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Abstract. With the proliferation of online social networks (OSNs), the
characterization of diffusion processes and influence maximization over
such processes is a problem of relevance and importance. Although sev-
eral algorithmic frameworks for identifying influential nodes exist in lit-
erature, there is a paucity of literature in the setting of competitive
influence. In this paper, we present a novel mechanism design approach
to study the initial seeding problem where the agents, represented by
vertices in the social network, are economically rational. The principals
compete for influence in the network by setting price and incentives to
illicit high degree initial subscribers, which in turn profit by infecting
their neighbors. We restrict attention to equilibrium strategies and com-
parative statics for the agents.
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1 Introduction

The widespread adoption of online social media and networks, blogs, and inter-
net shopping has transformed the web into a rich complex network structure.
The web has therefore become a medium for diffusion of influence and infor-
mation propagation. These spread processes have several applications including
adoption of innovations [9], viral marketing [1], spread of rumors [3], and online
recruitment. Information cascades resulting from such spreading processes have
been widely observed in online social networks such as Facebook and Twitter.
The algorithmic characterization of such processes is presented in two widely
accepted models - the Linear Threshold and Independent Cascade [7, 5]. The
influence maximization process over these two models was first presented in [8],
where a principal seeks to find the optimal set of nodes to seed. Recent litera-
ture has also focused on a Competitive Contagion model in which two or more
principals compete for influence in the network [2, 6] by seeding nodes in the net-
work. An uninfected node changes state based on a stochastic process [6], rather
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than economic motivators, which is a major limitation in most algorithms that
identify nodes of influence and agents of rapid propagation. We aim to bridge
that gap in this contribution. In our work, we cast the problem as one of a re-
ferral game (described later) over a social network. The primary contribution
of this work is the construction equilibrium strategies for the agents. Based on
the importance of high-degree nodes in propogating influence [10], our second
contribution provides conditions under which an agent will prefer seeding from
one principal over another based on principal incentives and the agent’s neigh-
borhood size. Additionally, this model does not suffer from issues of complexity
that plague the algorithmic approach [8, 10].

2 Model

We examine a dynamic game of imperfect information, which we call the referral
game, over a social network. The players of this game are partitioned into two
disjoint, finite sets. The first set P consists of the principals, and the second set
A consists of the agents. The set of players in this game is N := PUA. The social
network is represented by an undirected graph G(V, E) where V(G) := A. Two
agents i,7 € A are related if ij € F(G). We postulate that each agent is only
aware of its neighborhood set. That is, each agent v believes that with probability
1 the social network is K |n(y)|, Where N (v) denotes the open neighborhood of
v. Furthermore, we postulate that each principal is only aware that G exists,
but not of any properties of G.

Each principal p € P provides a membership option for each agent at price
¢p € R4. This membership provides a valuation v, € R4 to the member, which
is exogenously given for principal p. For every principal p, both the price ¢,
and valuation v, are public information. Initially, each agent does not hold a
membership, and an agent can hold at most one membership which cannot be
revoked or changed later.

Definition 1 (Infection) An agent v is said to be infected v holds a member-
ship from some principal i. The agent v is said to be uninfected otherwise.

The principals each seek to maximize influence over a graph. Define the
membership function mem : A — P U {U} which takes an agent and returns
the principal from whom the agent is infected, or U if the agent is uninfected.
Each principal i has utility function: u;(.A) = |[mem~1(4)|. In order to maximize
influence, each principal sets its price and incentives. Each principal’s strategy
set is S := R4 x [0, 1] x R4 Principal i’s strategy (c¢;, a;, 8;) € S; is interpreted as
follows: ¢; is the principal’s price for infection, «; is the price discount for agents
who subscribe at 7' = 0 (that is, each agent pays a;c;), and §; is the amount an
agent receives for each additional agent it refers. Furthermore, agents who are
referred to principal ¢ at some time 7' > 0 also receive §; (but must still pay the
undiscounted price ¢;). Each principal’s strategy constitutes a mechanism with
which to infect willing agents. The collection of these mechanisms induces the
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referral game. For the purpose of this paper, principals’ strategies are taken as
fixed. We restrict attention to the comparative statics with respect to the agents
rather than the principals’ strategies.

