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Abstract

Surface-based deformation and cage-based deformation are two popular shape editing paradigms. Surface-based
methods are easy to use and produce high-quality results by preserving differential properties of the surface
mesh, but are limited by their computational requirements. Cage-based methods produce results quickly but at
the expense of usability and realism, and typically require manual construction of suitable cages. We introduce
a hybrid approach that combines the two methods. The user can perform edits on an automatically-generated
simplified version of an input shape using As-rigid-as-possible surface modeling, and the edit is propagated to the
original shape by a precomputed space deformation based on Mean value coordinates. We analyze deformation
quality and running time for a variety of cage sizes. High-quality results are obtained for meshes on the order of
100K vertices at interactive rates by using cages with ~ 5% of the vertices of the original shape.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—geometric algorithms, languages, and systems

1. Introduction

Much of the recent work in 3D polygonal mesh editing can
be classified as being either surface-based or space-based.
Surface-based approaches allow the user to fix one region of
a mesh while moving a small “handle” region. The defor-
mation applied to the handle is propagated and distributed
across the remaining free vertices in a way that minimizes
a predefined energy functional dependent on the geometry
of the mesh to provide intuitive deformations [Bot07]. The
energy minimization is usually achieved by solving a sparse
linear system. Rotations however cannot be linearly param-

Figure 1: Deformation of the armadillo model. The left is the
original shape, the right is the deformed version showing the
control mesh
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eterized without artifacts. Methods involving non-linear ap-
proaches achieve natural-looking results, but as non-linearity
comes at a high computational cost, interactive manipula-
tion of high resolution models is not possible using these
schemes. To handle many vertices, multiresolution is usu-
ally applied [GSS99,ZSS97,HSL*06], which is close to our
approach: a low resolution version of the original shape ob-
tained by removing the surface details is deformed first and
then details are added back to this deformed surface.

Space-based approaches allow users to edit a shape in-
directly via a control structure that exerts a prescribed in-
fluence on the embedding space when deformed [GBOS,
SP86, BKOS, SSPO7]. For one particular class of space de-
formations, which we refer to as cage deformations, the con-
trol structure is a coarse closed polygonal mesh constructed
around the shape, known as a cage. When the cage is de-
formed, the enclosed shape follows accordingly. Mean value
coordinates [JSWO05] and Harmonic coordinates [JMD*07]
determine the space deformation by computing generalized
barycentric coordinates with respect to the cage vertices.
Green coordinates [LLCOO08] extend this concept by incor-
porating normals of cage faces into the computation to in-
duce quasi-conformal mappings. Cage-based methods allow
for fast deformations after the coordinates are precomputed,
but the cage must be constructed beforehand, and achiev-
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ing a desired deformation on the mesh may require tedious
placement of cage vertices and guesswork.

Alternative schemes combine the two approaches.
In [SSPO7] the core deformation is space-based, but the con-
trol structure can be manipulated using the handle paradigm
of surface-based methods. We believe a hybrid approach,
also advocated in [CO09], has great promise and has not
been sufficiently explored; in particular, we take the view
that there is a continuum between purely surface-based and
purely cage-based methods, and we propose a scheme to ex-
plore it by applying surface deformations to a simplified ver-
sion of an input shape mesh. The original shape is updated
with a space deformation induced by this simplified con-
trol mesh. This allows us to exploit the speed of the space-
based method and retain the ease of use and natural results
of surface-based methods, while requiring no extra footwork
from the user and without loss of surface detail.

Our contribution is to combine surface-based and space-
based deformation approaches to produce high-quality de-
formations of large meshes at interactive rates. We explore
the aforementioned “continuum”, parametrized by complex-
ity of the control mesh, and provide a preliminary analysis
of the tradeoffs in speed, robustness, and quality as we move
along this continuum.

2. Algorithms
2.1. Surface Deformation

As-rigid-as-possible surface modeling, proposed in [SA07],
is a powerful deformation technique that produces natural
looking results with guaranteed convergence. The principle
used is that small parts of the shape should change as rigidly
as possible and smoothly. The method builds on a non-linear
energy formulation and minimizes it through iterations. For
this the shape is covered by cells centered at each of the ver-
tices and covering the incident faces. Using {p; ... pn} for
the vertex positions of the original mesh and {p] ... p},} for
those of the deformed one, the error term for a cell C; is de-
fined to be

ECiCl) = Y will(f = p)) = Ripi=ppI* (1)
JEN()
where N (i) is the one-ring neighborhood of vertex i, w;;
is the weight of edge (i, j) and R; is the rotation that best
approximates the transformation that takes cell C; to Ci' . The
total error between shape S’ and the reference S is the sum
of the per cell errors.

