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Abstract
Non-linear regression is a fundamental and yet
under-developing methodology in solving many
problems in Artificial Intelligence. The canonical
control and predictions mostly utilize linear
models or multi-linear models. However, due
to the high non-linearity of the systems, those
linear prediction models cannot fully cover the
complexity of the problems. In this paper, we
propose a robust two-stage hierarchical regression
approach, to solve a popular Human-Computer
Interaction, the unconstrained face-in-the-wild
keypoint detection problem for computers. The
environment is the still images, videos and
live camera streams from machine vision. We
firstly propose a holistic regression model to
initialize the face fiducial points under different
head pose assumptions. Second, to reduce
local shape variance, a hierarchical part-based
regression method is further proposed to refine the
global regression output. Experiments on several
challenging faces-in-the-wild datasets demonstrate
the consistently better accuracy of our method,
when compared to the state-of-the-art.

1 Introduction
Face fiducial feature detection is a fundamental step in
many Human-Computer Interaction (HCI) applications, such
as face recognition, human emotion analysis, autonomous
driving, etc. Many different algorithms have been proposed
and have shown promising results both in accuracy and
speed [Xiong and la Torre, 2013; Belhumeur et al., 2011;
Cootes et al., 2012; Sagonas et al., 2013]. They aim towards
not only the near-frontal faces but also faces in the wild.
However, due to large head pose variation, various types
of occlusions, unpredictable illumination and some other
factors, the fiducial point (landmark) localization task still
remains challenging.

Early representative work, such as the Active Shape
Model (ASM) [Cootes et al., 1995; 1998; Matthews and
Baker, 2004], uses a parametric model to represent a
set of the face fiducial points and proposed an iterative
framework for optimizing the fiducial positions. Following

Figure 1: Results of our method on unconstrained face
images with pose variations and occlusion. Detected
occlusion landmarks are denoted in red dots and
non-occluded landmarks are denoted in green dots.

these efforts, researchers have attempted to build more
robust and sophisticated models which can be robust to
different types of interfering conditions, such as pose and
expression variations exemplified in Fig. 1. The multi-view
deformable part model [Zhu and Ramanan, 2012; Ghiasi
and Fowlkes, 2014] alleviates the pose problem. However,
discrete pose intervals and rigid shape modeling make it
difficult to capture all possible facial variations. Recently,
regression based methods [Cao et al., 2012; Xiong and la
Torre, 2013; Ren et al., 2014] report accuracy approaching
the human labeling level and their typical runtime can
be within several milliseconds. However, the regression
based methods may significantly suffer from uncommon part
appearance due to extreme poses, lighting or expression.
Noisy appearance results in bad features and the mapped
landmark displacement is disturbed. On the other hand,
faces in unconstrained environments are often affected by
occlusion as shown in Fig. 1. Hence, occlusion handling
becomes crucial for improving these methods. An ensemble
of a set of occlusion-resistant regressors relying on the
probabilistic inferring is proposed to implicitly overcome
occlusion [Yu et al., 2014]. Explicitly detecting the occlusion
and incorporating the occlusion information into landmark
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detection also show some satisfactory [Ghiasi and Fowlkes,
2014]. Yet the interaction between the occlusion detection
and landmark localization is under investigation.

Another important aspect for the regression-based methods
is the number of iterations. Usually there is no sophisticated
rule to set the “ideal” number of iterations. An empirical
choice for the number of iterations may cause the regressor
to under-fit the data or drift away from the correct solution.
Establishing an online evaluation strategy would help to
indicate how well the landmarks are localized by the current
stage. Furthermore, if the occlusion information can be
simultaneously retrieved with the localization process, the
framework would be more unified and efficient.

In this paper, we propose a two-stage framework consisting
of a pose-dependent holistic regression model and a
hierarchical part-based regression model to robustly localize
the face fiducial points. Faces with different poses are fed
to different sets of pose-dependent regressors. Consequently,
the shape variation inside each set is largely reduced.
From the holistic regressors, the hierarchical part regressors
are automatically learned by our proposed projection
optimization algorithm. Based upon the hierarchical
part-based structure, the alignment likelihood is firstly
evaluated to determine whether further local regressions
are needed and also to estimate the occlusion information
simultaneously; then the hierarchical part-based regression
models are applied to corresponding parts to further refine
the landmarks. Occlusion status are propagated to all the
landmarks from the previous occlusion detection during the
part-based regression.