The game operates in discrete time steps starting at time 7" = 0. Prior to
the start of the game, each principal fixes its strategy. At T = 0, any agent may
become infected by at most one principal. After this initial joining period, unin-
fected agents can only become infected by principal ¢ through referral from an
agent already infected by ¢. An uninfected agent can only receive such a referral
from one of its neighbors. At each discrete time T > 0, each infected agent may
submit proposals simultaneously to any subset of its uninfected neighbors. The
uninfected nodes that received proposals may accept at most one of the referrals
or remain uninfected.

We now define each agent’s utility function. Denote U as the option of re-
maining uninfected. Each agent v has the partial utility function of the form:

Uy s (PUUY) x (N(0) UPU{0}) x 2V®) S R, (1)

The component (PU{l{}) denotes the principal by whom v is infected, or whether
v is uninfected. The component N (v) U P U {0} describes the player referring v.
If the player is a principal, this indicates that v subscribed to the principal at
time T' = 0. The ) option denotes that no such referral has been made, and v is
uninfected. Finally, the element from 2V(*) denotes the set of neighbors which v
successfully referred. We define the following cases:

1. uy,(U,D,0) = 0. That is, an agent experiences no utility for remaining unin-
fected.

2. uy(i,i,8) = v; — azc; + |s|B; for any i € P and any s € 2V, This case
indicates that agent v subscribed at time 7" = 0 to principal .

3. uy(iyj,8) = v; —¢; + (|s| + 1)B; for any i € P, any j € N(v), and any
s € 2NW\IY This case indicates that agent v was referred by its neighbor
Jj to principal ¢ at time T > 0, and then v referred an additional |s| of its
uninfected neighbors.

3 Analysis

The referral game is a dynamic game of imperfect information. The solution
concept we use is the Perfect Bayesian Equilibrium. We construct a Perfect
Bayesian Equilibrium for this game using backward induction. At every time
T > 0, each infected agent can only attempt to infect uninfected neighbors.
Uninfected neighbors can only accept or reject referrals when received. We first
show that an agent infected at time 7T need only attempt to infect its neighbors
at time 7"+ 1. This determines the Nash equilibria for terminal subgames.

Proposition 1 Let x be an agent infected by principal i. Let N, (x) denote the
set of uninfected neighbors of x. Then x will propose to each neighbor y € N, (x)
exactly once.
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Proof. Fix y € N,(z). It is a weakly dominant strategy for  to propose to y. If y
accepts a proposal from one of its infected neighbors, then we are done. Suppose
instead at time T}, > 0, y rejects each of its infected neighbors’ proposals. Recall
that under y’s belief system, the social network is Ky |n ()|, with y at the center.
We thus have Efuy, (4,2, Nyu(y))] = vi — ¢; + (|Nu(y)| + 1)5; < 0. As no infected
agent can become uninfected, |N,(y)| is non-increasing as the game progresses.
So Efuy (i, z, Nyu(y))] < 0 for every time T > T). O

We now use Proposition 3.1 to show that the game is finite, which implies the
existence of an equilibrium. [4]

Proposition 2 Denote the set of agent states K = P U{U}, where u denotes a
verter remaining uninfected and each element i € P denotes infection by princi-
pal i. The vertex states converge to a steady state equilibrium in KV, Further-
more, this equilibrium is reached in O(|V|) time steps.

Proof. Once an agent becomes infected, its state is fixed. From Proposition 3.1,
an agent v that remains uninfected at time T = 0 receives at most |N(v)|
referrals, of which v can select at most one. It follows that the vertex states
converge to a steady state equilibrium in K!VI. The bound is tight, as in the
case of the graph G is a path on |V| vertices where one endpoint agent becomes
infected at T = 0. Then at most one additional agent is infected by referral
at each subsequent time step, implying that the vertex states will converge to
equilibrium in at most |V time steps. O

Corollary 1 There exists a Perfect Bayesian Equilibrium. [4]

The following proposition will construct an explicit Perfect Bayesian Equilibrium
in mixed strategies for the case when G = Kj. This result will be used to
construct the Perfect Bayesian Equilibrium for the general case.

