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Abstract
Accurate dynamic simulation with robust handling of intermittent contact is necessary for a wide range of robotics
problems, including the design of parts feeding devices, manipulation and kinodynamic planning, and designing grasp
strategies. In this paper we present an implicit time-stepping scheme for dynamic simulation of multibody systems with
intermittent contact by incorporating the contact constraints as a set of complementarity and algebraic equations within
the dynamics model. We model each body as an intersection of convex inequalities and write the contact constraints as
complementarity constraints between the contact force and a distance function dependent on the closest points on the
bodies. The closest points satisfy a set of algebraic constraints obtained from the Karush–Kuhn–Tucker (KKT) condi-
tions of the minimum distance problem. We prove that these algebraic equations and the complementarity constraints
taken together ensure satisfaction of the contact constraints. This enables us to formulate a geometrically implicit time-
stepping scheme (i.e. we do not need to approximate the distance function) as a nonlinear complementarity problem. The
resulting time-stepper is therefore more accurate and does not rely on a closed-form distance function. We demonstrate
through example simulations the fidelity of this approach to analytical solutions and previously described simulation and
experimental results.

Keywords
Multibody contact dynamics, dynamic simulation, complementarity, geometrically implicit time-stepper

1. Introduction

The accurate prediction of object motions can enable the
automatic planning and execution of tasks involving inter-
mittent contact. Examples of robotics applications with
contact include the design of local controllers for self-
organizing systems (Klavins, 2007), synthesis and analysis
of grasping and manipulation plans (Trinkle et al., 1993;
Zumel and Erdmann, 1996; Cherif and Gupta, 1999; Miller
and Allen, 2000), design and development of parts feed-
ing devices (Song et al., 2004b), and design of assembly
devices by vibrating plates (Vose et al., 2009). Due to the
intermittency of contact and the presence of stick–slip fric-
tional behavior, dynamic models of such multibody sys-
tems are inherently (mathematically) nonsmooth, and are
thus difficult to integrate accurately. In fact, commercially
available multibody dynamics software packages such as
Adams (MSC-Software, 2012), have a difficult time sim-
ulating any system with unilateral contacts. Users expect
to spend considerable effort in a trial-and-error search
for good simulation parameters to obtain believable, not
necessarily accurate, results.

The primary sources of stability and accuracy problems
in dynamic simulation are polyhedral approximations of
smooth bodies, the decoupling of collision detection from
the solution of the dynamic time-stepping subproblem, and
approximations to the quadratic Coulomb friction model.
This paper focuses on addressing the above problems
by developing a geometrically implicit optimization-based
time-stepper for dynamic simulation. More specifically,
state-of-the-art geometrically explicit time-steppers (Stew-
art and Trinkle, 1996; Song et al., 2004a; Liu and Wang,
2005) use the contact point information obtained from
a collision detection algorithm at the beginning of the
time-step to compute the state of the system at the end
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of the time-step (by solving a dynamics time-step sub-
problem) without modifying the contact information. In
other words, in geometrically explicit time-steppers, the
collision detection and the dynamic simulation time-step
are decoupled. Thus, state-of-the-art time-steppers can
be viewed as explicit methods with respect to geomet-
ric information. This may lead to the contact constraints
not being satisfied at the end of the time-step (e.g., inter-
penetration of the objects may occur). In contrast, geomet-
rically implicit methods must solve the collision detection
problem and dynamic time-stepping problem simultane-
ously. We develop the first time-stepping method that is
implicit in the geometric information (when the distance
function is not available in closed form) by incorporating
body geometry in the dynamic time-stepping subproblem.
Our formulation solves the collision detection and dynamic
stepping problems simultaneously, i.e. we obtain the contact
points and the state of the system at the end of the time-step
so that the contact constraints at the end of the time-step are
satisfied.

We illustrate the combined effects of geometric approxi-
mation and decoupling of collision detection from dynamic
time-stepping during dynamic simulation using a simple
example. Consider the planar problem of a uniform disc
rolling on a horizontal support surface. For this problem,
the exact analytical solution is known, i.e. the disc will
roll at constant speed ad infinitum. However, when the disc
is approximated by a uniform regular polygon, energy is
lost due to: (a) collisions between the vertices and the sup-
port surface, (b) contact sliding that is resisted by friction,
and (c) artificial impulses generated by the approximate
distance function that is to be satisfied at the end of the
time-step. We simulated this example in dVC (Berard et al.,
2007) using the Stewart–Trinkle time-stepping algorithm
(Stewart and Trinkle, 1996). The plots in Figure 1 show the
reduction of kinetic energy over time caused by the accumu-
lation of these effects. Figure 1(a) shows that with a fixed
time-step (of 0.01 seconds for the figure), as the number of
edges is increased, the energy loss decreases. However, the
decrease in energy loss approaches a limit (determined by
the size of the time-step). As can be seen in Figure 1(a),
the loss of energy when the disc is approximated by 1000
vertices is indistinguishable from a 10 times finer approxi-
mation, when the disc is approximated by 10, 000 vertices.
Figure 1(b) shows that for a fixed number of vertices (1000
in this example), as the time-step decreases further from
t = 0.01, the energy loss decreases. However, even with the
decrease in time-step an energy loss limit is reached. The
plots for h = 0.001 and h = 0.0001 are indistinguishable.
These plots demonstrate that the discretization of geometry
and linearization of the distance function lead to the artifact
of loss of energy in the simulations.

To address these issues and related problems, we develop
a geometrically implicit time-stepping method for dynamic
simulation. The key idea in developing the time-stepping
method is to incorporate the contact constraints in the

Fig. 1. For a disc rolling on a surface, plots of the reduction of
kinetic energy over time caused by approximating the disc as a
uniform regular polygon.

dynamics model as a set of complementarity and algebraic
equations. We model each body as an intersection of convex
inequalities and write the contact constraints as comple-
mentarity constraints between the contact force and a dis-
tance function dependent on the closest points on the bod-
ies. The closest points satisfy a set of algebraic equations
obtained from the KKT conditions of the minimum distance
problem. We use a backward Euler time discretization, and
the resulting subproblem at each time-step is a mixed non-
linear complementarity problem. Since we solve for the
contact points, contact normal, and contact force at the end
of the time-step simultaneously, we call our time-stepping
scheme a geometrically implicit time-stepping scheme. We
first present the method for rigid bodies and then extend
it to locally compliant or quasi-rigid bodies, where each
body consists of a rigid core surrounded by a thin compli-
ant shell (Song et al., 2001; Song and Kumar, 2003; Pauly
et al., 2004; Song et al., 2004a). Our method also takes into
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consideration other important nonlinear elements such as
quadratic Coulomb friction. Although in the development
of our time-stepping model we have assumed the objects
to be convex, our method can also be used for nonconvex
objects that are described as an union of convex objects. We
illustrate this using an example grasping task (Section 6.4).

This paper combines and extends our earlier work in
Chakraborty et al. (2007a) and Chakraborty et al. (2007b).
It is organized as follows. In Section 2, we give a brief
overview of the literature in dynamic simulation related to
our present work. In Section 3, we present both the continu-
ous and discrete time dynamics model for multi-rigid-body
systems with an ellipsoidal dry friction law. In Section 4,
we develop a new formulation of the nonpenetration con-
dition (i.e. contact constraints) assuming the bodies to be
rigid. Thereafter, in Section 5, we modify these contact con-
straints to include compliant contacts with limits on the
maximum allowable deflection. The discrete time dynam-
ics model along with the contact constraints form a mixed
nonlinear complementarity problem at each time-step. In
Section 6, we give examples for the rigid and locally com-
pliant methods that validate and elucidate our time-stepping
scheme. In Section 6.4, we apply our dynamic simulation
algorithms to study in simulation a grasping experiment
performed by (Brost and Christiansen, 1996). In Section 7
we discuss some implementation issues and finally, in Sec-
tion 8, we present our conclusions and lay out the future
work.

2. Related work

Dynamics of multi-rigid-body systems with unilateral con-
tacts can be modeled as differential algebraic equations
(DAE) (Haug et al., 1986) if the contact interactions (slid-
ing, rolling, or separating) at each contact are known.
However, in general, the contact interactions are not known
a priori, but rather are discovered as part of the solution
process. To handle the many possibilities in a rigorous the-
oretical and computational framework, the model is for-
mulated as a differential complementarity problem (Cottle
et al., 1992; Trinkle et al., 1997). The problem is solved
using a time-stepping scheme and the resultant system of
equations to be solved at each step is a (linear/nonlinear)
complementarity problem.

Let u ∈ R
n1 , v ∈ R

n2 and let g : R
n1 × R

n2 → R
n1 , f :

R
n1 × R

n2 → R
n2 be two vector functions and the notation

0 ≤ x ⊥ y ≥ 0 imply that x is orthogonal to y and each
component of the vectors is nonnegative.

Definition 2.1. (Pang and Facchinei, 2003) The differential
(or dynamic) complementarity problem is to find u and v
satisfying

u̇ = g( u, v)

0 ≤ v ⊥ f ( u, v) ≥ 0

Definition 2.2. The mixed complementarity problem is to
find u and v satisfying

g( u, v) = 0

0 ≤ v ⊥ f ( u, v) ≥ 0

If the functions f and g are linear the problem is called a
mixed linear complementarity problem (MLCP); otherwise,
the problem is called a mixed nonlinear complementarity
problem (MNCP).