2 Related Work
Numerous methods have been proposed in the facial
feature localization literature, e.g. deformable part
model [Cristinacce and Cootes, 2007a; Huang et al.,
2007b; Saragih and Goecke, 2007; Saragih et al., 2011;
Tzimiropoulos and Pantic, 2013; Cheng et al., 2013; Yu
et al., 2013; Medina and Zafeiriou, 2014; Xing et al.,
2014], regression [Liang et al., 2008; Cao et al., 2012;
Xiong and la Torre, 2013; Ren et al., 2014; Zhu et al.,
2015], convolutional neural network [Zhang et al., 2014b;
2014a], etc.

To overcome pose variation, multi-view shape
models [Cootes and Taylor, 1997; Zhu and Ramanan, 2012]
were proposed either by local search to estimate the head
pose or by combining models from different view-points.
The regression-based methods can also handle certain pose
variations, which are incorporated into the training data.
However, too much pose variation increases the training
complexity. Cascaded pose regression [Dollar et al., 2010;
Burgos-Artizzu et al., 2013] and conditional regression
forests [Dantone et al., 2012] are the most similar works
to ours. The former ones take pose as an explicit factor to
regress, while ours treats the pose as a conditional hidden
state. The latter one partitions the poses into subspaces
before the regression fitting. Within each subspace, they
aggregate many regression trees to predict landmarks, while
in our method, we allow the pose state to change during each

step of regressions.
A number of regression constructions have since been

proposed, such as boosted regressions [Cristinacce and
Cootes, 2007b; Valstar et al., 2010; Martinez et al., 2012],
regression forests [Dantone et al., 2012; Yang and Patras,
2013; Kazemi and Sullivan, 2014], linear regressions [Xiong
and la Torre, 2013; Dollar et al., 2010; Asthana et al.,
2014], regression ferns [Cao et al., 2012; Burgos-Artizzu
et al., 2013], etc. Regression-based methods are fast but
are sensitive to occlusion. There have been several works
introduced for handling occlusion, for example, Artizzu et
al. [Burgos-Artizzu et al., 2013] proposed a block-wise
statistical model to approximate the occlusion. Yu et al. [Yu et

al., 2014] introduced multiple regressors which are specially
designed to infer the particular occlusions. A similar
work [Ghiasi and Fowlkes, 2014] also used a hierarchical
deformable part model to localize landmarks. This method
is similar to [Zhu and Ramanan, 2012] in which it sets
up multi-view shape models and adopts detection based
strategies to vote for the positions. To infer the occlusion
status, both [Ghiasi and Fowlkes, 2014] and ours use
part-based models. But for alignment, instead of detection
of facial features in a pictorial structure in [Ghiasi and
Fowlkes, 2014], we model both holistic and local landmark
update as a regression based strategy and jointly learn
the part regressors from holistic regressors in a projection
optimization framework.

3 Our Approach
we propose a hierarchical regression method with
pose-dependent and part based modeling. As shown in
Fig. 2, we first propose a conditional cascaded regression
model to separate the regression manifold into several
subspaces. Then a hierarchical part-based model is proposed
to decompose the holistic structure into a more flexible
part-based hierarchical structure. Each part represents a
facial component, e.g. mouth. By inferring the occlusion
conditions for the parts, the landmarks’ update model is
regularized.

3.1 Preliminary
Given the definition of N facial feature points, denoted as s =
[x1,x2, ...,xN

], and their starting position s0, the goal is to
minimize the squared error in coordinates k(s0+�s)�s⇤k2,
where s⇤ is the ground truth. The evidence we could observe
is only the appearance feature. Thus, Eq. 1 minimizes the
error in feature space instead of the coordinate space.

argmin

�s
kh(I(s0 +�s))� h(I(s⇤))k22 (1)

h is the feature descriptor, i.e. SIFT feature [Lowe, 2004].
I(s) are the facial image patches surrounding each fiducial
point of s. h(I(s)) is the concatenated feature descriptor
applied on each of the image patches I(s). The cascaded
regression based framework [Xiong and la Torre, 2013] has
the shape update form as follows:

s
t+1 = s

t

+R
t

�

t

+ b
t

(2)
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(a) Face Input (b) Conditional Cascaded Regression  (c)Hierarchical Part-based Regression  (d)Parts Connections 