Proposition 3 Suppose the social network G =2 Ks. Let j = argmax;cp v; —
a;c;. Define: Q1 ={i € P:v; —c;i+ i < vj —ajcit and let Q2 = P\ Q1.
Then there exists a symmetric Perfect Bayesian Equilibrium in mized strategies,
where each agent considers at most three principals.

Proof. As this game is symmetric, there exists a Perfect Bayesian Equilibrium
in mixed strategies where each agent employs the same strategy. [4] Consider
the following cases:

Case 1: Suppose Q1 = P and Q2 = (). Then no player benefits from infection by
referral. Therefore, each agent will always choose infection from j at time 7' =0
if and only if u(j,7,0) > 0. Otherwise, each agent will remain uninfected. By
construction, this strategy maximizes each player’s payoff.

For the rest of the proof, assume there exists at least one principal x such that
Uy — Cx + Bx > 0. For if no such principal x exists, then each agent will remain
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uninfected as the equilibrium strategy.

Case 2: Suppose Q1 = () and Q2 = P. Define:

k= i —ouici + B 2
AgMAX v; = 0iC + 8 (2)
st.v;—c;i+06; >0 (3>

By construction of ()2, such a k always exists. The game has exactly one stage if
and only if both agents play the same strategy of either subscribing to principal
k or remaining uninfected at time step T = 0. Otherwise, the uninfected agent
at T' = 0 will accept the referral at time 7" = 1. We now solve for the symmetric
mixed strategies equilibrium. Suppose player 2 chooses infection at time 7' = 0
with probability p and chooses to remain uninfected at T = 0 with probability
1 — p. Then player 1’s expected payoffs from becoming infected and remaining
uninfected at T" = 0 respectively are:

Elui(k, bk, N(v1))] =p- (v — arcr) + (1 —p) - (vg — ager, + Br) (4)
Efuy (k, va,0)] = p - (v — cx + Br) (5)

Setting Elus (k, k, N (v1))] = Elui(k, v, 0)] and solving for p yields:

vk — ek + By (6)
P = 25,

Case 3: Suppose Q1 # 0 and Q2 # 0. Define k as in case 2. If k € @2, then we
reduce to case 2. Otherwise, suppose k € Q1. Define: m = argmax;cq, vi —aic;+
Bi. That is, m is an agent’s preferred principal for infection at time T = 0 such
that its neighbor will accept the proposal if uninfected. From the definition of j
and the fact that k € @1, we have v; —c¢; +3; > 0 for all © € Q2. By construction,
Vi — QrCk + Bk > Um — QmCm + Bm. Observe the strategy of choosing infection
from principal k at time T" = 0 weakly dominates infection from any of the other
principals of Q1 \{j} at T = 0. Similarly, the strategy of choosing infection from
principal m at time T = 0 weakly dominates infection to any other principal
in @2\ {j} at time T'= 0. We are thus left with four viable strategies for each
agent: choose infection from principal p € {m, j, k} at T'= 0 and then propose to
its uninfected neighbor; and remain uninfected at T' = 0, accepting any proposal
where the expected payoff is non-negative. We now solve for a symmetric mixed
strategies equilibrium.

Agent 7 mixes his strategies such that agent —i is indifferent between between
the four viable strategies. Let p;, pr, and p,, denote the frequencies in which each
player at time T" = 0 chooses infection from princiapls j, k and m respectively;
and let p, denote the frequency in which each player chooses to initiallly remain
uninfected. For initially subscribing to a principal y € {4, j, k}, each agent has
the expected payoft:

Elui(y,y)] = (1 = pu) - w(y, y,0) + pu - u(y, y, N(i)) = vy — aycy +pufy  (7)
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And for opting to remain uninfected at time T' = 0, each agent has the expected
payoff:

