
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Computer Physics Communications 184 (2013) 284–292

Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Dynamic load balancing for petascale quantum Monte Carlo
applications: The Alias method
C.D. Sudheer a, S. Krishnan b, A. Srinivasan b,∗, P.R.C. Kent c
a Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
b Department of Computer Science, Florida State University, Tallahassee, FL 32306, United States
c Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37831, United States

a r t i c l e i n f o

Article history:
Received 2 April 2012
Received in revised form
3 September 2012
Accepted 4 September 2012
Available online 7 September 2012

Keywords:
QuantumMonte Carlo
Parallel computing
Load balancing

a b s t r a c t

Diffusion Monte Carlo is a highly accurate Quantum Monte Carlo method for electronic structure
calculations of materials, but it requires frequent load balancing or population redistribution steps to
maintain efficiency on parallel machines. This step can be a significant factor affecting performance, and
will becomemore important as the number of processing elements increases.We propose a new dynamic
load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important
feature of the new algorithm is that the load can be perfectly balanced with each process receiving at
most one message. It is also optimal in the maximum size of messages received by any process. We also
optimize its implementation to reduce network contention, a process facilitated by the low messaging
requirement of the algorithm: a simple renumbering of the MPI ranks based on proximity and a space
filling curve significantly improves the MPI Allgather performance. Empirical results on the petaflop
Cray XT Jaguar supercomputer at ORNL show up to 30% improvement in performance on 120,000 cores.
The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm
may also be employed by any method with many near identical computational tasks that require load
balancing.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

QuantumMonte Carlo (QMC) is a class of quantum mechanics-
based methods for electronic structure calculations [1–3]. These
methods can achieve much higher accuracy than well-established
techniques such as Density Functional Theory (DFT) [4] by directly
treating the quantum-mechanical many-body problem. However,
this increase in accuracy comes at the cost of substantially in-
creased computational effort. Themost commonQMCmethods are
nominally cubic scaling, but have a large prefactor, making them
several orders ofmagnitudemore costly than the less-accurate DFT
calculation. On the other hand, QMC can today effectively use the
largest parallel machines, with O(105) processing elements, while
DFT cannot use these machines routinely. However, with the ex-
pected arrival ofmachineswith orders ofmagnitudemore process-
ing elements than are common today, it is important that all the
key algorithms of QMC are optimal and remain efficient at scale.

∗ Corresponding author.
E-mail addresses: cdsudheerkumar@sssihl.edu.in (C.D. Sudheer),

krishnan@cs.fsu.edu (S. Krishnan), asriniva@cs.fsu.edu (A. Srinivasan),
kentpr@ornl.gov (P.R.C. Kent).

Diffusion Monte Carlo (DMC) is the most popular modern
QMC technique for accurate predictions of materials and chemical
properties at zero temperature. It is implemented in software
packages such as CASINO [5], CHAMP [6], QMCPack [7], and
QWalk [8]. Unlike some Monte Carlo approaches, this method is
not trivially parallel and requires communication throughout the
computation.

The DMC computation involves a set of randomwalkers, where
each walker represents a quantum state. At each time step, each
walker moves to a different point in the configuration space, with
this move having a random component. Depending on the energy
of the walker in this new state relative to the average energy of
the set of walkers (or a reference energy related to the average),
the walker might be either terminated or new walkers created at
the same position. Alternatively, weights may be associated with
eachwalker, and theweights increased or decreased appropriately.
Over time, this process creates a load imbalance, and the set
of walkers (and any weights) must be rebalanced. For optimum
statistical efficiency, this rebalancing should occur every single
move [9].

DMC is parallelized by distributing the set of walkers over the
available compute cores. The relative cost of load balancing the
walkers as well as the inefficiency from the statistical fluctuations
in walker count can be minimized if the number of walkers

0010-4655/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.09.008

Author's personal copy

C.D. Sudheer et al. / Computer Physics Communications 184 (2013) 284–292 285

per compute element is kept large. This approach has typically
been used on machines with thousands to tens of thousands of
cores. However, with increasing core count the total population
of walkers is increased. This is undesirable since (1) there is an
equilibration time for each walker that does not contribute to the
final statistics and physical result, (2) it is usually preferable to
simulatewalkers for longer times, enabling any long term trends or
correlations to be determined, and (3) the amount of memory per
compute element is likely to reduce in future, necessitating smaller
populations per compute element. On the highest-end machines,
it is desirable to use very few walkers (one or two) per compute
element and assign weights to the walkers, instead of adding or
subtracting walkers, to avoid excessively large walker counts and
to avoid the large fluctuations in computational effort that would
result from even minor fluctuations in walker count.

Since load balancing is in principle a synchronous, blocking op-
eration, requiring communication between all compute elements,
it is important that the load balancing method is highly time effi-
cient andmakes very effective use of the communication network,
minimizing the number and size of messages that must be sent. It
is also desirable that the algorithm is simple to enable optimization
of the messaging for particular networks, and to simplify use of la-
tency hiding techniques through overlap of computation and com-
munication. We note that CASINO [5] recently transitioned [10] to
using asynchronous communications and suspect that other codes
may use some of these techniques, but apart from [10], they have
not been formally described.

In this paper we discuss a new load balancing algorithm which
can be used to load balance computations involving near identical
independent tasks such as those in DMC (we consider each random
walker a task in the description of our load balancing algorithm).
The algorithm has the interesting feature that each process needs
to receive tasks from at most one other process. We optimize this
algorithm on the petaflop Cray XT5 supercomputer at Oak Ridge
National Laboratory and show, using data from the simulation of
the Cr2 molecule, that it improves performance over the existing
load balancing implementation of the QWalk code by up to 30%
on 120,000 cores. Moreover, due to the optimal nature of the
algorithm we expect its utility and effectiveness to increase with
the multiple orders of magnitude increase in compute elements
expected in coming years.