Figure 2: Graphical structure illustration of the proposed framework. (a) The input face image. (b) Conditioned by head poses,
the face key points are initialized with different priors and a cascaded regression is applied as global shape fitting. (c) The
holistic shape is split into parts hierarchically to effectively overcome the local shape variance, e.g. the shape is firstly divided
into left part (left profile, left eyebrow and left eye), middle part (nose and mouth) and right part (right profile, right eyebrow and
right eye). The second layer is derived from the first layer by further dividing the components. (d) The geometric connections
of the two layer parts defined in (c).

where R
t

is the regression matrix and b
t

is the intercept.
�

t

= h(I(s
t

)) denotes a local feature descriptor all through
the work. Typically the number of iterations is fixed to 4

or 5. The cascaded regression attempts to apply a set of
linear regressions sequentially to predict landmark positions.
Given ground truth s⇤, the training process is to minimize the
prediction error over all training samples T as follows:

argmin

Rt,bt

X

z2T
ks⇤ � (s

t

+R
t

�

z,st + b
t

)k22 (3)

3.2 Conditional Cascaded Regression
To reduce the complexity of the face shape manifold, we
divide the manifold into several subspaces, as shown in Fig. 2
(b). Shapes are mainly clustered into three groups, the frontal
view, the left view and the right view. We set the threshold
angles to be �22.5

� and 22.5

�. Then given image I , by
introducing head pose parameter ✓, the regression problem
becomes equivalent to solving Eq. 4.

argmax

�s,✓2⇥
p(�s|I) = 1

⌅

p(�s|✓, I)p(✓|I) (4)

where ⇥ is the set of discrete head pose intervals, ⌅ is
the distribution normalizer and the pose likelihood term is
learned based on the logistic regression framework:

p(✓|I) = 1

�

exp(w

✓

 + c

✓

)

1 + exp(w

✓

 + c

✓

)

(5)

where  is a holistic appearance feature, i.e. HoG and � is a
normalization factor to make p(✓|I) a distribution.

The conditional alignment likelihood p(�s|✓, I) is
modeled by the coordinate displacement in Eq. 6,

p(�s|✓, I) = 1

�

exp(��kR
t

(✓)�+ b
t

(✓)k2) (6)

where � is again a normalization factor. Notice that �s =

R
t

(✓)� + b
t

(✓). We assume the alignment likelihood
p(�s|✓, I) follows the exponential distribution. At each
regression iteration, we maximize the alignment likelihood
in Eq. 4 by conditioning on different head poses. The

corresponding holistic regressors are applied to update the
landmark positions. Such procedure largely reduces the shape
complexity caused by head poses and are more likely to
converge.

3.3 Hierarchical Part-based Regression
Holistic regression is effective in aligning the face as a whole,
but it may not produce perfect fitting results at local parts due
to appearance and shape deformation. For instance, assuming
the same face with eyes fully open and half open, holistic
regressions localize landmarks as a whole but may fail in the
eye region due to the lack of local constraint from the holistic
regression. A part-based regression step could alleviate this
problem more by deformable local fitting.

Part-based Local Regression
From the holistic regression, each landmark’s update utilizes
exactly one row of R. By dividing the facial area into parts,
we partition the regression matrix R into row-wise blocks.
Recall from Fig. 2 (c), for the first layer, we divide the shape
into left, middle and right parts. As shown in Eq. 7, the
partition of R is denoted as R = [R

l

,R
m

,R
r

]

T , where
R

l

,R
m

and R
r

correspond to left, middle and right parts,
respectively. Such division is recursively applied by further
partitioning the previous layer’s blocks into smaller units.
Fig. 2 (c) shows the second layer of facial components, i.e.
left profile, mouth, left eye, etc.

Notice that the partition still uses the holistic feature �
for update �s = [R

l

,R
m

,R
r

]

T

�. In other words, inside
the regressors R

l

,R
m

,R
r

themselves, the correlation in
between should be diminished. We aim to obtain local
regressors from the holistic regressor R as shown in Eq. 7.

R =

"

R
l

R
m

R
r

#

! R̂ =

2

4

R̂
l

0 0
0 R̂

m

0
0 0 R̂

r

3

5 (7)

where each part regressor ˆR
i

, i = l,m, r is a block-wise
sub-matrix. The transformation optimization from R

i

to
R̂i is introduced in Sec. 3.4. After generating the local
part regressors directly from the holistic ones, the part-based
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regression confirms to the same update rule, �s
i

= R̂
i

� +

b̂
i

, i = l, r,m.