E[UZ(U)] = Z Dz - ui(x, —1, (D) = Z Y2 (Ux —Cz + /Bsc) (8)

ze{jk,m} ze{j,k,m}

We solve for the mixed strategies equilibrium by setting (7) equal to (8), where
we consider (8) for each y € {i,j,k}. The following linear program yields such
a mixed strategy equilibrium, with constraitnt (10) denoting the condition that
(7) and (8) are equal in equilibrium.

max Z Do+ (Vg — o + Bz) s.t. (9)
ze{j,k,m}
Z Pz (UI —Cz + Bw) = V; — Q46 +pu627 Vi € {]?kvm} (10)

z€{jk,m}
O

Under an agent v’s belief system, each of its neighbors believe G =2 Kj. As
v believes G = K |n(v), v believes each of its neighbors behaves indepen-
dently and symmetrically in equilibrium. We use the mixed strategies equilibrium
from Proposition 3.3 to construct v’s equilibrium strategy at T' = 0 based on
E[[Nu(v)]].

Proposition 4 Let n € Z, and suppose the social network G = K, ,,. Define
J,Q1, Q2, and p* as in Proposition 3.3. Denote p}, to be the component of p*
corresponding to remaining uninfected at time T = 0. Let v be the center vertex
of G. Define: my = vj — ajcj and mo = max;ep v; — o;¢; + |N(v)| - pifi. In
equilibrium, agent v’s expected utility is: max{mi, ma,0}.

Proof. Recall that each node is only aware of its neighbors. We assume that
each vertex in N (v) plays the equilibrium strategy described in Proposition 3.3.
Let X be the binomial random variable associated with the number of vertices
in N(v) which remain uninfected at time 7" = 0. Agent v seeks to maximize
his expected utility. Suppose p > 0 and suppose there exists such a principal 4
such that v; — ¢; + 5; > 0. Now suppose v plays the strategy of subscribing to
some principal ¢ at time 7" = 0, then proposing to each uninfected neighbor at
time T = 1. Then: max;ep Elu, (4,4, N(v))] = meo. If agent v instead opts not
to propose to each of its neighbors at time T = 1, then his maximum utility
is m1 = v; — ajc;, which is obtained by subscribing to agent j at time T = 0.
Agent v’s third option is to remain uninfected at time 7' = 0. Agent v chooses
the best of these three strategies in equilibrium. 0O

The following theorem specifies and verifies a Perfect Bayesian Equilibrium.

Theorem 1 Let G be a simple, undirected graph. Suppose each agent v plays
the strategy specified by Proposition 3.4. This constitutes a Perfect Bayesian
FEquilibrium.
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Proof. Let v be an agent. For each time T" > 0, v’s strategy consists of propos-
ing to each uninfected neighbor if v is infected; or if v is uninfected, it ac-
cepts a referall from its neighbor infected by principal j, which we denote x;,
if ; € argmax;e n(v) o (7, T4, Nu(v)). By Proposition 3.1, this strategy induces
a Nash equilibrium at each subgame for every T' > 0. Recall that agent v be-
lieves with probability 1 that G = K |n(y)- It follows that the strategy at time
T = 0 specified by Proposition 3.4 constitutes a Nash equilibrium. From this
and Proposition 3.1, this strategy is sequentially rational. Consistency follows
immediately from the fact that v believes G = K |y(.) with probability 1. O

Finally, we examine the comparative statics, deriving sensitivity results for an
agent’s preferences for infection from a specific principal. We relate the size of an
agent’s neighborhood in the network to perturbations of the o and 8 parameter’s
in a principal’s incentives package.

Theorem 2 Let G be a graph, and let x be an agent. Suppose P = {i,j},
v; = vj, and ¢; = ¢;, which we denote as v and c respectively. Then x strictly
prefers infection from principal i rather than principal j at time T = 0 if one of
the following conditions hold:

1. o; < o , Bi > B and at least one of the inequalities is strict.
2. o; > ay, Bi > B, and either: B; — (1 — aj)e > 0; or [N(z)| > W.