1.1. Load balancing model definitions

Dynamic load balancing methods often consist of the following
three steps. (i) In the flow computation step, we determine the
number of tasks that need to be sent by each process to other
processes. (ii) In the task identification step, we identify the actual
tasks that need to be sent by each process. (iii) In themigration step,
the tasks are finally sent to the desired processes. Since we deal
with identical independent tasks, the second step is not important;
any set of tasks can be chosen. Our algorithm determines the
flow (step (i)) such that step (iii) will be efficient, under certain
performance metrics.

We assume that a collection of P processes need to handle
a set of T identical tasks (that is, each task requires the same
computation time), which can be executed independently. Before
the load balancing phase, the number of tasks with process
i, 1 ≤ i ≤ P , is Ti. After load balancing, each process will have
at most ⌈T/P⌉ tasks (we are assuming that the processors are
homogeneous, and therefore process tasks at the same speed). This
redistribution of tasks is accomplished by having each process i
send tij tasks to processes j, 1 ≤ i, j ≤ P , where non-zero values
of tij are determined by our algorithm for flow computation, which
we describe in Section 3. Of course, most of the tijs should be zero,
in order to reduce the total number of messages sent. In fact, at

most P − 1 of the possible P(P − 1) values of tij will be non-zero in
our algorithm.

The determination of tijs is made as follows. The processes per-
form an ‘‘all-gather’’ operation to collect the number of tasks on
each process. Each process k independently implicitly computes
the flow (all non-zero values of tij, 1 ≤ i, j ≤ P) using the al-
gorithm in Section 3, and then explicitly determines which values
of tkj and tjk are non-zero, 1 ≤ j ≤ P .

The algorithm to determine non-zero tijs takesO(P) time, and is
fast in practice. We wish to minimize the time taken in the actual
migration step, which is performed in a decentralized manner by
each process. In some load balancing algorithms [11], a process
may not have all the data that it needs to send, and so themigration
step has to take place iteratively, with a process sending only data
that it has in each iteration. In contrast, the tijs generated by our
algorithm never require sending more data than a process initially
has, and so the migration step can be completed in one iteration.
In fact, no process receives a message frommore than one process,
though processes may need to send data to multiple processes.

The outline of the rest of the paper is as follows. We summarize
related work in Section 2. In Section 3, we describe our algorithm
for dynamic load balancing. We first describe the algorithm when
T is a multiple of P , which is the ideal case, and then show how
the algorithm can be modified to deal with the situation when T
is not a multiple of P . In Section 4, we define a few metrics for the
time complexity of the load re-distribution step, and theoretically
evaluate our algorithm in terms of those. In particular, we show
that it is optimal in the maximum number of messages received
by any process and in the maximum size of messages received
by any process. We then report results of empirical evaluation of
our method and comparisons with an existing QMC dynamic load
balancing implementation, in Section 5. We finally summarize our
conclusions in Section 6.

2. Related work

Load balancing has been, and continues to be, an important re-
search issue. Static partitioning techniques try to assign tasks to
processes such that the load is balanced, while minimizing the
communication cost. This problem is NP-hard in most reasonable
models, and thus heuristics are used. Geometric partitioning tech-
niques can be used when the tasks have coordinate information,
which provide a measure of distance between tasks. Graph based
models abstract tasks asweighted vertices of a graph,withweights
representing computational loads associated with tasks. Edges be-
tween vertices represent communication required, when one task
needs information on another task. A variety of partitioning tech-
niques have been studied, with popular ones being spectral parti-
tioning [12,13] and multi-level techniques [14–17], and have been
available for a while in software such as Chaco and Metis.

Dynamic load balancing schemes start with an existing
partition, and migrate tasks to keep load balance, while trying to
minimize the communication cost of themain computation. A task
is typically sent to a process that contains neighbors of the task
in the communication graph, so that the communication cost of
the main computation is minimized.1 Other schemes make larger
changes to the partitions, but remap the computation such that the
cost of migration is small [18].

The diffusion scheme is a simple and well-known scheme
sending data to neighboring processes [19–22]. Another scheme,
proposed in [11], is also based on sending tasks to neighbors. It
is based on solving a linear system involving the Laplacian of the

1 When tasks are fairly independent, as in QMC, it is reasonable to model it as a
complete graph, indicating that a task can be migrated to any process.

Author's personal copy

286 C.D. Sudheer et al. / Computer Physics Communications 184 (2013) 284–292

communication graph. Both these schemes require the tasks to be
arbitrarily divisible for the load balancing to work. For example,
one should be able to send 0.5 tasks, 0.1 tasks, etc. Modified
versions of diffusive type schemes have also been proposed which
remove restrictions on arbitrary divisibility [23]. Multi-level graph
partitioning based dynamic schemes are also popular [24]. Hyper-
graphs generalize graphs using hyper-edges, which are sets of
vertices with cardinality not limited to two. Hyper-graph based
partitioning has also been developed [25]. Software tools, such as
JOSTLE [26], ParMetis, and Zoltan are available, implementing a
variety of algorithms.

Apart from general purpose algorithms, there has also been
interest in the development of algorithms for specific applications,
such as [27]. There has also beenwork performed on taking factors
other than communication and computation into account, such as
IO cost [28].

There has been much work performed on load balancing inde-
pendent tasks (bag of tasks) in the distributed and heterogeneous
computing fields [29–32]. Many of the scheduling algorithms try
to minimize the makespan, which can be considered a type of load
balancing. They consider issues such as differing computing power
of machines, online scheduling, etc.