The three primary modeling approaches for multibody
systems with unilateral contacts are based on three different
assumptions about the flexibility of the bodies. The assump-
tions from most to least realistic (and most to least compu-
tationally complex) are: (a) the bodies are fully deformable,
(b) the bodies have rigid cores surrounded by compliant
material, (c) the bodies are fully rigid. The first assump-
tion leads to finite element approaches, for which one must
solve very large difficult complementarity problems or vari-
ational inequalities at each time-step. The second assump-
tion leads to smaller subproblems that can be solved more
easily (Pauly et al., 2004; Song et al., 2004a), but suit-
able values of the parameters of the compliant layer can
be difficult to determine. The assumption of rigid bodies
leads to the smallest subproblems and avoids the problem
of determining material deformation properties.

Independent of the rigidity assumptions of the bodies,
the methods developed to date for dynamic simulation have
one problem in common that fundamentally limits their
accuracy—they are not implicit with respect to the relevant
geometric information. For example, at the current state, a
collision detection routine is called to determine separation
or penetration distances between the bodies, but this infor-
mation is not incorporated as a function of the unknown
future state at the end of the current time-step. A goal of
a typical time-stepping scheme is to guarantee consistency
of the dynamic equations and all model constraints at the
end of each time-step. However, since the geometric infor-
mation at the end of the current time-step is approximated
from that at the start of the time-step, the solution will be in
error.

Early time-steppers used linear approximations of the
local geometry at the current time (Anitescu et al., 1996;
Stewart and Trinkle, 1996). Thus each contact was treated
as a point on a plane or a line on a (nonparallel) line and
these entities were assumed constant for the duration of
the time-step. Besides being insufficiently accurate in some
applications, some unanticipated side-effects arose (Egan
et al., 2003; Berard et al., 2004, 2010; Nguyen and Trinkle,
2010). The linear approximation leads to a representation of
the local portion of collision-free configuration space by a
convex subset of the actual nonconvex set. Thus, it is possi-
ble to have phantom collisions where collisions are detected
even though there are none (Nguyen and Trinkle, 2010).

Increased accuracy can be obtained in explicit schemes
by including curvature information. This was done by Liu
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and Wang (2005) and Pfeiffer and Glocker (1996) by incor-
porating kinematic differential equations of rolling contact
(Montana, 1998). Outside the complementarity formalism,
Kry and Pai (2003) and Baraff (1990) also make use of
the contact kinematics equations in dynamic simulations of
parametric and implicit surface objects respectively.

The method of Tzitzouris (2001) is the only geometri-
cally implicit method developed to date, but unfortunately
it requires that the distance function between the bodies
and two levels of derivatives be available in closed form.
However, it is possible that this method could run suc-
cessfully after replacing the closed-form distance functions
with calls to collision detection algorithms and replac-
ing derivatives with difference approximations from multi-
ple collision detection calls, but polyhedral approximations
common to most collision detection packages would gen-
erate very noisy derivatives. To our knowledge, such an
implementation has not been attempted. One other prob-
lem with Tzitzouris’s method is that it adapts its step size to
precisely locate every collision time. While this is a good
way to avoid interpenetration at the end of a time-step, it
has the undesirable side-effect of forcing the step size to be
unreasonably small when there are many interacting bod-
ies (Mirtich, 1996). The method we propose does not suffer
from this problem.

2.1. Collision modeling for nominally rigid-body
systems

Frictional collisions between rigid bodies have a long
history in mechanics (Keller, 1986; Routh, 1905). Here,
we give an overview of the basic approaches and refer
the reader to a recent survey article (Gilardi and Sharif,
2002) for a more comprehensive review. There are two
primary approaches to modeling collisions: coefficient of
restitution-based approaches and force-based methods. In
the former, the process of energy transfer and dissipa-
tion during collision is modeled by various coefficients
relating the velocity (or impulses) before contact to that
after contact. However, the extension of these concepts
to situations with multiple contacts is not straightforward
(see Seghete and Murphey (2010, 2012); Jia et al. (2013)
for recent progress in this direction). The force based
approaches use a compliant contact model to compute the
contact forces where the contact compliance is modeled
as a (linear/nonlinear) spring-damper system. In the sim-
plest model, known as the Kelvin–Voigt model or linear
spring-damper model, the normal contact force (F) is given
by a linear function of the deformation (δ) and the rate of
deformation (δ̇), i.e. F = kδ + cδ̇. The flexibility of the
body is lumped as a linear spring (with spring constant k)
and damper (with damping coefficient c). The limitations
of the linear model are documented in Gilardi and Sharif
(2002). Hertz introduced a nonlinear model of the form
F = kδn, where n is a constant (Johnson, 1985). This model
was extended by Hunt and Crossley (1975) to a nonlinear

spring-damper model of the form F = kδn + cδpδ̇q, where
p, q are constants. The models presented above are believed
to be of increasing accuracy but there are more unknown
constants dependent on geometry of the objects and mate-
rial properties that have to be determined experimentally
(except for some simple cases). This is a general feature
of all proposed contact compliance models. In Wang and
Kumar (1994) a continuum model of the deformations at
each contact is used. In Song and Kumar (2003), the authors
have used a 3D linear distributed contact model to compute
the contact forces. In this paper we use a lumped 3D lin-
ear spring-damper to model the contact compliance similar
to Kraus et al. (1997). However, we note that we could have
replaced this with a lumped nonlinear model if required. We
use an elliptic dry friction law (Goyal et al., 1991a,b; Howe
and Cutkosky, 1996; Trinkle and Pang, 1997; Trinkle et al.,
2001) that is a generalization of Coulomb’s friction law to
model the friction at the contact (please see the “Friction
Model” in Section 3 for the actual friction law used).

3. Dynamic model for multibody systems

In complementarity methods, the instantaneous equations
of motion of a multi-rigid-body system consist of five parts:
(a) Newton–Euler equations, (b) kinematic map relating the
generalized velocities to the linear and angular velocities,
(c) equality constraints to model joints, (d) normal con-
tact condition to model intermittent contact, and (e) friction
law. Parts (a) and (b) form a system of ordinary differential
equations, (c) is a system of (nonlinear) algebraic equations,
(d) is given by a system of complementarity constraints,
and (e) can be written as a system of complementarity con-
straints for Coulomb friction law using the maximum work
dissipation principle. In this paper we use a more general
elliptic dry friction law (Trinkle et al., 2001). Thus, the
dynamic model is a differential complementarity problem
(DCP). To solve this system of equations, we set up a time-
stepping scheme and solve a complementarity problem at
each time-step. We present below the instantaneous-time
formulation as well as an Euler time-stepping scheme. To
simplify the exposition, we ignore the presence of joints or
bilateral constraints in the following discussion. However,
all of the discussion below holds in the presence of bilateral
constraints.

To describe the dynamic model mathematically, we first
introduce some notation. Let qj be the position and orienta-
tion of body j in an inertial frame and ν j be the concatenated
vector of linear (v) and angular (ω) velocities. The general-
ized coordinates q, and generalized velocity ν of the whole
system are formed by concatenating qj and ν j respectively.
Let λin be the normal contact force at the ith contact and
λn be the concatenated vector of the normal contact forces.
Let λit and λio be the orthogonal components of the friction
force on the tangential plane at the ith contact and λt, λo be
the respective concatenated vectors. Let λir be the frictional
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moment about the ith contact normal and λr be the concate-
nated vector of the frictional moments. Let nb be the number
of bodies and nc be the number of contacts. Throughout
the paper, we consider vectors as column vectors and for
any two vectors x, y, the notation [x, y] denotes horizontal
concatenation and the notation [x; y] denotes vertical con-
catenation. The instantaneous dynamic model can then be
written as follows:

Newton–Euler equations of motion:

M( q) ν̇ = Wnλn +Wtλt +Woλo +Wrλr +λapp +λvp (1)

where M( q) is the inertia tensor, λapp is the vector of exter-
nal forces, λvp is the vector of Coriolis and centripetal
forces, Wn, Wt, Wo, and Wr are dependent on q and map
the normal contact forces, frictional contact forces, and
frictional moments to the body reference frame.

Kinematic map:
q̇ = G( q) ν (2)

where G is the matrix mapping the generalized velocity of
the body to the time derivative of the position and orienta-
tion. The Jacobian G may be a nonsquare matrix (e.g., using
a unit quaternion to represent orientation) but GTG = I.

Nonpenetration constraints: The normal contact con-
straint for the ith contact is

0 ≤ λin ⊥ ψin( q, t) ≥ 0 (3)

where i = 1, . . . , nc,ψin is a signed distance function or gap
function for the ith contact with the property ψin( q, t)> 0
for separation, ψin( q, t) = 0 for touching, and ψin( q, t)<
0 for interpenetration. The above gap function is defined
in the configuration space of the system. Note that there is
usually no closed-form expression for ψin( q, t).

Friction model: The friction model is a generalization of
Coulomb’s friction law and is based on the maximum power
dissipation principle.

( λit, λio, λir) ∈ arg max
(λ′

it,λ
′
io,λ′

ir) ∈ Fi

(−( vitλ
′
it + vioλ

′
io + virλ

′
ir)
)
(4)

where i = 1, . . . , nc, vit, and vio are the tangential compo-
nents of the relative velocity at contact i, vir is the relative
angular velocity about the normal at the contact. The fric-
tion cone at contact i, Fi, is a function of λin and μi and is
given by

Fi( λin,μi) =
{

( λ′
it, λ

′
io, λ′

ir) :

(
λ′

it

eit

)2

+
(
λ′

io

eio

)2

+
(
λ′

ir

eir

)2

≤ μ2
i λ

2
in

}
(5)

where eit, eio, and eir are given positive constants defin-
ing the friction ellipsoid and μi is the coefficient of fric-
tion at the ith contact (Howe and Cutkosky, 1996; Trinkle
and Pang, 1997). Equation (5) is the elliptic dry friction
condition suggested in Howe and Cutkosky (1996) based
upon evidence from a series of contact experiments. This
model states that among all the possible contact forces
and moments that lie within the friction ellipsoid (given
by equation (5)), the forces and moment that maximize
the power dissipation at the contact (due to friction) are
selected.

