and statistical learning methods to
identify the important motion parameters that describe behavior. In
this section, we discuss the future work and open problems in two
main directions: 1) robust motion analysis methods using 3D deform-
able models, and 2) fusion of domain knowledge and multiple cues.

3.1. 3D deformable models for motion analysis

Most of the above-mentioned motion analysis methods are based
on 2D models. Traditional 2D methods are not able to handle large off
plane pose changes (e.g., rotations or head tilts) and occlusions. The
reason is that objects they track have a 3D shape and a 2D solution
tracks the projection on the plane only. Therefore, when the rotation
is large (e.g., head shaking), the 2D shape of the face may be
degenerated to a thin region.

To deal with such problems, one can train multiple 2D models at
different rotations, and switch among multiple models during motion
analysis. However, it significantly increases the computational com-
plexity, and the rotation space is actually infinite (it is a continuous
variable). Therefore the solution is not as accurate as that from a con-
tinuous 3D model. A 2D tracking solution has significant problems
with large occlusions since it only tracks 2D projections; for example
a hand in front of a face is ambiguous in terms of how far it is from the
face in 3D, touching or not. Using 3D models (e.g., a 3D face mask)
[178,5,179,178], we can parametrically represent 3D rotations and
relative depth, which we can estimate during tracking. Therefore a
3D model can deal seamlessly with occlusions and non-planar move-
ment, as opposed to 2D approaches. In addition, in the case of defor-
mations, it can also deal with 3D deformations that a 2D solution
cannot. Fig. 10 shows an example of using a 3D deformable model.
It is able to handle occlusion and large rotations. Fig. 11 shows an ex-
ample of tracking hand in 3D. It is able to robustly track a sequence of
hand rotation and finger movements (such accurate hand tracking re-
sults can be employed for deception detection [6]).

In addition, traditional 2D approaches provide the shape (in the
form of 2D contours) of the face, eyes, eyebrows, nose, and other sub-
parts, which are often used for recognition. They work well when
people face the camera. However, they are challenged with non-
frontal facial poses and often are not robust to head shaking, head
tilting and large rotations. By contrast, with a 3Dmodel based tracker,
one can track inherently 3D parameters which are continuous and not
discrete, and can also obtain improved recognition results for both
the head pose and related facial deformations. An additional signifi-
cant benefit of a 3D approach is that it can naturally normalize the
tracking pose and facial estimation parameters, which is a require-
ment for the recognition of pose and expression. In a 2D approach
the normalization process is as accurate as in a 3D approach since
the perspective distortions are nonlinear [180,181].

Although 3D approaches can achieve promising performance, its
main challenge is the computational efficiency. 3D approaches
usually have significantly more degrees of freedom and thus estimat-
ing 3D parameters is more complex. Therefore, developing real-time
3D solutions is a very important research topic.

3.2. Fusion of domain knowledge and multiple cues

To further improve the performance of Nonverbal Communication
Computing, researchers have proposed solutions such as the incorpo-
ration of nonverbal coding systems and domain knowledge in motion
analysis and behavior interpretation. They include kinesics, proxe-
mics, and linguistic knowledge (e.g., in ASL). Possible future contexts
will range from highly structured (e.g., interviews and ASL) to little
structured (e.g., casual conversations), from face-to-face to mediated
contexts, social interactions and social network-based interactions,
and will include both normal and impaired communication. These ex-
tensions will allow the research of Nonverbal Communication Com-
puting to evolve beyond initial foundational science and proof of
concept, to include and solve problems in applied contexts. For exam-
ple, from linguistic knowledge, we know that changes in eyebrow
configuration, in combination with head gestures and other facial ex-
pressions, are used to signal essential grammatical information in
signed languages. Therefore, we propose methods to recognize the
components of eyebrow and periodic head gestures, and successfully
improve the detection of non-manual grammatical markings in ASL
[4]. The main challenge of these approaches is how to effectively in-
corporate domain knowledge into traditional models, and how to ef-
ficiently solve them. The composite prior models are promising
solutions because of their flexibility in modeling prior knowledge
and their computational efficiency [182,183].

Finally, some of the clusterings of nonverbal behaviors observed to
correlate with specific constructions can be decomposed into compo-
nents with their own semantic contributions, physical realizations,
and linguistic distributions. Therefore, combining multiple nonverbal
behaviors can potentially advance the performance of Nonverbal
Communication Computing. In addition, combining nonverbal behav-
ior analytics with other behavioral cues will allow eventually the
comprehensive study of human behavior and human–computer in-
teraction. A major challenge of these approaches is to effectively
fuse these cues, or features. Since these features may have redundant
information, sparse methods, especially group sparsity, are potential
solutions to fuse them [184–186]. These fusionmethods can automat-
ically discover a sparse subset of multiple features and improve the
recognition accuracy and efficiency.

3.3. Summary

To summarize, although a large amount of work has been done in
the area of Nonverbal Communication Computing, there are still
many open problems and new promising applications to explore.
Other interesting topics and open problems for future research in-
clude large-scale data analysis, physics-based modeling, and robust
learning. For example, most datasets used for ASL recognition
[187,188] are not large-scale. However, to be able to process massive
data in real world application, it is necessary to provide ready access
to large-scale, high-quality multimodal corpora for several signed and
spoken languages, with linguistic annotation, fine-grained computa-
tional analysis, and tools for data visualization. This has been
constrained by difficulties inherent in collecting, annotating, and an-
alyzing large quantities of video data. Therefore, new protocols
should be developed for collection, analysis, storage, and dissemina-
tion of high-quality audio/video language corpora larger in scale
and more diverse in content than ASL datasets now available. New
promising applications are also encouraged. For example, researchers
have started to analyze neurological diseases, such as Parkinson's dis-
ease and schizophrenia, by coupling motion analysis methods and
brain activity. The computational methods developed in Nonverbal



Fig. 10. Tracking results using a 3D deformable model. It is robust to occlusion and large rotations.
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Communication Computing can be combined with brain activity anal-
ysis to transform the screening and treatments of these neurological
spectral disorders. Such applications will have significant scientific
and societal impact.
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