Within the context of QMC and DMC, we are not aware
of any published work specifically focusing on the algorithms
used for load balancing, although optimizations to existing
implementations have been described [10]. Since all QMC codes
must perform a load balancing step, each must have a reasonably
efficient load balancing implementation, at least for modest
numbers of compute elements. However, the methods used have
not been formally described and we do not believe any existing
methods share the optimality features of the algorithm described
below.

3. The alias method based algorithm for dynamic load
balancing

Our algorithm is motivated by the alias method for generating
samples from discrete random distributions. We therefore refer
to our algorithm as the Alias method for dynamic load balancing.
There is no randomness in our algorithm. It is, rather, based on the
following observation used in a deterministic pre-processing step
of the aliasmethod for the generation of discrete randomvariables.
If we have P bins containing kP objects in total, then it is possible
to re-distribute the objects so that each bin receives objects from
at most one other bin, and the number of objects in each bin, after
the redistribution, is exactly k. Walker [33] showed how this can
be accomplished in O(P log P) time. This time was reduced to O(P)

by [34] using auxiliary arrays. In Algorithm 1 below, we describe
our in-place implementation that does not use auxiliary arrays,
except for storing a permutation vector.

We assume that the input to Algorithm 1 is an integer array A
containing the number of objects in each bin. Given A, we can com-
pute k easily inO(P) time, andwill also partition it around k inO(P)

time so that all entries with A[i] < k occur before any entry with
A[j] > k. We will assume that A[i] ≠ k, because other bins do not
need to be considered — they have the correct number of elements
already, and our algorithm does not require redistribution of ob-
jects to or from a bin that has k objects. If we store the permutation
while performing the partitioning, then the actual bin numbers can
easily be recovered after Algorithm 1 is completed. This algorithm
runs only with P ≥ 2, because otherwise all the bins already have
k elements each.We assume that a pre-processing step has already
accomplished the above requirements in O(P) time.

Algorithm 1. Input. An array of non-negative integers A[1 · · · P]
and an integer k > 0, such that

P
i=1 A[i] = kP , entries of A have

been partitioned around k, and P ≥ 2. A[i] gives the number of
objects in bin i, and A[i] ≠ k.
Output. Arrays S[1 · · · P] and W [1 · · · P], where S[i] gives the bin
from which bin i should getW [i] objects, if S[i] ≠ 0.
Algorithm.

1. Initialize arrays S and W to all zeros.
2. s← 1.
3. l← min{j|A[j] > k}.
4. while l > s

(a) S[s] ← l.
(b) W [s] ← k− A[s].
(c) A[l] ← A[l] −W [s].
(d) if A[l] < k then

i. l← l+ 1.
(e) s← s+ 1.

It is straightforward to see the correctness of Algorithm 1 based
on the following loop invariants at the beginning of each iteration
in step 4: (i) A[i] ≥ k, l ≤ i ≤ P , (ii) 0 ≤ A[i] < k, s ≤ i ≤ l − 1,
and (iii) A[i] + W [i] = k, 1 ≤ i ≤ s − 1. Since bin l needs to
provide at most k objects to bin s, it has a sufficient number of
objects available, and also as a consequence of the same fact, A[l]
will not become negative after giving W [s] objects to bin s. The
last clause of the loop invariant proves that all the bins will have k
objects after the redistribution. We do not formally prove the loop
invariants, since they are straightforward.

In order to evaluate the time complexity, note that in the while
loop in step 4, l and s can never exceed P . Furthermore, each
iteration of the loop takes constant time, and s is incremented once
each iteration. Therefore, the time complexity of the while loop is
O(P). Step 3 can easily be accomplished inO(P) time. Therefore the
time complexity of this algorithm is O(P).
Load balancing when T is a multiple of P . Using Algorithm 1, a
process can compute tijs as follows, if we associate each bin with a
process2 and the number of objects with the number of tasks:

tS[i]i ← W [i], S[i] ≠ 0. (1)

All other tijs are zero. Of course, one needs to apply the permutation
obtained from the partitioning before performing this assignment.
Note that the loop invariant mentioned for Algorithm 1 also shows
that a process always has sufficient data to send to those that it
needs to; it need not wait to receive data from any other process
in order to have sufficient data to send, unlike some other dynamic
load balancing algorithms [11].
Load balancing when T is not necessarily a multiple of P . The above
case considers the situation when the total number of tasks is a
multiple of the total number of processes. We can also handle the
situation when this is not true, using the following modification. If
there are T tasks and P processes, then let k = ⌈T/P⌉. For balanced
load, no process should have more than k tasks. We modify the
earlier scheme by adding kP − T fake ‘‘phantom’’ tasks. This can
be performed conceptually by incrementing A[i] by one for kP − T
processes before running Algorithm 1 (and even before the pre-
processing steps involving removing entries with A[i] = k and
partitioning). The total number of tasks, including the phantom
ones, is now kP , which is a multiple of P . So Algorithm 1 can
be used on this, yielding k tasks per process. Some of these are

2 In our algorithm, processes that already have a balanced load do not participate
in the redistribution of tasks to balance the load. Therefore, we use P to denote
the number of processes with unbalanced loads in the remainder of the theoretical
analysis.