Time-stepping formulation: We use a velocity-level for-
mulation and an Euler time-stepping scheme to discretize
the above system of equations. Let t� denote the current
time, h be the time-step. Use the superscripts � and � + 1
to denote quantities at the beginning and end of the �th
time-step respectively. Using ν̇�+1

≈ ( ν�+1 − ν�) /h and
q̇�+1

≈ ( q�+1−q�) /h, and writing in terms of the impulses,
we get the following discrete time system.

M�ν�+1 = M�ν� + h( Wnλ
�+1
n + Wtλ

�+1
t + Woλ

�+1
o

+Wrλ
�+1
r + λ�app + λ�vp)

q�+1 = q� + hGν�+1

0 ≤ hλ�+1
n ⊥ ψn( q�+1) ≥ 0

h( λit, λio, λir) ∈ arg max
h(λ′

it,λ
′
io,λ′

ir)∈hFi

(−h( vitλ
′
it + vioλ

′
io + virλ

′
ir)
)

(6)

where ψn is a vector formed by concatenating the gap func-
tion value at each contact. The argmax formulation of the
friction law has a useful alternative formulation (Trinkle
et al., 2001):

0 = E2
t Upn ◦ WT

t ν
�+1 + pt ◦ σ

0 = E2
oUpn ◦ WT

o ν
�+1 + po ◦ σ

0 = E2
r Upn ◦ WT

r ν
�+1 + pr ◦ σ

0 ≤ (Upn) ◦ (Upn)− (
E2

t

)−1
(pt ◦ pt)− (

E2
o

)−1
(po ◦ po)

− (E2
r

)−1
(pr ◦ pr) ⊥ σ ≥ 0 (7)

where ◦ connotes the Hadamard product, the impulse p(·) =
hλ(·), the matrices Et, Eo, Er, and U are diagonal with ith
diagonal element equal to eit, eio, eir, and μi respectively,
and σ is a concatenated vector of the Lagrange multipliers
arising from the Fritz John optimality conditions (Bazaraa
et al., 1993) of the argmax formulation. Each component of
σ (i.e. σi) is the magnitude of the slip velocity at contact i.
The vectors pn, pt, and po are each formed by concatenat-
ing the magnitude of the normal contact impulse and the
orthogonal components of the tangential contact impulse
at all the contacts. The vector pr is formed by concatenat-
ing the magnitude of the contact moments about the contact
normal.
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Equation (6), which is to be solved at each time-step, is
either an LCP or an NCP depending on the time of eval-
uation of W(·), the approximation used for ψn( q�+1), and
the representation of the friction model. If we evaluate W(·)
at � + 1, use a quadratic friction law (equation (7)), and
use ψn( q�+1), we have a geometrically implicit NCP for-
mulation ensuring that the contact conditions are satisfied
at the end of the time-step. However, evaluating ψn( q�+1)
is possible only if we have a closed-form expression for
the distance function, which we do not have in general.
Instead, in the next section we formulate the gap func-
tion between the closest points as a set of algebraic equa-
tions, and subsequently extend the formulation to include
compliance.

4. Contact constraints for rigid bodies

In this section we rewrite the contact condition (equa-
tion (3)) as a complementarity condition in the work space,
combine it with an optimization problem to find the clos-
est points, and prove that the resultant system of equations
ensures that the contact constraints are satisfied. Let us con-
sider the ith contact. For ease of exposition, we first present
the case where each object is a convex object described
by a single implicit surface. A more general formulation
where each object is described by an intersection of implicit
surfaces is given in Section 4.3.

4.1. Objects described by a single
convex function

Let the two objects be defined by C2 convex (i.e. twice dif-
ferentiable with continuous second derivatives) functions
f ( ξ 1) ≤ 0 and g( ξ 2) ≤ 0 respectively, where ξ 1 and ξ 2 are
the coordinates of points in the two objects. Let a1 and a2

be the closest points on the two objects. The equation of an
implicit surface has the property that for any point x, the
point lies inside the object for f ( x)< 0, on the object sur-
face for f ( x) = 0, and outside the object for f ( x)> 0. Thus,
we can define the gap function in the work space as either
f ( a2) or g( a1) and write the complementarity conditions as
either one of the following two conditions:

0 ≤ λin ⊥ f ( a2) ≥ 0

0 ≤ λin ⊥ g( a1) ≥ 0
(8)

where a1 and a2 are given by a solution to the following
minimization problem:

( a1, a2) = arg min
ξ1,ξ2

{‖ξ 1 − ξ 2‖2 : f ( ξ 1) ≤ 0, g( ξ 2) ≤ 0
}

(9)

The Karush–Kuhn–Tucker (KKT) optimality conditions
(Chakraborty et al., 2008) that the solutions a1 and a2 of

Fig. 2. Three contact cases: (a) objects are separate, (b) objects
are touching, (c) objects are intersecting. The arrows indicate the
surface normals at the closest points.

equation (9) must satisfy are given by the following system
of algebraic equations:

a1 − a2 = −l̂1∇f ( a1)

a1 − a2 = l̂2∇g( a2)

f ( a1) +s1 = 0

g( a2) +s2 = 0

0 ≤ l̂1 ⊥ s1 ≥ 0

0 ≤ l̂2 ⊥ s2 ≥ 0

(10)

where l̂1 and l̂2 are the Lagrange multipliers and s1 and
s2 are the slack variables. After eliminating the slack vari-
ables, the system of equations (10) can be rewritten as the
following equivalent system:

a1 − a2 = −l̂1∇f ( a1) (11)

l̂1∇f ( a1) = −l̂2∇g( a2) (12)

0 ≤ l̂1 ⊥ −f ( a1) ≥ 0 (13)

0 ≤ l̂2 ⊥ −g( a2) ≥ 0 (14)

The geometric meaning of equations (11) and (12) is that
the normals to the two surfaces at their closest points are
parallel to the line joining the closest points. The solution to
the system of equations (11) to (14) gives the closest point
when the two objects are separate. However, when a1 = a2,
both Lagrange multipliers are forced to become 0 (since
both ‖∇f ( a1) ‖ > 0 and ‖∇g( a2) ‖ > 0) and there are mul-
tiple solutions to the KKT conditions. The solution is either
the touching point of the two surfaces or a point lying in
the intersection set of the two objects (see Figure 2). The
complementarity conditions in equation (8) ensure that the
points in the interior of the objects are not feasible solu-
tions to the overall problem. However, the points on the
intersecting surface as well as the touching points are valid
solutions to equations (11)–(14) and (8). Thus, as written,
equations (11)–(14) and (8) do not guarantee nonpenetra-
tion. We want to form a system of equations that is equiva-
lent to the KKT conditions (equations (11)–(14)) when the
distance between the objects is nonnegative but only gives
the touching solution when the distance is zero (middle case
in Figure 2 with parallel surface normals).

Proposition 4.1. Equations (15)–(18) are equivalent to
the KKT conditions when the distance between the objects

 at UNIV NORTH CAROLINA-CHARLOTTE on December 17, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/


Chakraborty et al. 7

is nonnegative. Moreover, when combined with the com-
plementarity condition in equation (19), it gives only the
touching solution when the distance between the objects is
zero.

a1 − a2 = −l1∇f ( a1) (15)

∇f ( a1) = −l2∇g( a2) (16)

0 ≤ l1 ⊥ −f ( a1) ≥ 0 (17)

0 ≤ l2 ⊥ −g( a2) ≥ 0 (18)

0 ≤ λin ⊥ f ( a2) ≥ 0 (19)

Proof. Let us first consider the case when the distance
between the objects is greater than zero. In this case
a1 �= a2. Since the gradient vectors cannot be zero and
l̂1, l̂2 in equations (13) and (14) are constrained to be non-
negative, l̂1, l̂2 are strictly positive in this case (from equa-
tions (11) and (12)). Therefore equation (12) can be written

as ∇f ( a1) = − l̂2
l̂1
∇g( a2). Using l1 = l̂1 and l2 = l̂2

l̂1
, equa-

tions (11)–(13) can be written as equations (15)–(17). Since
l̂1 > 0, we can rewrite the complementarity condition in
equation (14) as

l̂2( −g( a2)) = 0, l̂2 ≥ 0, −g( a2) ≥ 0

⇔ l̂2

l̂1
( −g( a2)) = 0

l̂2

l̂1
≥ 0, −g( a2) ≥ 0

⇔ l2( −g( a2)) = 0 l2 ≥ 0, −g( a2) ≥ 0

(20)

Thus equations (15)–(18) are equivalent to equations (11)–
(14) when the distance between the objects is greater than
zero.

When the distance between the objects is equal to
zero, we have three facts, namely, (a) ∇f ( a1) �= 0, (b)
∇g( a2) �= 0, and (c) a1 = a2. We will first show that a1

lies on the boundary of the object defined by the function f .
Using (a) and equation (15), we have l1 = 0, which implies
f ( a1) ≤ 0 from equation (17). However, since λin > 0,
equation (19) implies that f ( a2) = 0 and the point a2 cannot
lie within the object defined by function f . Hence, using (c)
and f ( a1) ≤ 0, we can conclude that a1 lies on the bound-
ary of object defined by function f . We now show that the
point a2 lies on the boundary of object defined by func-
tion g. Equation (16) along with facts (a) and (b) imply
that l2 > 0 which in turn implies g( a2) = 0 from equa-
tion (18). Therefore, a1 and a2 lie on the boundaries of the
two objects. From equation (16) and facts (a) and (b) we
also see that the normals to the two surfaces are collinear.
Thus equations (15)–(18) together with equation (19) disal-
low the interpenetrating case, and we are left with only the
touching solution.

