Skeleton Based As-Rigid-As-Possible Volume Modeling

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas

Computer Science Department, Rutgers University

同 ト イ ヨ ト イ ヨ ト

Introduction

 As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods.

Olga Sorkine, et al,: Laplacian Surface Editing. SGP2004

Introduction

 As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods.

< ロ > < 同 > < 回 > < 回 >

Olga Sorkine, et al,: Laplacian Surface Editing. SGP2004

Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007

Introduction

- As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods.
- We are interested in the volume preservation.

< ロ > < 同 > < 回 > < 回 >

- Olga Sorkine, et al,: Laplacian Surface Editing. SGP2004
- Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007

Introduction

- As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods.
- We are interested in the volume preservation.
- VGL is a good approach. However, we do not want to break the manifoldness of ARAP surface modeling or sacrificing the speed.

- Olga Sorkine, et al,: Laplacian Surface Editing. SGP2004
- Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
- Kun Zhou, et al,: Large mesh deformation using the volumetric graph Laplacian SIGGRAPH 2005.

Introduction

- As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods.
- We are interested in the volume preservation.
- VGL is a good approach. However, we do not want to break the manifoldness of ARAP surface modeling or sacrificing the speed.
- We do it by leveraging the skeleton information.

- Olga Sorkine, et al,: Laplacian Surface Editing. SGP2004
- Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
- Kun Zhou, et al,: Large mesh deformation using the volumetric graph Laplacian SIGGRAPH 2005.

Linear LSE Rotation and edge length constraints Skeleton and volume constraints

Linear LSE with C^0 continuity

 Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.

/⊒ ► < ∃ ►

Linear LSE Rotation and edge length constraints Skeleton and volume constraints

Linear LSE with C^0 continuity

- Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.
- Given original coordinates V, the connectivity, and m control points, the reconstructed object V' can be obtained by minimizing: $\|LV' - \delta\|_2^2 + \sum_{i=1}^m \|v'_{c_i} - v_{c_i}\|_2^2$

・ 同 ト ・ ヨ ト ・ ヨ

Linear LSE Rotation and edge length constraints Skeleton and volume constraints

Linear LSE with C^0 continuity

- Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.
- Given original coordinates *V*, the connectivity, and *m* control points, the reconstructed object *V'* can be obtained by minimizing: $\|LV' - \delta\|_2^2 + \sum_{i=1}^m \|v'_{c_i} - v_{c_i}\|_2^2$

•
$$\begin{bmatrix} L \\ I_c \end{bmatrix} V' = \begin{bmatrix} \delta \\ V_c \end{bmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ

Linear LSE Rotation and edge length constraints Skeleton and volume constraints

Linear LSE with C^0 continuity

- Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.
- Given original coordinates *V*, the connectivity, and *m* control points, the reconstructed object *V'* can be obtained by minimizing: $\|IV' - \delta\|_{2}^{2} + \sum_{i=1}^{m} \|v' - v_{i}\|_{2}^{2}$

$$\|LV^{*} - 0\|_{2}^{2} + \sum_{i=1}^{n} \|V_{c_{i}} - V_{c_{i}}\|$$

•
$$\begin{bmatrix} L \\ I_c \end{bmatrix} V' = \begin{bmatrix} \delta \\ V_c \end{bmatrix}$$

• When rotations are large, the deformation may not be natural.

Linear LSE Rotation and edge length constraints Skeleton and volume constraints

Linear LSE with C^0 continuity

- Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.
- Given original coordinates V, the connectivity, and m control points, the reconstructed object V' can be obtained by minimizing:
 ||UV' = δ||² + Σ^m ||y' = y ||²

$$\|LV' - \delta\|_2^2 + \sum_{i=1}^m \|v'_{c_i} - v_{c_i}\|_2^2$$

•
$$\begin{bmatrix} L \\ I_c \end{bmatrix} V' = \begin{bmatrix} \delta \\ V_c \end{bmatrix}$$

• When rotations are large, the deformation may not be natural.

Rotation and edge length constraints

• Iterate two steps to recover rotations:

Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007 Olga Sorkine: Least-Squares Rigid Motion Using SVD

(日) (同) (三) (三)

-

Rotation and edge length constraints

- Iterate two steps to recover rotations:
- Step1: Initial guess from solving naive LSE.

Rotation and edge length constraints

- Iterate two steps to recover rotations:
- Step1: Initial guess from solving naive LSE.
- Step2: Find optimal rotations, then update the linear system (edge length preserving).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rotation and edge length constraints

- Iterate two steps to recover rotations:
- Step1: Initial guess from solving naive LSE.
- Step2: Find optimal rotations, then update the linear system (edge length preserving).
- Robustness, simplicity, efficiency.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Rotation and edge length constraints

- Iterate two steps to recover rotations:
- Step1: Initial guess from solving naive LSE.
- Step2: Find optimal rotations, then update the linear system (edge length preserving).
- Robustness, simplicity, efficiency.
- However, there is no volume preserving constraint.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Skeleton and volume constraints

• Use volumetric mesh? Manifoldness, computational complexity, etc.