Author's personal copy

C.D. Sudheer et al. / Computer Physics Communications 184 (2013) 284–292 287

phantom tasks, and so the number of tasks is at most k, rather
than exactly k. We can account for the phantom tasks bymodifying
the array S as follows, after completion of Algorithm 1. Let F be
the set of processes to which the fake phantom tasks were added
initially (by incrementing their A entry). For each j ∈ F , define
rj = min{i|S[i] = j}. If rj exists, then setW [rj] ← W [rj]−1. This is
conceptually equivalent tomaking each process that initially had a
phantom task to send this task to the first process towhom it sends
anything. Note that on completion of the algorithm, no process has
more than two phantom tasks, because in the worst case, it had
one initially, and then received one more. So the total number of
tasks on any process after redistribution will vary between k − 2
to k. The load is still balanced, because we only require that the
maximum load not exceed ⌈T/P⌉ after the redistribution phase.3
This modified algorithm can be implemented with the same time
complexity as the original algorithm.

4. Theoretical analysis

We next analyze the performance of the migration step of the
load balancing algorithm, when using the tijs as computed by
Algorithm 1 in Section 3. We define a few performance metrics,
and give the approximation ratio of our algorithm (that is, an upper
bound on the ratio of the time taken by our algorithm to that of an
optimal one, in themetric considered). The results are summarized
in Table 1.We assume that P ≥ 2 in Algorithm1; otherwise no load
redistribution is performed, either by our algorithm or an optimal
one, and the approximation ratio, 0/0 under any of our metrics,
is undefined. The analyses below consider the case where T is a
multiple of P . If T is not a multiple of P , then all the bounds still
hold, except in the Maximum-Tasks-Received metric, where our
algorithm may have a value one more than the optimal.
Maximum-Receives. In this metric, the time taken in the migration
step is themaximumnumber ofmessages received by any process.
Formally, it is given by maxj |{i|tij ≠ 0}|. This metric is reasonable
to use if sending can be performed asynchronously, and if the
latency overhead of sending a message is very high, as is common
in many distributed environments. The receive operation still
blocks until the message is received, and so this cost can dominate
if the data size is not very large.

In the alias algorithm, any process receives at most one
message. An optimal algorithm too requires at least one message
to be received on some process, since the load is unbalanced. So
the approximation ratio is 1.
Maximum-Tasks-Received. In this metric, the time taken is esti-
mated as the largest number of tasks received by any process. That
is, it is maxj

P
i=1 tij, which is the largest total sizes of messages re-

ceived by any process. This metric is reasonable to use if sends are
asynchronous as above, receives blocking, and message sizes are
fairly large.

Let d = maxi T/P − Ti. That is, it is the largest deficit in the
number of tasks initially on any process. The optimal algorithm
needs to have the process with this deficit receive at least d tasks.
So the optimal solution is at least as large as d.

Wewill next show that the Alias-based scheme can redistribute
the load with the maximum-tasks-received being d, thereby being
optimal in this metric. Assume that this is not true, and that the
Alias-based algorithm takes greater than d. Let i be the smallest
indexed process with W [i] > d. Let W [i] = d̂. Process i cannot
be one that initially had a deficit, because from Algorithm 1, one
can see that a process with an initial deficit never sends tasks to

3 In our implementation, the phantom tasks are not actually sent, and they do not
even exist in memory.

Table 1
Approximation factors under different metrics.

Method Approximation factor

Maximum-Receives 1
Total-Messages 2
Maximum-Tasks-Sent ∞

Maximum-Sends ∞

Total-Tasks-Sent ∞

Maximum-Tasks-Received 1

any process. So its deficit will never increase beyond its initial
one, which is at most d, because W [i] = k − A[i] ≤ d for such
processes, where k = T/P . So i must be a process that initially
had an excess (that is, i is at least as large as the initial value of
l in Algorithm 1). Process i must have contributed to the W [j] of
some process j in order to later experience a deficit of d̂. Consider
the situation just before the last time it contributed to some W [j].
A[i] ≥ k at that time. After the contribution, W [j] ≤ d because i is
the smallest indexed process with W entry greater than d, and in
Algorithm1, processes contribute only to lower indexed processes.
So, A[i] ≥ k− d after the contribution. The deficit it experiences is
thus atmost d, and soW [i]must be atmost d. Thus the assumption
is false, and W [i] ≤ d for all i. This shows optimality of the Alias
method-based algorithm in this metric, and so its approximation
ratio is 1.
Total-Messages. In this metric, we count the total number of
messages,


j |{i|tij ≠ 0}| or


i |{j|tij ≠ 0}|. That is, we count the

total number of sends or the total number of receives. This can be a
reasonablemetric ifmanymessages are being sent. In that case, we
want to reduce congestion on the network, which may be reduced
by reducing the total number of messages.

The optimal solution sends at least P/2 messages for the
following reason. Let us partition the processes into sets D and E,
where D consists of all processes that have an initial deficit, and E
consists of all processes that have an initial excess. Each process
in D must receive at least one message to balance its load, and
each process in E must send at least one message to balance its
load. Thusmax{|D|, |E|} is a lower bound on the cost of the optimal
solution. But |D| + |E| = P . Therefore max{|D|, |E|} ≥ P/2, and
so the cost of the optimal solution is at least P/2. The Alias-based
scheme has each process receive at most 1 message. So the total
number of messages received (or, equivalently, sent) is at most P
(in fact, it is P − 1, if we note, from Algorithm 1, that process P
cannot receive a message). So the approximation ratio is 2.

Example 1. We next show that the above bound is tight. Consider
P = 2n processes for some sufficiently large n, with T1 · · · Tn−1 =
n− 1, Tn = 2, Tn+1 = 2n− 2, Tn+2 · · · T2n = n+ 1. It is possible to
balance the load by having process n+1 send n−2 tasks to process
n, and having processes n+2 · · · 2n send one task each to processes
1 · · · n− 1 respectively. The total number of messages sent will be
n = P/2, which is also the best possible, as shown above. In the
alias method-based algorithm, process n + 1 sends one task each
to processes 1 · · · n− 1, process n+ 2 sends n− 2 tasks to process
n, process n+ 3 sends one task to process n+ 1 and n− 3 tasks to
process n+2, and each process n+i sends n−(i−1) tasks to process
n+i−1, 4 ≤ i ≤ n. Each process other thanprocess 2n receives one
messages, and so the total number of messages is 2n− 1 = P − 1.
The approximation factor is (P − 1)/(P/2) = 2(1− 1/P). Since P
can be arbitrarily large, the bound is tight.