Proposition 4.2. Equations (15)–(19) together represent
the contact constraints, i.e. the two objects will satisfy the
contact constraints at the end of each time-step if and only
if equations (15)–(19) hold together.

Proof. As discussed above.

4.2. Geometrically implicit discrete time model

We can now rewrite the time-stepping formulation of
equation (6) as a mixed NCP for the geometrically implicit
time-stepper. In addition to the variables describing the
dynamics, there are variables related to the determination
of the contact points. In the set of equations below the
subscript k will refer to a variable associated with the kth
contact. For each contact k, there are a pair of contact points
a1k and a2k , where the indices 1 and 2 are assigned to the
objects arbitrarily as long as they are consistently main-
tained for a given contact pair. The scaled Lagrange mul-
tipliers for contact k are l1k and l2k . We define the vectors l1
and l2 as the concatenated vectors of l1k and l2k respectively,
and we define l = [l1; l2]. The magnitude of the normal
impulse at the kth contact is denoted by pnk . The vector
of unknowns, z, can be partitioned into z = [u; v] where
u = [ν; α1; α2; pt; po; pr] and v = [l; pn; σ ]. Here α1

and α2 are the vectors formed by concatenating a1k and a2k

over all the contacts. Recall that σ is the concatenated vec-
tor of the magnitude of the slip speed at the contacts. The
equality constraints in the mixed NCP are:

0 = −M�ν�+1 + M�ν� + W�+1
n p�+1

n + W�+1
t p�+1

t

+W�+1
o p�+1

o + W�+1
r p�+1

r + p�app + p�vp

q�+1 = q� + hG( q�) ν�+1

0 = ( a�+1
1k − a�+1

2k ) +l1k∇fk( a�+1
1k )

0 = ∇fk( a�+1
1k ) +l2k∇gk( a�+1

2k )

0 = E2
t Up�+1

n ◦ ( WT
t )�+1 ν�+1 + p�+1

t ◦ σ �+1

0 = E2
oUp�+1

n ◦ ( WT
o )�+1 ν�+1 + p�+1

o ◦ σ �+1

0 = E2
r Up�+1

n ◦ ( WT
r )�+1 ν�+1 + p�+1

r ◦ σ �+1 (21)

where k = 1, . . . , nc. The complementarity constraints on v
are:

0 ≤

⎡
⎢⎢⎣

l1k

l2k

p�+1
nk
σ �+1

⎤
⎥⎥⎦ ⊥

⎡
⎢⎢⎣

−fk( a�+1
1k )

−gk( a�+1
2k )

fk( a�+1
2k )
ζ

⎤
⎥⎥⎦ ≥ 0 (22)

where ζ = Up�+1
n ◦ Up�+1

n − (
E2

t

)−1 (
p�+1

t ◦ p�+1
t

) −(
E2

o

)−1 (
p�+1

o ◦ p�+1
o

) − (
E2

r

)−1 (
p�+1

r ◦ p�+1
r

)
and k =

1, . . . , nc. In the above formulation, we see u ∈ R
6nb+9nc ,

v ∈ R
4nc , the vector function of equality constraints maps

[u; v] to R
6nb+9nc , and the vector function of complemen-

tarity constraints maps [u; v] to R
4nc where nb and nc are

the number of bodies and number of contacts respectively.
If using convex bodies only, the upper bound on the number
of contacts can be determined directly from the number of
bodies, nc = ∑nb

i=1 i.

4.3. Objects described by intersections of convex
functions

We present here the contact conditions for the general
case where each convex object is defined as an intersec-
tion of convex inequalities. Let fj( ξ 1) ≤ 0, j = 1, . . . , m
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and gj( ξ 2) ≤ 0, j = m + 1, . . . , n be C2 convex functions
representing two convex objects (we will call them F and
G respectively in the discussion below). Since the closest
point is outside the object if it is outside at least one of the
intersecting surfaces, the complementarity conditions for
nonpenetration can be written as either one of the following
two sets of conditions:

0 ≤ λin ⊥ max
j=1,...,m

{fj( a2) } ≥ 0

0 ≤ λin ⊥ max
j=m+1,...,n

{gj( a1) } ≥ 0
(23)

where a1 and a2 are the closest points on the two bodies and
are given by the KKT conditions

a1 − a2 = −
m∑

i=1

l̂i∇fi( a1) (24)

a1 − a2 =
n∑

j=m+1

l̂j∇gj( a2) (25)

0 ≤ l̂i ⊥ −fi( a1) ≥ 0, i = 1, . . . , m (26)

0 ≤ l̂j ⊥ −gj( a2) ≥ 0, j = m + 1, . . . , n (27)

Analogous to the discussion in Section 4.1, when the dis-
tance between the two objects is zero, the KKT conditions
in equations (24)–(27) are valid for common intersection
points (i.e. the points may lie within the objects or on the
boundaries of the objects). We want to form a system of
equations that is equivalent to equations (24)–(27) when the
distance between the objects is nonnegative, but only gives
the touching solution if the distance is zero.

Note that for objects defined by the intersection of con-
vex functions, there are points on the surface where the
normal at the point is not uniquely defined. These points
(namely, vertices, and points on edges) lie at the intersection
of multiple surfaces, each represented by a convex func-
tion. For any point x that lies at the intersection of multiple
surfaces, say fi( x) = 0, where i belongs to an index set I,
we can define a normal cone, C( F, x), that consists of all
vectors in the conic hull of the normals to the surfaces.
Mathematically,

C( F, x) = {y|y =
∑
i∈I

βi∇fi( x) ,βi ≥ 0}

Note that when the index set I consists of only one sur-
face equation, the normal cone at a point is the half line
(with the point as the origin) along the gradient at that point.
The normal cone at a point also defines the set of support-
ing hyperplanes to the convex set at that point (Rockafellar,
1970).

We state here, without proof, some basic results from
convex geometry that can be deduced from the separat-
ing hyperplane theorem for compact sets in finite dimen-
sions (Rockafellar, 1970). The theorem states that two
nonempty convex sets in R

n can be properly separated by

a hyperplane if and only if their interiors are disjoint. When
the distance between the two objects is strictly positive, the
normal to a separating hyperplane is along the line join-
ing the closest points on the two sets. When two objects
whose interiors are disjoint touch each other, a separating
hyperplane is also a supporting hyperplane for both the
sets. Thus, in this case, the separating hyperplane theorem
implies that two nonempty convex objects can have a com-
mon supporting hyperplane at a point on the boundary of
both sets if and only if their interiors are disjoint. Using the
separating hyperplane theorem and the fact that a vector in
the normal cone at a point defines a supporting hyperplane,
we have the following:

• When the distance between the sets F and G is greater
than 0 and a1 and a2 are the closest points on the two
convex objects, the vector a2 − a1 lies within the set
C( F, a1) and also within the set −C( G, a2). Thus, the
intersection of the sets C( F, a1) and −C( G, a2) is guar-
anteed to be nonempty, i.e. C( F, a1) ∩ − C( G, a2) �= φ.

• When the distance between the sets F and G is zero
and the two sets are touching at a point a1 = a2 where
the normal is not uniquely defined, it is still true that
C( F, a1) ∩ − C( G, a2) �= φ.

• However, if the distance is zero, the two points a1 = a2

lie on the boundaries of F and G, and the interiors of the
sets F and G intersect, then C( F, a1) ∩ − C( G, a2) = φ.
This can be seen by noting that in this case there is
no supporting hyperplane at a1 to F (respectively, at
a2 to G) that separates F and G. Since, for a convex
set, a vector in the normal cone at a point defines a
supporting hyperplane to the set at that point, there is
no vector that lies in the normal cone C( F, a1) and also
belongs to −C( G, a2).

The three statements above are the formal conditions for
the three contact cases shown in Figure 2 that are valid even
when the normal at a point on the surface is not unique. In
the rest of the paper, we will abuse terminology, and by a
normal we will mean any vector that lies within the normal
cone. This will coincide with the actual normal when it is
unique. Similarly, by a common normal we will mean any
vector in the intersection of C( F, a1) and −C( G, a2).

Proposition 4.3. Equations (28)–(31) are equivalent to
the KKT conditions given by equations (24)–(27) when
the distance between the two objects is nonzero. More-
over, when combined with the complementarity condition in
equation (32), we get only the touching solution when the
distance between the objects is zero.

a1 − a2 = −lk1 ( ∇fk1 ( a1) +
m∑

i=1,i�=k1

li∇fi( a1)) (28)

∇fk1 ( a1) +
m∑

i=1,i�=k1

li∇fi( a1) = −
n∑

j=m+1

lj∇gj( a2) (29)
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0 ≤ li ⊥ −fi( a1) ≥ 0 i = 1, . . . , m (30)

0 ≤ lj ⊥ −gj( a2) ≥ 0 j = m + 1, . . . , n (31)

0 ≤ λn ⊥ max
i=1,...,m

{fi( a2) } ≥ 0 (32)

where k1 is the index of an active constraint on body F and
λn is the magnitude of the contact force at the contact.

