Optimal synthesis of six-bar function generators

Saurav Agarwal Jaideep Badduri Sandipan Bandyopadhyay

Department of Engineering Design Indian Institute of Technology Madras Chennai - 600 036

900

Objective

Background

Generating complicated output motions, using simple linkages.

Function generation using single-DoF planar mechanisms

Background 000

Candidate mechanisms (up to six-bar)

(a) Four-bar: 5 design variables

(b) Watt-II: 9 design variables

design (c) Stephenson-II: variables

(d) Stephenson-III: 11 design variables

Function generation using single-DoF planar mechanisms

Difficulties in using six-bars for function generation

- Specialised computational tools and efforts are required (Stephenson-III: $4^{10}2^8 \approx 268$ million solutions, Watt-II: $4^82^4 \approx 1$ million solutions) (Plecnik et al., 2015) computed in 311 hours, using 256 CPU cores
- ▶ Infeasible solutions are filtered out later, via simulation-based checks, as Grashof-like mobility
- ▶ Objectives can only be met exactly at a small number of

Background

Difficulties in using six-bars for function generation

- ▶ Specialised computational tools and efforts are required (Stephenson-III: $4^{10}2^8 \approx 268$ million solutions, Watt-II: $4^82^4 \approx 1$ million solutions) (Plecnik *et al.*, 2015) computed in 311 hours, using 256 CPU cores
- ▶ Infeasible solutions are filtered out later, via simulation-based checks, as Grashof-like mobility conditions do not exist
- Objectives can only be met exactly at a small number of points, in a finite interval

Difficulties in using six-bars for function generation

- ▶ Specialised computational tools and efforts are required (Stephenson-III: $4^{10}2^8 \approx 268$ million solutions, Watt-II: $4^82^4 \approx 1$ million solutions) (Plecnik *et al.*, 2015) computed in 311 hours, using 256 CPU cores
- ► Infeasible solutions are filtered out later, via simulation-based checks, as Grashof-like mobility conditions do not exist
- ▶ Objectives can only be met exactly at a small number of points, in a finite interval

Present work: a new kinematic formulation of the problem

New contributions:

- ▶ Definition of *dual-order* structural error
- ▶ Development of mobility conditions
- ► Elimination of branch-errors at the formulation stage

Present work: a new kinematic formulation of the problem

New contributions:

- ▶ Definition of dual-order structural error
- Development of mobility conditions
- ▶ Elimination of branch-errors at the formulation stage

New contributions:

- ▶ Definition of *dual-order* structural error
- ▶ Development of mobility conditions
- ▶ Elimination of branch-errors at the formulation stage

Main results: dual-order structural error

Zeroth order:

$$\mathcal{E}_0(\theta) = \phi(\theta) - \phi_d(\theta)$$

► First order:

$$\mathcal{E}_1(\theta) = \frac{d\mathcal{E}_0(\theta)}{d\theta}$$
$$= \frac{d\phi(\theta)}{d\theta} - \frac{d\phi_d(\theta)}{d\theta}$$

Main results: dual-order structural error

► Zeroth order:

$$\mathcal{E}_0(\theta) = \phi(\theta) - \phi_d(\theta)$$

▶ First order:

$$\mathcal{E}_1(\theta) = \frac{d\mathcal{E}_0(\theta)}{d\theta}$$
$$= \frac{d\phi(\theta)}{d\theta} - \frac{d\phi_d(\theta)}{d\theta}$$

- ▶ Input variable: θ_1 (i.e., $\theta_1 - \theta_0$)
- \triangleright Output variable: ϕ_5 (i.e., $(\phi_5 - \phi_0)$)
- Number of branches: 4
- ► Number of design

- ▶ Input variable: θ_1
- Output variable: ϕ_5 (i.e., $(\phi_5 - \phi_0)$)
- Number of branches: 4
- ► Number of design

- ▶ Input variable: θ_1
- \triangleright Output variable: ϕ_5 (i.e., $(\phi_5 - \phi_0)$)
- Number of branches: 4
- ► Number of design

- ▶ Input variable: θ_1
- \triangleright Output variable: ϕ_5
- ▶ Number of branches: 4
- Number of design variables: 11