Total-Tasks-Sent. In this metric, we count the total number of tasks,
i


j tij sent. This is a reasonable metric to use if we send several
large messages, because these can then congest the network.

The approximation factor is unbounded, as can be seen from
Example 1 above. In that example, there are n − 1 messages of

Author's personal copy

288 C.D. Sudheer et al. / Computer Physics Communications 184 (2013) 284–292

length 1 each from process n+1, onemessage of length n−2 from
process n+ 2, one message of length 1 and one message of length
n−3 fromprocessn−3, andmessages of length 1, 2, · · · , n−3 from
processes 2n, 2n− 1, . . . , n+ 4 respectively. So, the total number
of tasks sent is 3n − 5 + (n − 3)(n − 2)/2. An optimal flow for
this example in the Maximum-Tasks metric sends 2n− 3 tasks, as
explained above, and so the optimal schedule for the Total-Tasks
metric sends at most 2n − 3 tasks. The approximation ratio is
then Ω(n) = Ω(P), which is unbounded, because the number of
processes, P , is unbounded.
Maximum-Sends andMaximum-Tasks-Sent.Wehave earlier defined
metrics that use the number and sizes of messages received by a
process. In analogy with those, we now discuss metrics that are
based on the number and sizes of messages sent. In theMaximum-
Sendsmetric, we count themaximumnumber of messages sent by
any process. The approximation factor is unbounded in thismetric,
as can be seen from Example 1. An optimal schedule for the Total-
Messagesmetric sends amaximumof 1message fromeach process
for this example, as described above. The Alias-based algorithm
has process n + 1 send n − 1 = P/2 − 1 messages. Since P can
be arbitrarily large, the approximation factor is unbounded in this
metric.

In the Maximum-Tasks-Sent metric, we count maxi


j tij,
which is the largest total sizes ofmessages sent by any process. The
approximation factor is unbounded here too, as can be seen from the
following example.

Example 2. Let T1 = 1, T2 · · · TP = P + 1. It is possible to bal-
ance the load by having processes 2, . . . , P send one task each to
process 1, for this metric to have value 1. It is easy to see that
this is also optimal. In the alias method-based algorithm, process
2 sends a message with P − 1 tasks to process 1, and each process
3, 4, . . . , P sends messages of size P − 2, P − 3, . . . , 1 to process
2, 3, . . . , P − 1 respectively. The maximum size is sent by process
2with value P−1, yielding an approximation factor of P−1, which
is unbounded, because P can be arbitrarily large.

5. Empirical results

5.1. Experimental setup

The experimental platform is the Cray XT5 Jaguar supercom-
puter at ORNL. It contains 18,688 dual hex-core Opteron nodes
running at 2.6 GHz with 16 GBmemory per node. The peak perfor-
mance of the machine is 2.3 petaflop/s. The nodes are connected
with SeaStar 2+ routers having a peak bandwidth of 57.6 GB/s,
with a 3-D torus topology. Compute Node Linux runs on the com-
pute nodes.

In running the experiments, we have two options regarding
the number of processes per node. We can either run one process
per node or one process per core. QMC software packages were
originally designed to run one MPI process per core. The trend
now is toward one MPI process per node, with OpenMP threads
handling separate randomwalkers on each core. Qmcpack already
has this hybrid parallelization implemented, and some of the other
packages are expected to have it implemented in the near future.
We assume such a hybrid parallelization, and have oneMPI process
per node involved in the load balancing step.

In our experiments, we consider a granularity of 24 random
walkers per node, that is, 2 per core. This is a level of granularity
that we desire for QMC computations in the near future.
Such scalability is currently limited by the periodic collective
communication and load balancing that is required.

Both these are related in the following manner. The first step
leads to termination or creation of new walkers, which in turn
requires load balancing. There is some flexibility in the creation

and termination of random walkers. Ideally, the load balancing
results both in reduced wall clock time per step (of all walkers)
and an improved statistical efficiency.

We note that there is some flexibility in the creation and
termination of random walkers. Ideally the load balancing is
performed after every time step, to obtain the best statistical error
and to minimize systematic errors due to the finite sized walker
population. However, the overhead on large parallel machines can
hinder this, and so one may perform them every few iterations
instead. Our goal is to reduce these overheads so that these
steps can be performed after every time step. For large physical
systems where the computational cost per step is very high, these
overheadsmay be relatively small comparedwith the computation
cost. However, for small to moderate sized physical systems, these
overheads can be large, and wewish to efficiently apply QMC even
to small physical systems on the largest parallel computational
systems.

We consider a small system, a Cr2 molecule, with an accu-
rate multideterminant trial wavefunction. The use of multideter-
minants increases computational time over the use of a single
determinant. However, it provides greater accuracy, which we de-
sire when performing a large run. The computation time per time
step per walker is then around 0.1 s. The two collective steps men-
tioned above consume less than 10% of the total time on a large
machine (the first step does not involve just collective communi-
cation, but also involves other global decisions, such as branching).
Even then, on 100,000 cores, this is equivalent to wasting 10,000
cores. We can expect these collective steps to consume a larger
fraction of time at even greater scale.