Proof. Let us first consider the case when the distance
between the objects is greater than zero, i.e. a1 �= a2. Since
the KKT conditions given by equations (24)–(27) come
from a convex optimization problem, the optimal solution
occurs at the boundary of the feasible set and hence there
exists at least one constraint that is active (Bazaraa et al.,
1993). This can also be seen from equation (24) as a1 �= a2

implies that there is at least one l̂i that is nonzero (in fact
strictly positive, by using equation (26)), i.e. the corre-
sponding constraint is active. Similarly, there is at least one
l̂j, j = m + 1, . . . , n that is nonzero. Let I = IF ∪ IG be
the index set of active constraints, where IF denotes the set
of active constraints for object F and IG is the set of active
constraints for body G. As stated earlier, k1 ∈ I is the index
of an active surface on object F (i.e. the surface on which
the closest point lies). Dividing both sides of equation (25)

by l̂k1 and using lk1 = l̂k1 , li = l̂i
l̂k1

, i = 1, . . . , m, i �= k1,

lj = l̂j
l̂k1

, j = m + 1, . . . , n, we obtain equations (28)–

(29) from equations (24)–(25) respectively. Equations (30)
and (31) can be obtained from equations (26) and (27) by
algebraic manipulation of the complementarity constraints
(similar to the one shown in equation (20)) for all i and j,
except i = k1.

Now, let us consider the case when a1 = a2, i.e. the dis-
tance between the two objects is zero. We have to show
that the equations (28)–(32) satisfy the following: (a) a1, a2

do not lie within the interior of the two objects and (b)
the normal to the two surfaces at a1 and a2 respectively,
is a common normal. If a2 lies in the interior of object F,
then fi( a2)< 0, ∀i = 1, . . . , m. However this contradicts
the right-hand part of the complementarity condition given
by equation (32). Thus, a2 cannot lie within the object F.
Since a1 = a2, a1 has to lie on the boundary of F. Note
that ∇fi( ) �= 0 for any point on the boundary of the object
F. Now, we want to show by contradiction that a2 cannot
lie within the object G. If a2 lies within object G, we have
gj( a2)< 0, and thus from equation (31), we get lj = 0
∀j = m + 1, . . . , n. This implies that the right-hand side
of equation (29) is 0, whereas the left-hand side is nonzero,
leading to a contradiction. Thus, a2 lies on the boundary of
the object G. Therefore, a1 and a2 do not lie in the interior
of the two objects and condition (a) above is satisfied.

We will now prove condition (b) above. As stated
earlier, by a common normal, here we mean a vector y ∈
{C( F, a1) ∩ − C( G, a2) }. Since a1 = a2, and ∇f ( a1) is
nonzero for all points on the boundary of the set, we have
from equation (28), lk1 = 0. Since a1 lies on the boundary
of F, there exists an index set IF for which fi( a1) = 0, i ∈

IF . We need to consider two cases depending on whether
the common normal is uniquely defined or not. We first
assume that IF consists of only one surface for object F,
namely, k1. In this case, li = 0, i = 1, . . . , m. For any solu-
tion that satisfies equation (29), there has to be an index
set IG with some strictly positive lj, j ∈ IG. This implies
that ∇fk1 ( a1) ∈ − C( G, a2) and ∇fk1 ( a1) is the common
normal. When IF consists of more than one surface, the
reasoning is analogous as above. Note that in this case any
solution that satisfies equation (29) can be satisfied by some
strictly positive li, i ∈ IF and lj, j ∈ IG. This implies that
C( F, a1) ∩ − C( G, a2) �= φ and the left-hand side (or right-
hand side) of equation (29) gives a common normal. Thus,
using the results from convex geometry stated just before
the statement of this proposition, we can conclude that the
solution of equations (28) to (31) can only be a touching
solution but not an intersecting solution.

Remark 1. Please note that the correctness of the above
proposition requires the existence of an index k1 in the set
of active constraints, which is always the case independent
of whether one of the objects is defined by a single surface.
For situations where one of the objects is defined only by
a single surface, the choice of k1 can be made beforehand.
However, when both objects are described as intersections
of surfaces, the choice of k1 has to be made within a time-
step and it can vary between time-steps. We discuss this in
Section 7.

Remark 2. For the proof, we have not made any assump-
tions about the nature of the surface equations beyond the
fact that they be twice continuously differentiable and con-
vex. Thus, the whole framework is also applicable to (a)
polyhedral objects (i.e. objects described by intersection of
planes), (b) two objects having two different representations
(e.g., one polyhedral object and another object described by
nonlinear equations), and (c) a single object having a mixed
representation (partly polyhedral and partly with nonlinear
equations).

Proposition 4.4. Equations (28)–(32) together represent
the nonpenetration constraints, i.e. the two objects will sat-
isfy the contact constraints at the end of each time-step if
and only if equations (28) to (32) hold together.

Proof. This claim follows directly from Proposition 4.3.

5. Contact constraints for quasi-rigid bodies

In this section we extend the rigid-body contact model
of the previous section to quasi-rigid bodies that can be
modeled as a rigid core with a thin compliant layer. Our
goal is to achieve this without explicit computation of the
deformed geometric shape of the objects during contact.
We assume that the contact forces and/or moments are pro-
duced due to linear deformation and the rate of the defor-
mation, and not due to torsional deflection. Therefore, we
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use a lumped parameter model of the contact with linear
springs and dampers. This assumption models cases where
the nominal rigid-body contact is a point contact and the
point contact deforms to a small area contact. The contact
moment is considered only about the normal axis to the
contact patch (analogous to soft-finger models in robotic
grasping, see Murray et al. (1994)) and it is assumed that
the contact moments about the two axes along the contact
patch are negligible.

We now describe the 3D linear viscoelastic model of
contact for compliant bodies with a rigid core (which was
proposed earlier in Kraus et al. (1997)) and modify our
contact constraints to include the deflections at the con-
tact. We incorporate this model in our time-stepping scheme
and present the mixed NCP problem that we are solving at
each time-step. We extend the Kelvin–Voigt model with the
physically motivated observation that the deformations in
the normal direction are bounded by some maximum value.
For example, a human finger has a thin compliant layer of
muscle and tissue surrounding the rigid core (bone). The
application of a force on the finger results in a deformation
of the thin compliant layer until the rigid core is reached,
at which point the nonpenetration response is rigid. There-
fore, our model allows for a maximum possible deflection,
beyond which the contact behaves as a rigid-body contact.
The linear model can be replaced by a nonlinear model but
at the cost of more unknown modeling parameters to be
determined experimentally. For each contact k, the normal
impact force λnk is the sum of two components:

λnk = λnsk + λnrk (33)

where λnsk is the component of the force that is obtained
from the deformation of the spring and damper, and λnrk

is the component from impact with the rigid core. The
tangential force at each contact, λfk = [λtk , λok]T is also
given by a linear spring-damper model. However, we do
not have a bound on the maximum displacement in the
tangential direction. Concatenating all the individual force
components into vectors allows us to write for each con-
tact (we drop subscript k for legibility), λs = Kδ + Cδ̇,
where λs = [λns, λt, λo]T and δ = [δn, δt, δo]T are 3 × 1
column vectors with δn, δt, δo being the normal and tangen-
tial deflections respectively. The matrices K, C are stiffness
and damping matrices given by

K =
⎡
⎣Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo

⎤
⎦ C =

⎡
⎣Cnn Cnt Cno

Ctn Ctt Cto

Con Cot Coo

⎤
⎦

For systems with multiple contacts, the contact deformation
forces and body deformations become concatenations of nc

subvectors, where nc is the number of contacts. The stiffness
and damping matrices are block diagonal matrices of size
3nc×3nc, where each diagonal block of size 3×3 represents
one contact.

5.1. Objects described by a single
convex function

When we consider contact compliance, the contact con-
straints in Section 4 have to be modified to take into account
the deflection of the objects. For our lumped parameter
model, we have to compute a point on the two objects where
the contact forces due to deformation should be applied. We
will refer to this point as the contact point in the remain-
der of this section. We also have to define a measure of the
deflection. Figure 3 is a schematic sketch of two quasi-rigid
objects in contact with each other. The bold line schemati-
cally illustrates the deformed shapes of the two objects. We
define the contact point as the point where the sub-level sets
(corresponding to the equations of the objects), shown by
dotted lines, touch. We define the deflection of an object as
the distance between the contact point and a point on the
undeformed object along the normal at the contact point.
In Figure 3, the deflections for the two objects are denoted
by δn1 and δn2 respectively. For any quasi-rigid object, we
denote the maximum normal deflection by δmax

n > 0 and
assume that it will be determined experimentally. For sim-
plicity of exposition, we consider only one of the objects
to be flexible at the contact. The general formulation where
both the bodies are flexible will contain the additional con-
straint that the contact forces acting on both the bodies have
to be equal and opposite. In the following discussion, we
will assume δn1 = 0 for simplicity and drop the subscript 2
from δn2. The constraints for the closest points are given by

a1 − a2 = −l1∇f ( a1)

∇f ( a1) = −l2∇g( a2)

0 ≤ l1 ⊥ −f ( a1) ≥ 0

0 ≤ l2 ⊥ −( g( a2) +δ̄n) ≥ 0

(34)

where δ̄n is the algebraic distance and g( ξ 2) + δ̄n = 0 is
the sub-level set corresponding to the object defined by
g( ξ 2) = 0. However, the normal contact force is given in
terms of the deflection δn. To obtain the deflection from this
algebraic distance we note that the deflection is the distance
between the point a2 and the point where the normal to
g( ξ 2) +δ̄n = 0 at a2 intersects g( ξ 2) = 0. From the above
argument it can be seen that

g

(
a2 + δn

∇g( a2)

‖∇g( a2) ‖
)

= 0 (35)

The complementarity conditions in equation (8) thus
become:

0 ≤ λns ⊥ ψ( a1, a2) +δ̄n ≥ 0

0 ≤ λnr ⊥ δmax
n − δn ≥ 0

(36)

where ψ( a1, a2) = f ( a2) or g( a1) for implicit surfaces.
When the two bodies are not in contact the right-hand

side of both the complementarity constraints are positive
and hence we do not have any contact force. The above
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Fig. 3. Schematic representation of the deflection at contact for
quasi-rigid objects. The shaded regions are the rigid cores of the
objects. The contact point is where the dotted curves touch.

equations are to be written for each of the contacting bod-
ies. This formulation ensures that we satisfy the contact
constraints at the end of the time-step taking into considera-
tion the possibility of the deflection of the body. It does not
require the computation of penetration depth for obtaining
the deflection as required in Song et al. (2004a). It ensures
that we get a collision response in a fixed time-step scheme.