Localization Evaluation
To determine when to halt the holistic and local regressions,
we set up an evaluation function to validate the alignment.
The function propagates each part’s (a.k.a component’s)
alignment score to the upper layer and finally generate the
overall alignment score. Given the k

th component G
k

and its
landmarks si 2 G

k

, the part score function can be defined as:

E(I,G
k

) =

X

i

U(I, s
i

) +

X

i,j

Q(si, sj), si, sj 2 G
k

(8)

where U(I, s
i

) is the unary term defined in Eq. 9, i.e. the
inner product of the feature and its corresponding weights.
�(I, s

i

) is the descriptor extracted at landmark s
i

. The
relationship between � appeared in the previous sections as
descriptor and �(I, s

i

) is � = [�(I, s1), ...,�(I, sN )].

U(I, s

i

) =< w

u

i

,�(I, s

i

) >

Q(s
i

, s
j

) =< w

b

i,j

,q(s
i

, s
j

) > (9)

The second pair-wise term Q(s
i

, s
j

) is defined as the
geometric smoothness term of two landmarks in one
component, i.e. q(s

i

, s
j

) = [|s
i

� s
j

|,�|s
i

� s
j

|], s
i

, s
j

2
G
k

, which is independent from the image I , the landmark’s
alignment likelihood and occlusion condition.

Occlusion Regularization
We then independently train a classifier O

i

= w

o,i

�(I, s
i

) +

c

o,i

to provide the occlusion likelihood of each landmark
at each regression step. This additional classification step
produces little overhead due to the sharing of features for both
regression and occlusion detection.

Misalignment is not necessarily caused by occlusion, while
occlusion can adversely affect the alignment. Suppose
landmark s

i

is occluded. The alignment score U(I, s
i

) is
close to 0, which does not contribute to the overall score.
By detecting occlusion of s

i

, we can equivalently set the
feature at s

i

as �(I, s
i

) = 0. During the process, the
landmarks’ occlusion condition is confidently predicted by
both the occlusion detector and the alignment score.

All the landmarks’ occlusion states are then modulated by
the neighboring landmarks with a Markov Random Field.
Landmarks with sufficiently small and large scores of O

i

and alignment are selected as negative and positive boundary
conditions respectively. By setting up the connection weights
among the landmarks, a label propagation algorithm [Zhu et

al., 2003] is applied to assign the unlabeled landmarks. Our
system framework is illustrated in Algorithm 1.

3.4 Holistic and Part Regression Training
In this section we describe the training of the holistic
regressors and how to derive the hierarchical part regressors
directly from holistic regressors. We also introduce the
training of the graphical model for evaluating the alignment
likelihood.

Holistic Regressor Training: We firstly introduce the
training details for holistic regressors. In experiments, we

Algorithm 1 The two-stage regression algorithm.
1: Input: I , s0, threshold d

2: Output: s, O
3: repeat
4: run Eq. 2, Eq. 6 and Eq. 5, optimize Eq. 4.
5: evaluate O

i

= w

o,i

�(I, s

i

) + c

o,i

, i = 1, ..., N , set
�(I, sO0) = 0

6: until T1 times
7: fix ✓, evaluate Eq. 8, if E(G) > d, halt.
8: repeat
9: for layers in hierarchical structure

10: run part-based Eq. 2
11: evaluate O

i

= w

o,i

�(I, s

i

) + c

o,i

, i = 1, ..., N , set
�(I, sO0) = 0

12: evaluate Eq. 8, if E(G) > d, halt.
13: end
14: until T2 times

tried the gaussian random perturbation of each landmark,
even if the perturbation step is small, the regression result
returns jittering shapes. When the training samples are
not sufficient, we augment the initialization by rotation and
random perturbation of global translation. Meanwhile, to
prevent overfitting, denoting �s = s⇤ � s0, we modify Eq. 3
by adding the regularization terms, which is Eq. 10. The
problem can be solved by splitting R into row pieces and each
piece-wise sub-problem is convex.

min

R,b

X

z2T

X

s0

k�s�R�
z

� bk22 +
⌘1

2

tr(RRT

) +

⌘2

2

bTb

(10)

Part-based Regressor Derivation: As we have
introduced in Eq. 7, to convert holistic regressors R

i

to
part regressors R̂

i

, we propose a projection matrix W to
accomplish the transformation. The original partitioned
regressor is projected onto a new subspace in which the
correlation between parts is diminished, as shown in Eq. 11.
Projection from holistic regressors is expected to preserve the
global information for the local regression. Directly training
part regressors only contains local information, which is
sensitive to noise. Moreover, bounding the update error
provides criterion for automatic update halting.