In evaluating our load balancing algorithm, we used samples
from the load distribution observed in a long run of the above
physical system. Depending on the details of the calculations, the
amount of data to be transferred for each random walker can vary
from 672 B to 32 kB for Cr2. We compared our algorithm against
the load balancing implementation in QWalk. The algorithm used
in QWalk is optimal in the maximum number of tasks sent by any
processor and in the total number of tasks sent by any processor,
but not on the maximum or total number of messages sent; these
are bounded by the maximum imbalance and the sum of load
imbalances respectively. Onemay, therefore, expect that algorithm
to be more efficient than ours for a sufficiently large task size, and
ours to be better for small sizes. Also, the time taken for the flow
computation in QWalk is O(P + total_load), where P is the number
of nodes.

Each experiment involved 11 runs. As we show later, inter-job
contention on the network can affect the performance. In order to
reduce its impact, we ignore the results of the run with the largest
total time. In order to avoid bias in the result, we also drop the
result of the run with the smallest time. For a given number of
nodes, all runs for all task sizes for both algorithms are run on the
same set of nodes, with one exception mentioned later.

5.2. Results

Our testing showed that the time taken for the alias method
is linear in the number of nodes, as expected theoretically
(not shown). The maximum time taken by any node can be
considered ameasure of the performance of the algorithm, because
the slowest processor limits the performance. Fig. 1 shows the
average, over all runs, of the maximum time for the following
components of the algorithm. (We refer to it in the figure caption
as the ‘basic alias method’, in order to differentiate it from a
more optimized implementation described later.) Note that the
maximum for each component may occur on different cores,
and so the maximum total time for the algorithm over all the
cores may be less than the sum of the maximum times of each

Author's personal copy

C.D. Sudheer et al. / Computer Physics Communications 184 (2013) 284–292 289

Fig. 1. Maximum time taken for different components of the basic Alias method
with task size 8 kB.

component. We can see that communication operations consume
much of the time, and the flow computation is not the dominant
factor, even with a large number of nodes. The MPI_Isend and
MPI_Irecv operations take little time. However MPI_Waitall and
MPI_Allgather consume a large fraction of the time. It may be
possible to overlap computation with communication to reduce
the wait time. However, the all-gather time is still a large fraction
of the total time.

In interpreting the plot in Fig. 1, one needs to note that it is
drawn on a semi-log scale. The increase in time, which appears
exponential with the number of cores, is not really so. A linear
relationship would appear exponential on a semi-log scale. On
the other hand, one would really expect a sub-linear relationship
for the communication cost. The all-gather would increase sub-
linearly under common communication cost models. In the ab-
sence of contention, the cost of data transfer need not increasewith
the number of cores for the problem considered here; the maxi-
mum imbalance is 4, each node has 6 communication links, and so,
in principle, if the processes are ideally ordered, then it is possi-
ble for data to travel on different links to nearby neighbors which
would be in need of tasks. The communication time can, thus, be
held constant. We can see from this figure that the communica-
tion cost (essentially thewait time) does increase significantly. The
communication time for 12,000 cores is 2–3 times the timewithout
contention, and the timewith 120,000 cores is 4–6 times thatwith-
out contention. The cause for contention is that the routing on this
machine uses fixed paths between pairs of nodes, and sends data
along the x coordinate of the torus, in the direction of the shortest
distance, then in the ydirection, and finally in the z direction.4 Mul-
tiple messages may need to share a link, which causes contention.

In Fig. 2, we consider the mean value of the different compo-
nents in each run, and plot the average of this over all runs.We can
see that thewait time is very small. The reason for this is thatmany
of the nodes have balanced loads. The limiting factor for the load
balancing algorithm is the few nodes with large workload.

We next optimize the alias method to reduce contention. We
would like nodes to send data to nearby nodes.We used a heuristic
to accomplish this. We obtained the mapping of node IDs to x, y,
and z coordinates on the 3-D torus. We also found a space-filling
Hilbert curve that traverses these nodes. (A space-filling curve tries
to order nodes so that nearby nodes are close by on the curve.) At
run time, we obtain the node IDs, and create a new communicator
that ranks the nodes according to their relative position on the

4 Personal communication from James Buchanan, OLCF, ORNL.

Fig. 2. Mean time taken for different components of the basic Alias method with
task size 8 kB.

Fig. 3. Comparison of optimized Alias method against the basic method with task
size 8 kB.

space-filling curve. We next changed the partitioning algorithm
so that it preserves the order of the space-filling curve in each
partition. We also made slight changes to the Alias algorithm so
that it tries tomatch nodes based on their order in the space-filling
curve. The creation of a new communicator is performed only once,
and the last two steps don’t have any significant impact on the
time taken by the Alias method. Thus, the improved algorithm is
no slower than the basic algorithm. Fig. 3 shows that the optimized
algorithm has much better performance than the basic algorithm
for large core counts. It is close to 30% better with 120,000 cores,
and 15%–20% better with 1,200 and 12,000 cores.

We next analyze the reason for the improved performance.
Fig. 4 considers the average over all runs for the maximum time
taken by different components of the algorithm. As with the
analysis of the basic algorithm, the total maximum time is smaller
than the sum of the maximum times of each component. We can
see that the wait time is smaller than that of the basic algorithm
shown in Fig. 1, which was the purpose of this optimization. The
improvement is around 60%with 120,000 cores and 20% on 12,000
cores. Surprisingly, the MPI_Allgather time also reduces by around
30% on 120,000 cores and 20% on 12,000 cores. It appears that
the MPI implementation does not optimize for the topology of the
nodes that are actually allocated for a run, and instead uses process
ranks. The ranks specified by this algorithm happen to be good for
the MPI_Allgather algorithm. This improvement depends on the
nodes allocated. In the above experiment, with 120,000 cores, the
set of allocated nodes consisted of six connected components. In
a different run, we obtained one single connected component. The
use ofMPI_Allgather with the optimized algorithm did not provide

Author's personal copy

290 C.D. Sudheer et al. / Computer Physics Communications 184 (2013) 284–292

Fig. 4. Maximum time taken for different components of the Optimized Alias
method with task size 8 kB.

