

Engineering Portfolio Shawn Dashty

Email: shawn.dashty@gmail.com Phone: 704-605-4683 LinkedIn: https://www.linkedin.com/in/shawn-dashty-341078136/ Website: https://webpages.uncc.edu/sdashty/

Design Portfolio Table of Contents:

Artificial Intelligence Vision Rig	3
Dual Axes Pneumatic Driven QA Rig	4
3-D Printer Binder Mechanism	5
Hydraulic Ladder	6
Pick and Place Robot	7
Machined Air Engine	8
Injection Molded Raspberry Pi Case	9
Reverse Engineered Action Figure	10
Instrumentation IOT Motion Sensor	11

Sealed Air ME Internship

Artificial Intelligence Vision Rig

- Sheet Metal Design
- Tab/Slot Welds for Ease of Manufacturing
- Waterproof Electronic Housing
- Variable Height Mechanism
- Symmetrical Assembly

Sealed Air ME Internship

Dual Axes, Pneumatic Driven Quality Assurance Rig

- Sheet Metal Design
- Pneumatic Driven (Stacked-Axes)
- Tab/Slot Welds for Ease of Manufacturing
- Aids in quality assurance process for vacuum sealed bags

Binder-Jetting Mechanism for Z-CORP 510

Undergraduate Research Design:

- Additive Manufacturing Binder Spraying Mechanism
- Mounts to Z-CORP 510 Printer
- Slider-Crank Mechanisms
- Servo-Driven to Utilize Encoder and Code for Desired Positioning
- Arduino Code and Microcontroller
- Controlled Flow Rates by Investing in Syringe Pump
- Controlled Carriage Velocity

Senior Design

Retracting Ladder for Industrial Loader

- Hydraulic Powered Retractable Ladder
- Utilizes Welds and L-Brackets to Refrain from Cantilever Beam Scenario
- Improves Factor of Safety of Current
 Industry Design
- Retracts From Obstructions When
 Loader is in motion
- Utilizes Slotted Arc for Path of Travel

Junior Design

Pick & Place Robot

- Pick and Place 5 Steel Spheres to Designated Large Hole
- Utilize Arduino & Microswitches for Homing/Code
- Slider-Crank Gripper Assembly
- Stepper-Motors for Rotary Movement
- Utilizes Belt-Driven Pulley System
- Ranked 2nd Overall, Factoring In:
 - Cost
 - Weight
 - Elapsed Process Time

Sophomore Design

Machined Air Engine

- Utilize Machine Shop to Fabricate Tight Tolerance Air Engine Over Course of Semester
- Familiarize with Mill, Lathe, Drill Press, Grinding Wheel, Vertical/Horizontal Band-Saw, etc..
- Required to Surpass 6500 RPM'S at 80 PSI
 - Personal RPM: 7120 RPM
- Required to Run at 5 PSI

Plastic Part Design: Raspberry Pi Case

Injection Molded Raspberry Pi Case

- Applied learned concepts of Injection Molding Process to Design of Raspberry Pi Case
- Design for Injection Mold
- Tested Thermal Analysis of Process for Verification of Proper Design
- Cost-Effective
- Heat Vents for Proper Transfer of Heat Generated From Raspberry Pi

Advanced CAD/CAM

Instrumentation IOT Design

IOT Security Motion Sensor

Key Features :

- Photon Particle IOT
- C++ Programming Language

Youtube Live Video

https://www.youtube.com/watch?time_continue=3&v=WzGc7 AX7Cgs

Full Detail How-To Page

https://www.hackster.io/iot-36/megr-3171-fall-2018-securitymotion-sensor-1fa32d