Mobility conditions: feasibility/Assembly criteria

► Feasibility criteria obtained from the RR chain, l_4 - l_5 :

$$|l_4 - l_5| \le \overline{\mathbf{co_3}} \le l_4 + l_5$$

Mathematical

Mobility conditions: feasibility/Assembly criteria

► Feasibility criteria

$$|l_4 - l_5| \le \overline{\mathbf{co_3}} \le l_4 + l_5$$

 Mathematical conditions obtained in terms of the design variables alone

Mobility conditions: criteria for singularity-free motion

(c)
$$\phi_5 = \phi_4$$

(d)
$$\phi_5 = \phi_4 - \pi$$

- Singularity conditions obtained from the rank degeneracy of the Jacobian of the constraint equations, η w.r.t. the passive variables ϕ , $\mathbf{J}_{\eta\phi} = \frac{\partial \eta(\theta_1,\phi)}{\partial \phi}$
- ► Singularity condition:

$$\det(\mathbf{J}_{\eta\phi}) = 0$$

$$\Rightarrow \sin(\phi_2 - \phi_3)\sin(\phi_4 - \phi_5) = 0$$

Mobility conditions: criteria for singularity-free motion

(c) $\phi_5 = \phi_4$

(d)
$$\phi_5 = \phi_4 - \pi$$

- Singularity conditions obtained from the rank degeneracy of the Jacobian of the constraint equations, η w.r.t. the passive variables ϕ , $J_{\eta\phi} = \frac{\partial \eta(\theta_1, \phi)}{\partial \phi}$
- ► Singularity condition:

$$\det(\mathbf{J}_{\eta\phi}) = 0$$

$$\Rightarrow \sin(\phi_2 - \phi_3)\sin(\phi_4 - \phi_5) = 0$$

Mobility conditions: Identification of branches

(c) Branch DU

(b) Branch UD

(d) Branch DD

► Identification of branches through singularity function:

$$s_1 = \sin(\phi_2 - \phi_3)$$

$$s_2 = \sin(\phi_4 - \phi_5)$$

- ► Branch identities:
 - a) UU: $s_1 < 0$ and $s_2 < 0$
 - b) UD: $s_1 < 0$ and $s_2 > 0$
 - c) DU: $s_1 > 0$ and $s_2 < 0$
 - d) DD: $s_1 > 0$ and $s_2 > 0$
 - d) DD. $s_1 > 0$ and $s_2 > 0$

Mobility conditions: Identification of branches

(a) Branch UU

(c) Branch DU

(b) Branch UD

(d) Branch DD

➤ Identification of branches through singularity function:

$$s_1 = \sin(\phi_2 - \phi_3) s_2 = \sin(\phi_4 - \phi_5)$$

- ▶ Branch identities:
 - a) UU: $s_1 < 0$ and $s_2 < 0$
 - b) UD: $s_1 < 0 \text{ and } s_2 > 0$
 - c) DU: $s_1 > 0$ and $s_2 < 0$
 - d) DD: $s_1 > 0$ and $s_2 > 0$

Formulation of the optimisation problem

Minimise
$$F_1 \stackrel{\triangle}{=} \frac{1}{N} \sum_{j=1}^{N} \mathcal{E}_0^2(\theta_{1j}),$$

$$F_2 \stackrel{\triangle}{=} \frac{1}{N} \sum_{j=1}^{N} \mathcal{E}_1^2(\theta_{1j}), \quad \text{where, } \theta_{1j} \in [\theta_{1i}, \theta_{1f}];$$
subject to $G_{\mathcal{S}p}(\boldsymbol{x}) \stackrel{\triangle}{=} \mathcal{S}_p > 0,$

$$G_{\mathcal{F}q}(\boldsymbol{x}) \stackrel{\triangle}{=} \begin{cases} \mathcal{F}_{qa} > 0, \\ \mathcal{F}_{qb} > 0, \end{cases}$$
where, $p = 1, \dots, 4, \quad q = 1, \dots, 6,$
 $x_l \in [a_l, b_l], \quad l = 1, \dots, 9.$

$$\phi_{5d} = \theta_1/90$$

 $\forall \theta_1 \in [0^\circ, 90^\circ]$

- $ightharpoonup RMS(\mathcal{E}_0): 0.026^{\circ}$
- $ightharpoonup RMS(\mathcal{E}_1): 0.005$
- ► Sample size, N = 400