25

20

15

10

5

0
25

20
15

10
5

0

25
3530

2015105

Fig. 5. Allocation of nodes on the grid for a run with 12,000 cores.

any benefit in that case. It is possible that the MPI implementation
optimized its communication routines under the assumption of
a single large piece of the torus. When this assumption is not
satisfied, perhaps its performance is not that good.

The performance gains are smaller with smaller core counts,
which can be explained by the following observations. Fig. 5 shows
the node allocation for the 12,000 core run. We can see that
we get a large number of connected components. Thus, inter-job
contention can play an important role. Each component is also not
shaped close to a cube. Instead, we have several lines and 2-D
planes, long in the z direction. This makes it hard to avoid intra-
job contention, because each node is effectively using fewer links,
making contention for links more likely. It is perhaps worthwhile
to consider improvements to the node allocation policy. For 120
and 1,200 cores, typically each connected component is a line (or
a ring, due to the wrap-around connections), which would lead
to contention if there were several messages sent. However, the
number of nodes with imbalance is very small, and contention
does not appear to affect performance in the loadmigration phase.
Consequently, improvement in performance is limited to that
obtained from the all-gather operation.

We next compare the optimized alias implementation against
the QWalk implementation in Figs. 6–8. The new algorithm
improves the performance by up to 30%–35% in some cases, and
is typically much better for large numbers of cores. The improved
performance is often due to improvement in different components
of the algorithm and its implementation: all-gather, taskmigration
communication cost, and to a smaller extent, time for the flow
computation. We can see from these figures that the time for 2 kB
tasks is higher on 120,000 cores than that for larger messages,

Fig. 6. Comparison of the optimized Alias algorithm against the existing QWalk
implementation with task size 672 B.

Fig. 7. Comparison of the optimized Alias algorithm against the existing QWalk
implementation with task size 2 kB.

especially with the QWalk algorithm. This was a consistent trend
across the runswith QWalk. The higher timewith the Aliasmethod
is primarily the result of a couple of runs taking much larger
time than the others. These could, perhaps, be due to inter-job
contention. We did not ignore this data as an outlier, because if
such a phenomenon occurs 20% of the time, then we believe that
we need to consider it a reality of the computations in realistic
conditions.

We know that the Alias method is optimal in the maximum
number of messages received by any node, and find (not shown)
that QWalk requires an increasing maximum number of receives
with increasing core count. However, when we measure the mean
number of tasks sent per core, Fig. 9, we find that QWalk is optimal.
The Alias method is approximately a factor of two worse in terms
of the number of messages sent. Although we do not see this in
tests with realistic message sizes, for sufficiently large messages
it is clear that there must be a cross-over in the preferred load
balancing algorithm. At some point the existing QWalk algorithm
will be preferred since the communications will be bandwidth
bound.

6. Conclusions

We have proposed a new dynamic load balancing algorithm for
computations with independent identical tasks, which has some

Author's personal copy

C.D. Sudheer et al. / Computer Physics Communications 184 (2013) 284–292 291

Fig. 8. Comparison of Alias algorithm with the existing QWalk implementation
with task size 32 kB.

Fig. 9. Mean number of tasks sent per core.

good theoretical properties.We have shown that it performs better
than the current methods used in Quantum Monte Carlo codes
in empirical tests. We have also optimized the implementation
and demonstrated that it has better performance due to reduced
network contention. The relative performance of the algorithm
to existing methods is expected to increase with the increased
compute element count of upcoming machines.

Our future work will be along two directions: (i) developing
better algorithms and (ii) improving performance of the current
implementation. We note that our algorithm is optimal in terms
of the maximum number of messages received by a process and
also in terms of themaximum size of messages received. However,
it is not optimized in terms of the total sizes of the messages on
the network. This limitation can reduce performance by increasing
the likelihood of network congestion. However, the simplicity
of the messaging in the current algorithm and implementation
demonstrably allows for communications network contention
to be reduced, by using a ranking based on a space filling
curve or based on specific knowledge of the hardware layout.
In future, we expect the simplicity of the messaging will allow
for straightforward overlap of communication and computation,
allowingmuch of the communication overhead to be hidden,while
using very simple code. The datamigration cost can also be hidden,
provided that at least two walkers are used per compute element
and that the transfer/communication time remains less than the
computation cost of a single walker. Finally, we note that the flow
computation can itself be parallelized, a step that will be required
as machines with millions of compute elements become available.

Acknowledgments

We acknowledge the ORAU/ORNL HPC program for partial
funding, and the INCITE and XSEDE programs for computing time.
Research by PRCKwas conducted at the Center for Nanophase Ma-
terials Sciences, which is sponsored at Oak Ridge National Labo-
ratory by the Scientific User Facilities Division, U.S. Department of
Energy.

References

[1] W.A. Lester, P. Reynolds, B.L. Hammond, Monte Carlo methods in ab initio
quantum chemistry,World Scientific, Singapore, ISBN: 9789810203214, 1994.

[2] W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Quantum Monte Carlo
simulations of solids, Reviews of Modern Physics 73 (1) (2001) 33.

[3] A. Luchow, Quantum Monte Carlo methods, Wiley Interdisciplinary Reviews:
Computational Molecular Science 1 (3) (2011) 388–402.