伺 ト く ヨ ト く ヨ ト

-

Skeleton and volume constraints

- Use volumetric mesh? Manifoldness, computational complexity, etc.
- Use both the skeleton and edge length constraint to roughly preserve the volume, without breaking the manifoldness of ARAP or increasing the computation complexity.

- **→** → **→**

Skeleton and volume constraints

- Use volumetric mesh? Manifoldness, computational complexity, etc.
- Use both the skeleton and edge length constraint to roughly preserve the volume, without breaking the manifoldness of ARAP or increasing the computation complexity.

•
$$\begin{bmatrix} L & | & 0 \\ I_c & | & 0 \\ & L_s & \end{bmatrix} \begin{bmatrix} V' \\ V'_s \end{bmatrix} = \begin{bmatrix} \delta \\ V_c \\ \delta_s \end{bmatrix}$$

< ∃ > < ∃

A 10

w

Skeleton and volume constraints

- Use volumetric mesh? Manifoldness, computational complexity, etc.
- Use both the skeleton and edge length constraint to roughly preserve the volume, without breaking the manifoldness of ARAP or increasing the computation complexity.

•
$$\begin{bmatrix} L & | & 0 \\ I_c & | & 0 \\ & L_s & \end{bmatrix} \begin{bmatrix} V' \\ V'_s \end{bmatrix} = \begin{bmatrix} \delta \\ V_c \\ \delta_s \end{bmatrix}$$

• One-way coupling property.

/□ ▶ < □ ▶ < □

Mesh editing framework

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas Skeleton Based As-Rigid-As-Possible Volume Modeling

3

<ロト <部ト < 注ト < 注ト

ntroduction Linear LSE Algorithms Rotation and edge length constra Experiments Skeleton and volume constraints

Mesh editing framework

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas Skeleton Based As-Rigid-As-Possible Volume Modeling

3

<ロト <部ト < 注ト < 注ト

Mesh editing framework

- Manually define the skeleton.
- Evenly generate skeleton points, and connect them with surface vertices automatically.

(日) (同) (三) (三)

-

Mesh editing framework

- Manually define the skeleton.
- Evenly generate skeleton points, and connect them with surface vertices automatically.

(日) (同) (三) (三)

-

Introduction Linear LSE Algorithms Rotation and edge length constr Experiments Skeleton and volume constraints

Mesh editing framework

- Manually define the skeleton.
- Evenly generate skeleton points, and connect them with surface vertices automatically.
- Manually select anchor points (bottom) and control points (top).

	Basics
	RDE
	Remesh
	Deformation
	Preprocess Anchor Pa Cantral Ph Done Cantol A
	Rutation R G B
KKLIX	ARAP Defense Beration
	Skeleton Add Cancel
Skeleton with ARAP	
Slotali	
Course Descrit Factories I Hutselsons	

< ∃ >

Introduction Linear LSE Algorithms Rotation and edge length constr Experiments Skeleton and volume constraints

Mesh editing framework

- Manually define the skeleton.
- Evenly generate skeleton points, and connect them with surface vertices automatically.
- Manually select anchor points (bottom) and control points (top).
- Interactively deform the shape.

Experimental settings

- The C++ implementation was run on a Intel Core2 Quad 2.40GHz CPU with 8G RAM.
- We compare the linear LSE, ARAP surface modeling and our method.
- We tested on the cactus model (620 vertices, 1, 236 polygons) and the horse model (2, 482 vertices, 4, 960 polygons).
- The relative root mean square errors of edge lengths and volume magnitudes are reported.

イロト イポト イヨト イヨト

Experimental settings Results

Results

Model	RRMS-E	RE-V	Times
(b)	0.126	0.453	0.017
(c)	0.074	0.131	0.024
(d)	0.075	0.056	0.025

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas Skeleton Based As-Rigid-As-Possible Volume Modeling

2

Experimental settings Results

Results

Model	RRMS-E	RE-V	Times
(b)	0.068	0.356	0.117
(c)	0.040	0.125	0.121

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas Skeleton Based As-Rigid-As-Possible Volume Modeling

<ロ> (日) (日) (日) (日) (日)

2

Experimental settings Results

Conclusions

- We proposed an approach to approximately preserve the volume without breaking the manifoldness of traditional ARAP or increasing the computational complexity.
- Our method is easy-to-implement and may be useful to systems relying on ARAP techniques.
- Limitations: Skeleton generation; complex skeletons; self intersection.

伺 ト イ ヨ ト イ ヨ

Experimental settings Results

Thanks for listening.

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas Skeleton Based As-Rigid-As-Possible Volume Modeling

з

・ 同 ト ・ ヨ ト ・ ヨ