R̂
i

= R
i

W
i

, i = l, r,m (11)

We expect that after transforming the original R into
block-wise R̂, by bounding the part regression error, the
holistic regression error becomes a supreme of the part
regression error in Eq. 12.

�s = R
i

�+ b
i

= sup

Wi

n

[R
i

,b
i

]W
i

⇥

�

T

, 1

⇤

T

o

(12)

Thus, it leads to an optimization over W
i

, i = l, r,m such
that the local part regression further reduces the update error
based on the holistic result. The above optimization problem
can be formulated as:

argmin

Wi

k ˜R
i

W
i

˜

�k22 + kW
i

k2
F

,WT

i

W
i

= I (13)
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(a) LFW
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(b) LFPW
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(c) Helen

Figure 3: Cumulative distribution function curves of normalized error on LFW, LFPW and Helen, comparing the proposed
method HPR with other state-of-the-art methods. The horizontal axis is the normalized error and the vertical axis is the image
proportion of the volume of database. (a) Error CDF on LFW database. (b) Error CDF on LFPW database. (c) Error CDF on
Helen database.

We simplify the notation of R
i

,b
i

as ˜R
i

= [R
i

,b
i

] and
the raw feature is rephrased as ˜

� =

⇥

�

T

, 1

⇤

T . ˜R
i

2
R(m,n)

,W
i

2 R(n,m), m is the number of landmarks in the
corresponding part and n is the original feature dimension
plus one dimension of b

i

. WT

i

W
i

= I constraints that the
projection of each part should be orthogonal.

By solving independently each part’s transformation
matrix W

i

, we obtain each local part’s regressor R̂i which
is guaranteed to further shrink the localization error because
the optimization of Eq. 13 is to find the optimal W

i

such that
the displacement from the ground truth is minimized from
the holistic step. For each part’s regressor, a second layer
regressor can be achieved under the same construction.

Localization Evaluation Model Training: The weights
for score calculation of landmark localization evaluation in
Eq. 9 are learned in the following. We first concatenate
bottom layer unary weights wu

i

as wu, bottom layer pair-wise
weights w

b

i,j

as w

b and upper layer pair-wise weight wg

i,j

as w

g . We denote q(s) = [q(s
i

, s
j

)] for all pairs (i, j), in
which the pair-wise smoothness features for all landmarks
are concatenated. Similarly, q(G) = [q(G

i

,G
j

)] denotes the
upper level pair-wise feature for all the parts. Re-arranging
all the weights as w = [wu

,w

b

,w

g

] and all the features as
f = [�,q(s),q(G)], the evaluation score is wT f . We set the
loss function as hinge loss, which is the first term in Eq. 14.
By regularizing w with l2 norm, minimizing the loss function
leads to solution of w for all the parts.

argmin

w

X

fi2C
max(0, 1� ↵ ·wT f

i

) +

�

2

kwk22 (14)

The training set C includes both positive and negative
samples. The positive samples are the facial images with
ground truth landmark positions while the negative samples
are non-facial images with initialized landmarks or facial
images with unaligned landmarks. ↵ is the ground truth
label taking 1 if it is positive sample and �1 if the sample
is negative. The above problem can be efficiently solved by
gradient descent approach.

4 Experiments
We evaluate our method on six challenging benchmarks, i.e.,
Labeled Faces in the Wild (LFW) [Huang et al., 2007a],
Labeled Facial Parts in the Wild (LFPW) [Belhumeur et al.,
2011], Helen [Le et al., 2012], Annotated Faces-in-the-Wild
(AFW) [Zhu and Ramanan, 2012], iBug [Sagonas et

al., 2013] and Caltech Occluded Faces in the Wild
(COFW) [Burgos-Artizzu et al., 2013]. To evaluate the
localization performance under occlusion, subsets of LFPW
and Helen are selected, which are denoted as LFPW-O
and Helen-O. During all the experiments, LFPW and Helen
refer to the whole datasets. Our occlusion detection
method is evaluated on LFPW-O, Helen-O and COFW, with
comparison to the state-of-the-art.