[4] R.M. Martin, Electronic Structure: Basic Theory and Practical Methods,
Cambridge University Press, ISBN: 0521782856, 2004.

[5] R.J. Needs, M.D. Towler, N.D. Drummond, P.L. Rios, Continuum variational and
diffusion quantum Monte Carlo calculations, Journal of Physics: Condensed
Matter 22 (2010) 023201.

[6] CHAMP, 2011. http://pages.physics.cornell.edu/cyrus/champ.html.
[7] QMCPACK, 2011. http://qmcpack.cmscc.org/.
[8] L.K. Wagner, M. Bajdich, L. Mitas, Qwalk: a quantumMonte Carlo program for

electronic structure, Journal of Computational Physics 228 (2009) 3390–3404.
[9] N. Nemec, Diffusion Monte Carlo: Exponential scaling of computational cost

for large systems, Physical Review B 81 (3) (2010) 035119.
[10] M.J. Gillan, M.D. Towler, D. Alfe, Petascale computing open new vistas for

quantum Monte Carlo, in: Psi-K Newsletter, vol. 103, 2011. p. 32.
[11] Y.F. Hu, R.J. Blake, D.R. Emerson, An optimal migration algorithm for dynamic

load balancing, Concurrency: Practice and Experience 10 (1998) 467–483.
[12] A. Pothen, H.D. Simon, K. Liou, Partitioning sparse matrices with eigenvectors

of graphs, SIAM Journal on Matrix Analysis and Applications 11 (1990)
430–452.

[13] S.T. Barnard, H.D. Simon, A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems, Concurrency:
Practice and Experience 6 (1994) 101–107.

[14] G. Karypis, V. Kumar, A fast and high qualitymultilevel scheme for partitioning
irregular graphs, SIAM Journal on Scientific Computing 20 (1998) 359–392.

[15] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular
graphs, Journal of Parallel and Distributed Computing 48 (1998) 96–129.

[16] G. Karypis, V. Kumar, A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering, Journal of Parallel and Distributed Computing 48
(1998) 71–95.

[17] G. Karypis, V. Kumar, A fast and high qualitymultilevel scheme for partitioning
irregular graphs, Tech. Rep. 95-035, University of Minnesota, 1995.

[18] L. Oliker, R. Biswas, PLUM: parallel load balancing for adaptive unstructured
meshes, Journal of Parallel and Distributed Computing 51 (1998) 150–177.

[19] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors,
Journal of Parallel and Distributed Computing 7 (1989) 279–301.

[20] R. Diekmann, A. Frommer, B. Monien, Efficient schemes for nearest neighbor
load balancing, Parallel Computing 25 (7) (1999) 789–812.

[21] Y.F. Hu, R.J. Blake, An improveddiffusion algorithm for dynamic loadbalancing,
Parallel Computing 25 (1999) 417–444.

[22] B. Ghosh, S. Muthukrishnan, M.H. Schultz, First and second order diffusive
methods for rapid, coarse, distributed load balancing, Theory of Computing
Systems 31 (1998) 331–354.

[23] R. Elsasser, B. Monien, S. Schamberger, Distributing unit size workload
packages in heterogeneous networks, Journal of Graph Algorithms and
Applications 10 (2006) 51–68.

[24] K. Schloegel, G. Karypis, V. Kumar, A unified algorithm for load-balancing
adaptive scientific simulations, in: Proceedings of the IEEE/ACM SC2000
Conference, IEEE Computer Society, 2000.

[25] U. Catalyurek, E. Boman, K. Devine, A repartitioning hypergraph model for
dynamic load balancing, Journal of Parallel and Distributed Computing 69
(2009) 711–724.

[26] C. Walshaw, M. Cross, Dynamic mesh partitioning and load-balancing
for parallel computational mechanics codes, in: B.H.V. Topping (Ed.),
Computational Mechanics Using High Performance Computing, Saxe-Coburg
Publications, Edinburgh, 1999.

[27] X. Li, M. Parashar, Hierarchical partitioning techniques for structured adaptive
mesh refinement applications, The Journal of Supercomputing 28 (2003) 278.

[28] X. Qin, Performance comparison of load balancing algorithms for i/o-intensive
workloads on clusters, Journal of Network and Computer Applications 31
(2008) 32–46.

[29] A. Iosup, O. Sonmez, S. Anoep, D. Epema, The performance of bags-of-tasks in
large-scale distributed systems, in: Proceedings of the HPDC, 2008.

[30] N. Fujimoto, K. Hagihara, Near-optimal dynamic task scheduling of indepen-
dent coarse-grained tasks onto a computational grid, in: Proceedings of the
International Conference on Parallel Processing. 2003, pp. 391–398.

Author's personal copy

292 C.D. Sudheer et al. / Computer Physics Communications 184 (2013) 284–292

[31] M. Maheswaran, S. Ali, H. Siegal, D. Hensgen, R. Freund, Dynamic mapping
of a class of independent tasks onto heterogeneous computing systems, in:
Proceedings of the Heterogeneous Computing Workshop, 1999, pp. 30–44.

[32] S. Dhakal, M. Hayat, J. Pezoa, C. Yang, D. Bader, Dynamic load balancing in
distributed systems in the presence of delays: a regeneration-theory approach,
IEEE Transactions on Parallel and Distributed Systems 18 (2007) 485–497.

[33] A.J.Walker, An efficientmethod for generating discrete random variables with
general distributions, ACM Transactions on Mathematical Software 3 (1977)
253–256.

[34] R.A. Kronmal, A.V. Peterson, On the alias method for generating random
variables from a discrete distribution, The American Statistician 33 (1979)
214–218.