We can now formulate the mixed NCP for the geometri-
cally implicit lumped compliant contact time-stepper. Here
again, in addition to the variables describing the dynamics,
there are variables related to the determination of the con-
tact points. In the set of equations below the subscript k
will refer to a variable associated with the kth contact. The
vector of unknowns z can be partitioned into z = [u; v]
where

u = [ν; α1; α2; δ̄n; δn; δt; δo; pt; po; pr]

v = [l; pns; pnr; σ ].

The equality constraints in the mixed NCP are:

0 = −M�ν�+1 + M�ν� + W�+1
n p�+1

n + W�+1
t p�+1

t

+W�+1
o p�+1

o + W�+1
r p�+1

r + p�app + p�vp

0 = p�+1 − (
hKδ�+1 + C( δ�+1 − δ�)

)
0 = ( a�+1

1k − a�+1
2k ) +l1k∇fk( a�+1

1k )

0 = ∇fk( a�+1
1k ) +l2k∇gk( a�+1

2k ) (37)

0 = gk

(
a�+1

2k + δ�+1
nk

∇gk( a�+1
2k )

‖∇gk( a�+1
2k ) ‖

)

0 = E2
t Up�+1

n ◦( WT
t )�+1 ν�+1 + p�+1

t ◦ σ �+1

0 = E2
oUp�+1

n ◦( WT
o )�+1 ν�+1 + p�+1

o ◦ σ �+1

0 = E2
r Up�+1

n ◦( WT
r )�+1 ν�+1 + p�+1

r ◦ σ �+1

where p�+1 = [p�+1
n ; p�+1

t ; p�+1
o ], p�+1

n = p�+1
ns + p�+1

nr ,
δ�+1 = [δ�+1

n ; δ�+1
t ; δ�+1

o ], and δnk is the normal deflection
at the kth contact with k = 1, . . . , nc.

The complementarity constraints on v are:

0 ≤

⎡
⎢⎢⎢⎢⎣

l1k

l2k

p�+1
nsk

p�+1
nrk
σ �+1

⎤
⎥⎥⎥⎥⎦ ⊥

⎡
⎢⎢⎢⎢⎣

−fk( a�+1
1k )

−gk( a�+1
2k ) +δ̄�+1

nk

ψk( a�+1
1k , a�+1

2k ) +δ̄�+1
nk

δmax
nk − δ�+1

nk
ζ

⎤
⎥⎥⎥⎥⎦ ≥ 0 (38)

where ζ = Up�+1
n ◦ Up�+1

n − (
E2

t

)−1 (
p�+1

t ◦ p�+1
t

) −(
E2

o

)−1 (
p�+1

o ◦ p�+1
o

) − (
E2

r

)−1 (
p�+1

r ◦ p�+1
r

)
. Note that

the variable pnsk is the impulse magnitude obtained from
the deformation of the spring and damper, and pnrk is the
impulse from impact with the rigid core at the kth contact.
The variable δmax

nk is the maximum normal deflection at the
kth contact.

In the above formulation, we see u ∈ R
6nb+13nc , v ∈ R

5nc ,
the vector function of equality constraints maps [u; v] to
R

6nb+13nc and the vector function of complementarity con-
straints maps [u; v] to R

5nc where nb and nc are the number
of bodies and number of contacts respectively. If using con-
vex bodies only, the number of contacts can be determined
directly from the number of bodies, nc = ∑nb

i=1 i.

5.2. Objects described by intersections of convex
functions

Using the results obtained in Section 4.3 and the previ-
ous section, we can now formulate the contact constraints
for quasi-rigid bodies where each body is represented as
an intersection of convex implicit surfaces. In this case
the complementarity conditions for nonpenetration can be
written as either one of the following two sets of conditions:

0 ≤ λin ⊥ max
j=1,...,m

{fj( a2) +δ̄jn} ≥ 0

0 ≤ λin ⊥ max
j=m+1,...,n

{gj( a1) +δ̄jn} ≥ 0
(39)

Moreover, the closest points on the two objects are given by

a1 − a2 = −lk1 ( ∇fk1 ( a1) +
m∑

i=1,i�=k1

li∇fi( a1) )

∇fk1 ( a1) +
∑

i=1,i�=k1

li∇fi( a1) = −
n∑

j=m+1

lj∇gj( a2)

0 ≤ li ⊥ −fi( a1) ≥ 0

0 ≤ lj ⊥ −( gj( a2) +δ̄jn) ≥ 0

(40)

which is a modification of equations (28)–(31) and the nota-
tion is identical to that discussed in Section 4.3. To deter-
mine the actual deflection from the algebraic distance, we
need to assume that the normal at the point of contact is
well defined. Assuming this to be true, we can then obtain
the deflection using equation (35) and the forces on the two
bodies can be obtained using the appropriate constitutive
laws.
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6. Illustrative examples

In this section we present examples to validate our
technique against known analytical results and previous
approaches. The first example is for rigid bodies and is the
same example of a disc rolling without slip on a plane that
we studied in Section 1. The second example consists of
a small sphere rolling in contact with two larger spheres,
and validates our results against previous simulations of
this system. The third example is for quasi-rigid bodies
and consists of a unit disc falling on a half-plane with fric-
tionless contact. This example gives a simple validation of
our method. The final example is to repeat, in simulation,
100,800 grasping experiments with a parallel jaw gripper
conducted by Brost and Christiansen (1996).

We use the PATH complementarity solver (Ferris and
Munson, 1998) to solve the complementarity problems in
this paper. In essence, at each time-step, the complementar-
ity system is solved using a Newton-based path following
method. In general, there are no theoretical global guaran-
tees of convergence time for Newton-type methods. There-
fore, we report the average time taken per iteration for the
different problems below for each example. All the exam-
ples were implemented in C++ and run times were obtained
on a Lenovo T500 laptop with a 2 GHz processor and 2 GB
RAM.

6.1. Example 1: Disc on a plane

In this example we revisit the unit disc example from Sec-
tion 1. For illustrative purposes, we explain the formulation
of the full dynamic model in detail. The normal axis of the
contact frame n̂ = [0, 1]T always points in the inertial y-axis
direction and tangential axis t̂ = [1, 0]T always coincides
with the x-direction. The mass matrix, M is constant and the
only force acting on the body is due to gravity. The equation
of the disc is given by f1( x, y) = ( x − qx)2 +( y − qy)2 −1,
where q = [qx, qy]T is the location of the center of the disc
in the inertial frame. Let ν = [vx, vy,ωz]T be the vector of
linear and angular velocities and a1 be the closest point on
body 1 (the disc) to the plane (defined by y = 0). Similarly,
let a2 be the closest point on the plane to body 1 (a2y = 0
and can be removed from the system of unknowns). Thus
we have M = diag( m, m, 0.5m), where m is the mass of the
disc and 0.5m the moment of inertia, papp = [0, −mgh, 0]T,
with g = 9.81, the acceleration due to gravity, and

r =
[

( a�+1
1x − q�+1

x )
( a�+1

1y − q�+1
y )

]
Wn =

[
n̂

r ⊗ n̂

]
Wt =

[
t̂

r ⊗ t̂

]

∇a1 f1( a�+1
1 ) =

[
2( a�+1

1x − q�+1
x )

2( a�+1
1y − q�+1

y )

]

where r is the vector from the center of gravity of the disc to
a1 and ⊗ connotes the 2D analog of the cross product (for
two vectors x = [x1, x2]T, y = [y1, y2]T, x⊗y = x1y2−x2y1).
The notation ∇a1 denotes that the gradient is to be computed
with respect to the variable a1.

Assuming that y = 0 is the equation of the ground
plane, there are 11 unknowns for this system: z =
[ν; a1; a2x; l1; l2; pn, ; pt; σ ]. The system of equations
for the unit disc is:

0 = −M�ν�+1 + M�ν� + W�+1
n p�+1

n + W�+1
t p�+1

t + papp

(41)

0 = a�+1
1 − a�+1

2 + l1∇a1 f1( a�+1
1 ) (42)

0 = ∇a1 f1( a�+1
1 ) +l2n̂ (43)

0 = μp�+1
n ( WT

t
�+1
ν�+1) +σ �+1p�+1

t (44)

0 ≤ l1 ⊥ f1( a�+1
1 ) ≥ 0 (45)

0 ≤ p�+1
n ⊥ f1( a�+1

2 ) ≥ 0 (46)

0 ≤ σ ⊥ μ2p�+1
n p�+1

n − p�+1
t p�+1

t ≥ 0 (47)

Equation (44) can be obtained from equation (21) by not-
ing that for a 2D problem, po = pr = 0. Furthermore,
in this case Et = 1, U = μ and the Hadamard prod-
uct is equivalent to scalar multiplication. Similar reason-
ing also gives equation (47) from the last complementarity
constraint in equation (22).