Based on an initial guess on vertex positions, the algo-
rithm first finds the optimal rotation R; for each of the cells
independently. If we use the notation e;; = p; — p; and
vzl = YieN () w,-je,-je,'jT is the singular value decom-
position of the covariance matrix then the rotation that min-
imizes Eq. 1 given the vertex positions is

Ri=VU! )

Now given the rotations for each cell the next step is solving
for the vertex positions that minimize the global error term.
The minimum is achieved at the positions where the gradient
of the error term is zero. This yields the following system of
equations:

Wiij
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which can be rewritten in matrix form as Lp’ = b where p’ is
the vector containing the unknown vertex position and L is
the submatrix of the discrete Laplace-Beltrami operator cor-
responding to these vertices. L is a symmetric positive defi-
nite sparse matrix that furthermore stays fixed and therefore
can be efficiently factorized in advance while only back sub-
stitutions will be required during the editing process. Now
given the positions we can again compute the optimal ro-
tations and continue the process until we get close enough
to the desired shape. The speed of the convergence depends
on the condition number of L which is proportional to the
mesh size [CCOSTOS]. So for large models, both the time
per iteration and the number of iterations necessary make
this method unsuitable for interactive editing, but for a few
thousand vertices 2-3 iterations usually suffice and interac-
tive rates can be achieved.

2.2. Cage-Based Deformation

Cage deformation works in the following way. Let ) be a
polygonal mesh with vertices y; € R3, called the cage. For
each y;, we specify a weight function @;(x) that is defined in
some region of R3. The coordinates of a point x € R? with
respect to these points are given by

®;(x)

) = F o) @

For an input mesh X with vertices x; € R3 (called the
shape), the values {c;(x;)};; are precomputed and stored
only once, with the cage in its rest state (a process known
as binding). Deformations are applied by manipulating the
cage vertices directly, and the shape is updated with

¥ = Yot )
J

So the update step for a given shape vertex is linear in the
complexity of the cage. In order to produce smooth deforma-
tions, the ¢; should be smooth functions with ¢;(yx) = 8
(Kronecker delta), i.e., the deformation to the embedding
space should interpolate the locations of control vertices.
Furthermore, for any x;, we should have ) iCi (xi)y = Xi,
i.e., plugging the y;s into Eq. 5 should not cause a shape ver-
tex to “pop” out of place (this is known as linear precision).
Equivalently, one might say that the c;(x) should general-
ize barycentric coordinates. As mentioned in the introduc-
tion, Mean value coordinates [JSW05] and Harmonic coor-
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dinates [JMD*07] are two proposed sets of coordinates that
do this.

3. Hybrid Space/Surface Deformation

The core of our method is to construct a cage that approx-
imates an input shape and apply the surface-based defor-
mation to it, updating the original shape using a cage de-
formation. Mean value coordinates and Harmonic coordi-
nates have been applied to deformation by manually con-
structing a very coarse cage to enclose the shape of interest.
For our method, we are interested in using cages of thou-
sands of vertices, and we would like a cage to fit the orig-
inal shape very snugly so that the user experience matches
that of using purely surface-based methods. Construction of
suitable cages is not the contribution of this work, but our
task is made much simpler thanks to the observation by Ju
et al [JSWOS5] that Mean value coordinates vary smoothly
across cage faces and are in fact well-defined everywhere
in R3. This allows us to relax the requirement that cages
fully enclose the shape, and we can obtain cages of arbi-
trary complexity by simply applying a mesh simplification
method [GH97] to the input shape, and use Mean value co-
ordinates for our space deformation.

In our system, the user loads a shape mesh they wish to
edit and specifies a cage size. Once the cage is generated, the
shape is bound to it using the Mean value coordinates and in-
significant coordinates are discarded (explained below). The
user may then perform edits on the cage by specifying a re-
gion of interest and manipulating a handle. The new loca-
tions of the free vertices of the cage are computed with the
As-rigid-as-possible method described in Section 2.1, using
w;ij = 1 in the system in Eq. 1 and 3. Finally, the new posi-
tions of the shape vertices are computed by applying Eq. 5.