4.1 Experimental Setting
Evaluation: We compare our method, “hierarchical
part-based regression” (HPR), with five state-of-the-art
methods, Supervised Descent Method (SDM) [Xiong
and la Torre, 2013], Robust Cascaded Pose Regression
(RCPR) [Burgos-Artizzu et al., 2013], Consensus of
Regression (CoR) [Yu et al., 2014], Dlib [Kazemi and
Sullivan, 2014] and Chehra [Asthana et al., 2014]. These
methods report the top performance among the most
recent regression-based methods. Methods with different
experimental settings, e.g. Neural Network structures are
currently not compared. The codes are provided by the
authors from internet. RCPR provides its training code in
which the annotation can be defined by input data. To
make the comparison consistent, the training databases for
HPR, RCPR and CoR are the same, which are LFPW and
Helen. SDM is reported to be trained with MultiPIE and
LFW. Since SDM and Chehra uses 49 points annotation
for training and testing, we also select the overlapped 49
points from our 66 points training setup for testing on LFPW,
Helen, AFW and iBug, by neglecting 17 points of face
profile. For fair comparison, we use the images in which
faces are successfully detected by a third-party face detector,
i.e., Viola-Jones detector [Viola and Jones, 2004].
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(a) AFW

0 0.02 0.04 0.06 0.08
0

0.1

0.3

0.5

0.7

0.9

Relative RMS error as fraction of face size

Pr
op

or
tio

n 
of

 im
ag

es

 

 

CoR
SDM
RCPR
HPR
p-HPR
pf-HPR
Dlib
Chehra

(b) iBug

Figure 4: Cumulative distribution function curves of normalized error on AFW and iBug, comparing the proposed method HPR
with other state-of-the-art methods. (a) Error CDF on AFW database. (b) Error CDF on iBug database.

4.2 Localization on Wild Databases
As shown in Fig. 3, our method HPR performs consistently
better, especially the performance on Helen database, which
is 10% higher at relative error 0.02. The error is calculated
by dividing root mean squal pixel error over the face size.
Face size is calculated as the tight bounding box around
the ground truth. The proposed method explicitly separates
the landmarks into components which is more suitable for
deforming the local shape variance. The average runtime on
a 640 by 480 image is around 0.3s in Matlab with a dual core
i7 3.4GHz CPU.

Furthermore, the AFW and iBug, two more challenging
databases, are evaluated in Fig. 4. We provide each face
in AFW and iBug with a bounding box according to the
ground truth for fair comparison.The proposed method is still
consistently on top of the other state-of-the-art methods.

4.3 Localization on Occluded Datasets
For validating accuracy, an evaluation is conducted on the
selected occlusion datasets, LFPW-O and Helen-O and the
specific occlusion database COFW. Quantitative results from
Table. 1 show that HPR achieves consistently better results
on the occlusion datasets especially comparing the two
occlusion-robust methods, CoR and RCPR. Note that RCPR
is trained based on the COFW itself while other methods
including ours are not trained on this database.

Further, we synthesize occlusion data from Helen and
AFW. A black bounding box is centered at the randomly
selected points. The occlusion ratio is controlled by the

Table 1: RMS pixel error of CoR, SDM, RCPR, and proposed
method HPR on LFPW-O, Helen-O and COFW databases.

LFPW-O Helen-O COFW
CoR 3.33 7.10 3.46
SDM 4.49 9.52 3.63
RCPR 5.73 9.37 3.03
HPR 3.17 7.03 3.56
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(b) AFW

Figure 5: Cumulative distribution function curves of
normalized error on Helen and AFW at occlusion level 5%,
10%, 15% and 20%. Red: HPR; Black: CoR; Blue: RCPR.

black bounding box area over the facial area, i.e. 5%, 10%,
15% and 20%, respectively.The CDFs comparing on the
synthesized occlusion data is shown in Fig. 5. Regarding the
increasing levels of occlusion, all the methods show accuracy
decrease. RCPR is relatively more sensitive to the occlusion
conditions since the accuracy of different occlusion levels
varies largely. Our method performs better on Helen and on
AFW at lower occlusion level, while it shows sensitive trend
on AFW when the occlusion portion increases.

5 Conclusion
We introduced a hierarchical non-linear regression model
and facilitated it to the face landmark localization HCI. The
non-linear regression model predicts quite well the highly
non-linear manifold of the human face shape. With the
proposed conditioned regressions, head pose variation is
controlled within each separated subspace and the global
shape is fast localized. With hierarchical part-based
regression, the alignment is evaluated and occlusion
information is fed back to the local regressions. Meanwhile,
local shape variance is compensated by the part-based
regression and the occlusion information is propagated to
other landmarks at the last step. Demonstrated by the
extensive experiments, the top localization accuracy and fast
performance provide high potential for more applications
such as human tracking.
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