The initial configuration of the disc is q = [0, 1, 0]T,
initial velocity is ν = [−3, 0, 3]T, mass is m = 1, and
μ = 0.4. Figure 1(a) shows the kinetic energy of the disc for
our implicit representation along with the Stewart–Trinkle
LCP implementation using various levels of discretization
as it rolls along the horizontal surface. When using an
implicit curve representation to model the disc and our
new formulation presented above, we get no energy loss
(within the numerical tolerance of 10−6 used for our sim-
ulations) as seen by the horizontal line. The time-step used
was 0.01 seconds and the average time taken for simulat-
ing each time-step was 0.02 seconds. When using the LCP
formulation, we have energy loss as discussed earlier.

6.2. Example 2: Sphere on two spheres

This example consists of a small sphere moving in contact
with two larger fixed spheres. This example is chosen to
compare the results of our geometrically implicit method to
those presented in Trinkle et al. (2001) and Liu and Wang
(2005). Trinkle et al. (2001) was able to solve this problem
with implicit geometric information because a closed-form
distance function is available between two spheres). Fig-
ure 4(a) shows a small unit sphere in simultaneous contact
with two larger fixed spheres. The sphere of radius 10 units
is located at ( 0, 0, 0) in the inertial frame and the sphere
of radius 9 units is located at ( 0, 11.4, 0). The contact of
the small sphere with the largest sphere (on the right) is
labeled Contact 1 and the contact with the sphere on the
left is labeled Contact 2. There is also a constant force
of λapp = [1.0, 2.6, − 9.81, 0, 0, 0]T applied to the
small sphere. With this force, the sphere initially has one
of its contacts (Contact 1) rolling while the other contact
(Contact 2) is simultaneously sliding, the rolling contact
transitions to sliding, and both contacts eventually separate.
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Fig. 4. Example of a sphere on two spheres, illustrating contact
transitions.

It is important to emphasize that all these transitions are
captured using a fixed time-step implementation.

The initial configuration and velocity of the small moving
sphere is

q = [0, 6.62105263157895, 8.78417110772903, 1, 0, 0, 0]T

ν = [0, 0, 0, 0, 0, 0]T

The friction parameters are: et = 1, eo = 1, er = 0.3,
and μ = 0.2. There are 32 variables in our NCP formula-
tion (6 velocity variables and 13 variables for each contact:
6 contact point coordinates for the two bodies, 2 Lagrange
multipliers, 4 contact impulses and σ for the contact). We
used a step size h = 0.01 (Tzitzouris–Pang use h = 0.1).
The running time for each time-step is 0.4 seconds when
the small sphere is in contact with both the spheres and
0.05 seconds when the small sphere is in free fall (note
that the size of the problem was not changed during free
fall, there were 32 variables and 32 nonlinear equations and
complementarity constraints).

The generalized velocity of the sphere is shown in Fig-
ure 4(b). The smooth velocity profile agrees well with
the nonlinear Tzitzouris–Pang formulation (Trinkle et al.,

2001). The Liu–Wang formulation (Liu and Wang, 2005)
experienced nonsmooth velocity jumps when the small
sphere separated from the larger fixed spheres, which they
attributed to an explicit time-stepping scheme. In the LCP
Stewart–Trinkle implementation, the velocity profiles and
the force profiles were very nonsmooth (please see Figures
10 and 11 of (Trinkle et al., 2001)). These results fur-
ther confirm our belief that both linearization and explicit
time-stepping lead to inaccuracies.

The fidelity of our method is further emphasized by Fig-
ures 5(a) and 5(b) that show the forces and sliding speed
magnitudes at the two contacts. Contact 1 starts as a slid-
ing contact and we see the sliding speed increases as the
normal force decreases. Also, the magnitude of the friction
force is equal to μλ1n, consistent with our friction law for
a sliding contact. At approximately 3.2 seconds, the small
sphere separates from the large sphere at this contact, and
all forces acting at Contact 1 and the sliding speed drop to
zero. Contact 2 on the other hand starts out as a rolling con-
tact until approximately t = 3 seconds when it transitions
to sliding. During the rolling phase the frictional magnitude
is bounded by μλ2n as required by the friction law, and the
sliding speed is 0. At the transition to sliding, the magnitude
of the friction force becomes equal to μλ2n and the sliding
speed begins to increase. Finally, at approximately t = 3.6
seconds, the contact breaks and all forces at this contact and
the sliding speed drop to zero.

6.3. Example 3: Disc falling on a quasi-rigid
half-plane

In this example, we simulate a rigid unit disc falling onto a
quasi-rigid horizontal half-plane. The contact is modeled as
a single frictionless contact with no damping. Depending on
the value of maximum deflection, the disc may or may not
make contact with the rigid core of the half-plane. Figure 6
illustrates the problem.

There are 12 unknowns in this system, with 4 comple-
mentarity constraints:

z = [u; v] = [vx, vy,ω, a1x, a1y, a2x, a2y, l1, l2, δn, pns, pnr]
T .

The equations of motion for this system are (omitted super-
scripts indicate time �, except for the Lagrange multipliers
l1 and l2 that are always evaluated at �+ 1):

0 = −M�ν�+1 + M�ν� + W�+1
n p�+1

ns + W�+1
n p�+1

nr + papp

(48)

0 = p�+1
ns − hkδ�+1

n (49)

0 = a�+1
2 − a�+1

1 + l1n̂ (50)

0 = l2∇a1 f1( a�+1
1 ) +n̂ (51)

0 ≤ l2 ⊥ f1( a�+1
1 ) ≥ 0 (52)

0 ≤ l1 ⊥ a�+1
2y + δ�+1

n ≥ 0 (53)

0 ≤ p�+1
ns ⊥ a�+1

1y + δ�+1
n ≥ 0 (54)

0 ≤ p�+1
nr ⊥ δo

n − δ�+1
n ≥ 0 (55)
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Fig. 5. Contact 1 is always sliding until separation, hence the
curve of μ × normal force (at Contact 1) and the friction force
magnitude curve overlap for the duration. Contact 2 is a rolling
contact until 3 seconds, whence it transitions to a sliding contact,
hence the curve of μ × normal force (at Contact 1) lies below
the friction force magnitude curve up to 3 seconds, and the two
curves overlap thereafter. The contact forces become 0 when con-
tact is lost (at approximately 3.2 seconds for Contact 1 and 3.6
seconds for Contact 2). The value of μ is 0.2.

Fig. 6. Unit disc falling onto a frictionless quasi-rigid surface.

The unit disc’s initial position was q = [0, 1.5, 0]T with
zero initial velocity ν = [0, 0, 0]T. The only force act-
ing on the disc was gravity. The mass of the disc was 1 kg
and the moment of inertia about the center of mass was
0.5 kg · m2. We used a step size h = 10−4s. The spring
stiffness we used was k = 1000 kg/s2. The maximum pene-
tration depth was altered for two experiments such that for
the first experiment impact with the rigid core occurs, and

for the second experiment impact with the rigid core does
not occur. For the first experiment, δmax

n is 0.05 m and for
the second experiment δmax

n is 1 m.
Figure 7 illustrates the results of the first experiment in

which the maximum spring deflection was not large enough
to prevent impact with the rigid core. There is a large non-
penetration impulse (see Figure 7(a)) generated at approx-
imately 0.34 seconds corresponding to when the spring
reached maximum deflection and impact with the rigid core
occurs. As expected with a rigid impact, we also see an
instantaneous change in velocity to zero (see Figure 7(d))
and loss of energy (see Figure 7(e)). After the impact, the
motion of the disc becomes oscillatory (see Figure 7(c))
as it bounces on the undamped spring (see Figure 7(b),
which clearly shows the oscillatory nature of the spring
force). Furthermore, the velocity of the disc is smooth (see
Figure 7(d)). As seen in Figure 7(e) the total energy is pre-
served after impact within a tolerance of 10−5 J, which is
acceptable using a time-step of 10−4s and an Euler approx-
imation in the time-stepping formulation. The average time
taken for each iteration is 0.03 seconds.

For the second experiment, the maximum spring deflec-
tion was set large enough that impact with the rigid core
never occurs. We see the oscillatory behavior of the position
over the lifetime of the simulation (Figure 8(e)) as expected
with an undamped spring. As guaranteed by our model, no
component of the normal force comes from impact with
the rigid core; the spring contributes solely to the normal
force (Figure 8(b)). Additionally, without any impacts the
plot of velocity is smooth with changes occurring only from
the force of gravity and the spring force (Figure 8(d)). Since
there is no impact nor damping of the spring, we expect
there to be no loss of energy in the system. Figure 8(a)
confirms this, where again the energy is conserved within
a numerical tolerance of 10−5 J.

6.4. Example 4: Probabilistic grasp planning

We repeated, in simulation, an earlier grasping experiment
conducted by Brost and Christiansen (1996). The experi-
ment was designed to study the probability of success of
a particular strategy for achieving a stable grasp of the
lock piece (about 21 mm in diameter) shown in Figure 9.
The strategy was to place a parallel-jawed gripper around
the piece and close the grippers (symmetrically) until clos-
ing was stopped. Upon stopping, if the part was held by
its outer-most teeth, the grasp strategy was declared suc-
cessful. All other outcomes were considered failures. The
goal of the experiment was to find the initial location ( x, y)
(shown in Figure 9) for the center of the fingertips with
the greatest probability of success (given some positioning
error).