Note that without any further modification to the cage, its
vertices are a subset of the input shape vertices. For these
vertices of the shape, the only nonzero coordinate will be
that of the coinciding cage vertex. Furthermore, on cage
faces, Mean value coordinates reduce to 2D barycentric co-
ordinates. Since our cages approximate the shape so closely,
shape vertices tend to lie very near to cage faces, so most
of the contribution to the computed coordinates will come
from the three vertices of the nearest face. One might then
view the set of coordinates as 2D barycentric coordinates
with an additional displacement term to preserve detail. If
a fine enough cage is used, this displacement term typically
depends primarily on a small set of other nearby vertices. It
is also desirable that the influence of distant cage vertices be
minimized to avoid unwanted artifacts. Therefore, to greatly
speed up the deformation and localize the cage influence, we
can sort the coordinates by magnitude and discard the small-
est contributors up to a suitably chosen threshold. In our ex-
periments, we have found that by making this threshold 3%
of the total magnitude, we discard all but a constant num-
ber of coordinates (on average) for each vertex, and incur
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Figure 2: The armadillo’s forearm after a deformation.
From left to right: Applying ARAP method directly to the
40K model (1.7s), using a 2K cage as shown (116 ms) and
applying ARAP directly to a 3K model (115ms)

no visible loss of surface detail (see Figure. 2 middle). This
means that the update step is linear in shape complexity and
depends very little on cage complexity. (In fact, since larger
cages better approximate the shape, this constant decreases
slightly with cage complexity.) This optimization has been
applied for all of our tests and images.

4. Results

We ran our C++ implementation using the Cholmod sparse
Cholesky solver [DH09] on an Intel Core2 Duo T7300 Mo-
bile CPU with 2GB RAM and Linux 2.6.31.

As a result of the formulation of the error term (Eq. 1)
the As-rigid-as-possible method preserves edge length to the
extent allowed by the modeling constraints; if no stretching
is imposed, the optimization converges to a state with small
edge length error. Because of this it is reasonable to measure
the cost of the lower computation time we gain in terms of
this metric of rigidity, using deformation with no cage as a
benchmark.

We applied the same deformation (see Figure 1) on two
different resolution models of the armadillo, with 21622
(20K) and 43244 (40K) vertices using various cage sizes.
Table 1 shows the running times and the root mean squared
edge length errors for using 2 As-rigid-as-possible iterations.
As expected, the running time scales linearly, while the er-
ror decreases with finer cages (Figure 3). Our tests on the
Armadillo model indicate that a cage containing 5-10% of
the original vertices produces an acceptable amount of error
(see Figure 2) and that further increasing the cage complex-
ity does not yield a significant additional benefit. However,
the optimal cage size for a given shape is a function of both
its local and global complexity and not simply the number of
vertices. We note that using a cage that is too coarse limits
the effectiveness of the optimization mentioned in Section 3
and may also cause self-intersection under extreme deforma-
tions.

We believe that combining surface-based and space-based
deformation produces compelling results with the advan-
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Cage RRMS-E Time
21622 vertices model

1000 (4.62%) 7.39% 60 ms

1500 (6.94%) 5.17% 81 ms

2000 (9.25%) 4.51% 91 ms

4000 (18.5%) 3.66% 154 ms

no cage (100%) 1.92% 792 ms
43244 vertices model

1500 (3.47%) 6.69% 92 ms

2000 (4.62%) 5.43% 116 ms
5000 (11.56%) 3.87% 213 ms
no cage (100%) 1.72% 1669 ms

Table 1: Relative root mean squared errors and running
times for different base and control mesh sizes and for ap-
plying the ARAP method directly to the mesh

Relative error

1 T T T T T T T |
0 5 10 15 20 25 30 35 40

Relative cage size (%)

Figure 3: Relative error compared to that of the no-cage
benchmark versus relative cage. Black: 40K input shape;
Grey: 20K

tages of both. Avenues for future work include automatic
generation of cages that tightly enclose a mesh so that e.g.
Harmonic coordinates may be employed as a space deforma-
tion method and make our framework useful for highly con-
cave meshes. We hope our work is an insightful first step to-
ward fully exploring the continuum between these two suc-
cessful deformation paradigms.
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