- $\phi_{5d} = \theta_1/90$ $\forall \theta_1 \in [0^\circ, 90^\circ]$
- $ightharpoonup RMS(\mathcal{E}_0): 0.026^{\circ}$
- $ightharpoonup RMS(\mathcal{E}_1): 0.005$
- ► Sample size, N = 400

- $\phi_{5d} = \theta_1/90$ $\forall \theta_1 \in [0^\circ, 90^\circ]$
- $ightharpoonup RMS(\mathcal{E}_0): 0.026^{\circ}$
- $RMS(\mathcal{E}_1): 0.005$
- ► Sample size, N = 400

Stephenson-III: Parabola function

- $\phi_{5d} = \theta_1/90$ $\forall \theta_1 \in [0^\circ, 90^\circ]$
- $ightharpoonup RMS(\mathcal{E}_0): 0.026^{\circ}$
- $ightharpoonup RMS(\mathcal{E}_1): 0.005$
- Sample size, N = 400

Stephenson-III: double dwell function

$$\phi_5 = \begin{cases} 225^{\circ}, \ \theta_1 \in [-15^{\circ}, 15^{\circ}] \\ 210^{\circ}, \ \theta_1 \in [160^{\circ}, 220^{\circ}] \end{cases}$$

Stephenson-III: double dwell function (contd.)

- ▶ RMS(\mathcal{E}_0): 0.039°
- ▶ RMS(\mathcal{E}_1): 0.005

Stephenson-III: double dwell function (contd.)

- ► RMS(\mathcal{E}_0): 0.039°
- ▶ RMS(\mathcal{E}_1): 0.005

Summary of results

Table: Results and comparison with (Plecnik et al., 2014)[3] for parabolic function

Present work		From [3]		
$\max \mathcal{E}_0(\theta_1) $	0.042°			
RMS $(\mathcal{E}_0(\theta_1))$	0.025°	$\max \mathcal{E}_0(\theta_1) $	0.024°	
$\max \mathcal{E}_1(\theta_1) $	0.023			
RMS $(\mathcal{E}_1(\theta_1))$	0.005			

Summary of results

Table: Results and comparison with (Shiakolas $et\ al.,\ 2005)[13]$ and (Jagannath $et\ al.,\ 2009)[14]$ for double dwell function generation

Dwell Period	Error	Present	[13]	^a [14]
	$\max \mathcal{E}_0(\theta_1) (\text{ in }^{\circ})$	0.048	0.556	0.044
$\theta_1 \in [-15^{\circ}, 15^{\circ}]$ $\phi_{51} = 225^{\circ}$	RMS $(\mathcal{E}_0(\theta_1))$ (in °)	0.030	0.274	-
	$\max\left(\left \mathcal{E}_1(\theta_1)\right \right)$	0.014	0.053	0.014
	RMS $(\mathcal{E}_1(\theta_1))$	0.005	0.040	0.005
	$\max \mathcal{E}_0(\theta_1) (\text{in }^{\circ})$	0.049	0.254	0.085
$\theta_1 \in [160^{\circ}, 220^{\circ}]$	RMS $(\mathcal{E}_0(\theta_1))$ (in °)	0.039	0.102	-
$\phi_{52} = 210^{\circ}$	$\max\left(\left \mathcal{E}_1(\theta_1)\right \right)$	0.018	0.031	0.006
	$RMS(\mathcal{E}_1(\theta_1))$	0.005	0.012	0.002

^a In [14] the locations of the dwells were not specified.