At Sandia National Laboratories 100,800 grasp trials
were conducted over a period of weeks, with consider-
able technician support and dedicated robotics equipment.
Figure 10(a) shows half of a symmetric histogram con-
structed from the trials. For many different values of ( x, y),
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Fig. 7. Simulation results for a unit disc falling on a half-plane making contact with the rigid core.

a grasp was attempted. The height of the histogram over
each square millimeter patch in the ( x, y)-plane is the frac-
tion of successful trials out of all trials with initial condi-
tions in that patch. Note that the “sweet spot” is at about
( 0, −11) mm. Squeezing from this position causes contact
with the circular portion of the perimeter far enough below
the center to cause the piece to slide upward as the jaws
close - ultimately coming to rest on the outer-most teeth.
Even if the robot’s positioning error was roughly ±3 mm
in the x- and y-directions away from the sweet spot, the
probability of success is very high.

The goal of our simulation study was to find the sweet
spot through simulation using our geometrically implicit
method, which is cheaper and faster than experimental
trials in the lab. To conduct our study, we modeled the

gear as a union of superellipses (Barr, 1981) and mod-
eled the grippers as intersections of half-planes. Let q =
[xg, yg, θg, xr, xl]T be the generalized configuration of the
system, where [xg, yg, θg]T is the position and orientation of
the gear, xr is the x-position of the right gripper’s fingertip,
and xl is the x-position of the left gripper’s fingertip.

The gear’s equations are given by the union of:

f ( ξx, ξy) ≡ ( ξx − q1)2 +( ξy − q2)2 −20.75 = 0 (56)

fi( ξx, ξy) ≡
(
ξx−( q1 + rix)

2.3

)4

+
(
ξy−( q2 + riy)

1.1

)4

− 1 = 0

(57)

where qi is the ith component of q and ri is the
vector from the gear’s center of mass to the center of the
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Fig. 8. Simulation results for a unit disc falling on a half-plane without making contact with the rigid core.

Fig. 9. The parameterization of the parallel jaw gripper and gear
system as shown in Brost and Christiansen (1996).

ith tooth.1 The values used for this simulation were ri =
20.75[cos( θi) , sin( θi) ]T, where θ1 = 4.103727 rads, θ2 =
4.253125 rads, θ3 = 4.402522 rads, θ4 = 5.022255 rads,
θ5 = 5.171653 rads, and θ6 = 5.321051 rads.

During each simulation, the grippers only make contact
with the gear with their respective fingertip vertex, inside

edge, or top edge. Therefore we simplify the modeling of
the grippers to be the intersection of the two planes adjacent
to the fingertip vertex. For the right gripper, the equations
are given by the intersection of:

fr1( ξx, ξy) ≡ ξy = 0 (58)

fr2( ξx, ξy) ≡ −( ξx − q4) = 0 (59)

and for the left gripper, the equations are given by the
intersection of:

fl1( ξx, ξy) ≡ ξy = 0 (60)

fl2( ξx, ξy) ≡ ξx − q5 = 0 (61)

The nonpenetration constraint between the right gripper and
the disc part of the gear is:

0 = a2 − a1 + l1∇a2 f ( a2) (62)

0 = ∇a2 f ( a2) +l2∇a1 fr1( a1) +l3∇a1 fr2( a1) (63)

0 ≤ l1 ⊥ −f ( a2) ≥ 0 (64)

0 ≤ l2 ⊥ −fr1( a1) ≥ 0 (65)

0 ≤ l3 ⊥ −fr2( a1) ≥ 0 (66)

0 ≤ λin ⊥ f ( a1) ≥ 0 (67)
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where a1 is the closest point on the right gripper to the disc,
a2 is the closest point on the disc to the right gripper, and
λin is the component of the nonpenetration force associated
with this contact. The remaining contact constraints can be
formulated analogously.

Friction in the plane of motion is important, so for this
problem we used a 2.5D dynamic model (Berard et al.,
2007), with force-controlled parallel jaw grippers. In order
to simulate the original experiments, we assumed that the
coefficient of surface friction and coefficient of gripper fric-
tion were unknown parameters, but bounded. Then for each
( xi, yi) in a 20 mm by 20 mm box of initial positions (sam-
pled at 1 mm resolution), we assigned random values to the
unknown parameters and simulated the grasping strategy.
The success probability for each ( xi, yi) pair was estimated
as the total number of successful grasps divided by the
number of trials.

Figure 10 illustrates a comparison between our results
and those reported by Brost and Christiansen. Let us refer to
the large contiguous region where the probability of success
is nearly one, as the “plateau.” Note that the shapes of the
plateaus are quite similar. Two quantitative differences are
the slopes of the drop-offs and the size of low areas for val-
ues of small y (on the back sides of the plateaus). The differ-
ence in the sharpness of the drop-offs is most likely due to
our bounds on the coefficients of friction. We have no way
of recovering effective friction coefficients from the experi-
ments, but we conjecture that they varied more widely than
they did in our simulated experiments. The low areas behind
the plateaus correspond to initial positions of the gripper
such that closing will achieve a grasp of nearly diametri-
cally opposite points on the lock piece. The width of the
low area turns out to be a complex function of the details of
the controller of the gripper and the coefficients of friction
between the lock piece and the support and the lock piece
and the gripper. Overall, the comparison is quite good. As
one can see, the size and shape of the sweet spot found via
simulation is nearly identical to that found experimentally.

7. Discussion on implementation issues

Although the theoretical formulation in this paper is valid
for objects described as an intersection of convex C2 func-
tions, for implementation with existing MNCP complemen-
tarity solvers, we need to restrict ourselves to cases where
one object is described by a single equation. In all of the
examples above, we have used the PATH solver (Ferris and
Munson, 1998) to solve the complementarity problem at
each time-step. PATH relies on a Newton-based method
with path search (instead of line search) for iteratively solv-
ing the system of equations at each time-step (Ralph, 1994;
Dirkse and Ferris, 1995). When any one of the objects is
defined by a single equation, this constraint is always active,
i.e. k1 in equation (29) is known a priori. Therefore, we
can use the equations (28)–(31), along with the discretized

equations of motion and complementarity constraints com-
ing from contact and friction, to form the system of equa-
tions and inequalities that are to be input to PATH. However,
when both objects are described by intersections of convex
functions, the active constraint on which the closest point
lies will vary with time. So, we cannot identify an index k1

a priori to write equation (29) in the given form.
In principle, this problem can be mitigated by using

recently proposed active set methods for solving the mixed
nonlinear complementarity problem (MNCP) (Izmailov and
Solodov, 2008). Active set methods also use a Newton-
based method for solving the MNCP. However, they do not
use all the equations while solving the MNCP. The key
idea here is to iteratively identify a set of potential active
constraints and formulate and solve a smaller system of
equations by removing the inactive constraints. The smaller
set of equation can be potentially solved faster, however,
multiple systems of nonlinear equations have to be solved
for different guesses of the active set. This is especially
true when there are a large number of constraints that can
be inactive in the optimal solution or when we are repeat-
edly solving a collection of equations whose coefficients
change with time (as is the case in dynamic simulation).
The identification of the active set can be done in a prin-
cipled way as outlined in Facchinei et al. (1998). However,
we are not aware of any publicly available implementations
of this scheme. A robust implementation of this scheme is
a research problem by itself and is beyond the scope of this
paper.

8. Conclusion and future work

We presented the first geometrically implicit time-stepping
scheme for dynamic simulation of objects described as
intersections of convex inequalities. This approach over-
comes stability and accuracy problems associated with
polygonal approximations of smooth objects and approx-
imation of the distance function for two objects in inter-
mittent contact. We developed a new formulation for the
contact constraints in the work space that enabled us to for-
mulate a geometrically implicit time-stepping scheme as a
nonlinear complementarity problem. We first presented our
formulation for rigid-body contact and then extended it to
quasi-rigid bodies (that can be modeled as a rigid core with
a thin compliant layer). We used a lumped parameter model
of the contact and assumed that the contact moment about
the normal to the contact patch is nonnegligible (analogous
to soft finger contact models in robotic grasping).

Although we primarily considered convex objects, our
formulation can be applied to nonconvex objects that can
be described as a union of convex objects (see the grasping
example in Section 6.4, where the part to be grasped is non-
convex). However, for situations where such a description
cannot be obtained, our formulation is not applicable (e.g.
a ball within a socket). Since the focus of this paper was
on presenting a method to incorporate the body geometry
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Fig. 10. Comparison of (a) the experimental results of Brost and Christiansen (reproduced from Brost and Christiansen (1996)) to
(b) our simulation results.

within the dynamic time-stepper to develop a geometrically
implicit method for integrating the equations of motion, we
have used a fixed time-step for the simulation results. Con-
sequently, in our simulations we chose the time-steps to be
small enough to capture the events where contacts are made
or broken. In practice, for balancing speed and accuracy,
one may want to choose the time-step adaptively.

We demonstrated through example simulations the
fidelity of our approach to analytical solutions, previously
described simulation results, and physical experiments.
This method can provide a baseline for understanding and
quantifying the errors incurred when using a geometri-
cally explicit method and when making various linearizing
approximations. In the future we wish to conduct such stud-
ies. Our ultimate future goal is to develop techniques for
automatically selecting the appropriate integration method
for a given application, and to guide method switching,
step-size adjustment, and model approximations in real
time.
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Note

1. For brevity, frame transformations have not been shown; in
practice one must be careful to maintain frame consistency.
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