Proof. If a; < aj and f3; > f3;, then uy (4,4, 5) > uy (4, j, S) for every S C N(z).
So in this case, x prefers holding infection from principal ¢ over principal j. Now
suppose instead that o; > «; and 8; > B;. As x prefers infection from ¢ over j
at T = 0, it is necessary that under z’s belief system, the following conditions
must hold:

1. Under z’s belief system, each y € N(x) prefers referral to ¢ rather than
joining 5 at T = 0.

2. Under 2’s belief system, each y € N, (z) would accept referral to j. However,
g (i, 1, N(2)) > ug(j, 5, N(2)).

Condition one is equivalent to 8;—c¢ > —a;¢, which implies that 5;—(1—a;)c > 0.
Condition two is equivalent to —ajc+|N(z)|8; < —a;c+|N(z)|B;, which implies

that [N(z)] > (4= ¢

Bi — B; .

4 Conclusion and Future Work

In this paper, we constructed equilibrium strategies for agents in the referral
game under the assumption that the principals had no knowledge of the social
network’s structure. The natural extension of this work is to utilize these results
to construct principals’ equilibrium strategies. We propose designing a beliefs
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system regarding network connectivity for each principal, allowing for the contin-
uation of the backward induction argument. Additionally, this model prohibits
awareness of any mutual relations; while in most social situations, imperfect
knowledge of mutual relations. We propose the problem of determining agent
equilibrium strategies when every adjacent pair of agents i and j in the social
network are aware of some S C (N (i) N N(j)) a priori. We are interested in the
symmetric case, where related ¢ and j are aware of the same S C (N (i) N N(4)),
as well as the asymmetric case where 4 is aware of some S; C (N (i) N N(j)) and
Jj is aware of some potentially different S C (N (i) NN (j)).

Acknowledgments. We wish to thank Brendan Avent, Eva Czabarka, Stephen
Fenner, and Alexander Matros for their helpful discussions and suggestions.

References

[1] Pedro Domingos and Matt Richardson. Mining the network value of cus-
tomers. In Proceedings of the Seventh ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD 01, pages 57-66,
New York, NY, USA, 2001. ACM. ISBN 1-58113-391-X.

[2] Moez Draief, Hoda Heidari, and Michael Kearns. New models for compet-
itive contagion, 2014. URL http://www.aaai.org/ocs/index.php/AAAI/
AAAT14/paper/view/8399.

[3] Adrien Friggeri, Lada A. Adamic, Dean Eckles, and Justin Cheng. Rumor
cascades. In Proceedings of the Eighth International Conference on We-
blogs and Social Media, ICWSM 2014, Ann Arbor, Michigan, USA, June
1-4, 2014., 2014. URL http://www.aaai.org/ocs/index.php/ICWSM/
ICWSM14/paper/view/8122.

[4] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

[5] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A
complex systems look at the underlying process of word-of-mouth. Market-
ing Letters, 2001.

[6] Sanjeev Goyal and Michael Kearns. Competitive contagion in networks.
CoRR, abs/1110.6372, 2011. URL http://arxiv.org/abs/1110.6372.

[7] M. Granovetter. Threshold models of collective behavior. The American
Journal of Sociology, 83(6):1420-1443, 1978.

[8] David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the spread of in-
fluence through a social network. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
'03, pages 137-146, New York, NY, USA, 2003. ACM.

[9] Everett M. Rogers. Diffusion of innovations. Free Press, New York, NY
[u.a.], 5th edition, 08 2003. ISBN 0-7432-2209-1, 978-0-7432-2209-9.

[10] Lior Seeman and Yaron Singer. Adaptive seeding in social networks. In
Proceedings of the 2013 IEEE 5/th Annual Symposium on Foundations of



A Mechanism Design Approach For Influence Maximization 9

Computer Science, FOCS 13, pages 459468, Washington, DC, USA, 2013.
IEEE Computer Society. ISBN 978-0-7695-5135-7.

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via
Department of Interior National Business Center (Dol/NBC) contract number
D12PC000337, The US Government is authorized to reproduce and distribute
reprints of this work for Governmental purposes notwithstanding any copyright an-
notation thereon. Disclaimer: The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA, Dol/NBC, DTRA,
or the US Government.