- ▶ Mobility criteria based on the design variables alone, and deterministic in nature
- ▶ Computational time ≈ 12 minutes, scanning all the four branches, on a Intel core i7-4770 CPU running at 3.40 GHz with 8 GB RAM
- ▶ Dual-error formulation leads to accurate function generation, with smaller fluctuations in the desired speed
- ► No specialised computational tools required general-purpose GA-based optimiser, NSGA-II, has been used in this work, for example

- ► Mobility criteria based on the design variables alone, and deterministic in nature
- \blacktriangleright Computational time ≈ 12 minutes, scanning all the four branches, on a Intel core i7-4770 CPU running at 3.40 GHz with 8 GB RAM
- ▶ Dual-error formulation leads to accurate function generation, with smaller fluctuations in the desired speed
- ► No specialised computational tools required general-purpose GA-based optimiser, NSGA-II, has been used in this work, for example

- ► Mobility criteria based on the design variables alone, and deterministic in nature
- ▶ Computational time ≈ 12 minutes, scanning all the four branches, on a Intel core i7-4770 CPU running at 3.40 GHz with 8 GB RAM
- ▶ Dual-error formulation leads to accurate function generation, with smaller fluctuations in the desired speed
- ► No specialised computational tools required general-purpose GA-based optimiser, NSGA-II, has been used in this work, for example

- ► Mobility criteria based on the design variables alone, and deterministic in nature
- ▶ Computational time ≈ 12 minutes, scanning all the four branches, on a Intel core i7-4770 CPU running at 3.40 GHz with 8 GB RAM
- ► Dual-error formulation leads to accurate function generation, with smaller fluctuations in the desired speed
- ▶ No specialised computational tools required general-purpose GA-based optimiser, NSGA-II, has been used in this work, for example

Discussions: disadvantages/limitations

- ► Function generation may not need the crank to rotate through a full circle
- ► Function generation may require mobility of a particular branch pair only

Discussions: disadvantages/limitations

- ► Function generation may not need the crank to rotate through a full circle
- ► Function generation may require mobility of a particular branch pair only

Thank you for your attention!

Questions/comments?

References

- ▶ [3] M. M. Plecnik and J. M. McCarthy, Numerical synthesis of six-bar linkages for mechanical computation, *Journal of Mechanisms and Robotics*, vol. 6, no. 3, p. 031012, 2014.
- ▶ [13] P. Shiakolas, D. Koladiya, and J. Kebrle, On the optimum synthe- sis of six-bar linkages using differential evolution and the geometric centroid of precision positions technique, *Mechanism and Machine Theory*, vol. 40, no. 3, pp. 319335, 2005.
- ▶ [14] M. Jagannath and S. Bandyopadhyay, A new approach towards the synthesis of six-bar double dwell mechanisms, in *Computational Kinematics*, A. Kecskem ethy and A. M uller, Eds. Springer Berlin Heidelberg, 2009, pp. 209216.

References

- ▶ [3] M. M. Plecnik and J. M. McCarthy, Numerical synthesis of six-bar linkages for mechanical computation, *Journal of Mechanisms and Robotics*, vol. 6, no. 3, p. 031012, 2014.
- ▶ [13] P. Shiakolas, D. Koladiya, and J. Kebrle, On the optimum synthe- sis of six-bar linkages using differential evolution and the geometric centroid of precision positions technique, *Mechanism and Machine Theory*, vol. 40, no. 3, pp. 319335, 2005.
- ▶ [14] M. Jagannath and S. Bandyopadhyay, A new approach towards the synthesis of six-bar double dwell mechanisms, in *Computational Kinematics*, A. Kecskem ethy and A. M uller, Eds. Springer Berlin Heidelberg, 2009, pp. 209216.

References

- ▶ [3] M. M. Plecnik and J. M. McCarthy, Numerical synthesis of six-bar linkages for mechanical computation, *Journal of Mechanisms and Robotics*, vol. 6, no. 3, p. 031012, 2014.
- ▶ [13] P. Shiakolas, D. Koladiya, and J. Kebrle, On the optimum synthe- sis of six-bar linkages using differential evolution and the geometric centroid of precision positions technique, *Mechanism and Machine Theory*, vol. 40, no. 3, pp. 319335, 2005.
- ▶ [14] M. Jagannath and S. Bandyopadhyay, A new approach towards the synthesis of six-bar double dwell mechanisms, in *Computational Kinematics*, A. Kecskem ethy and A. M uller, Eds. Springer Berlin Heidelberg, 2009, pp. 209216.

