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Abstract This paper presents a method to compute the largest sphere inside the
position-workspace of a semi-regular Stewart platform manipulator, that is free of
gain-type singularities. The sphere is specific to a given orientation of the moving
platform, and is centred at a designated point of interest. The computation is per-
formed in two parts; in the first part, a Computer Algebra System (CAS) is used to
derive a set of exact symbolic expressions, which are then used further in a purely
numerical manner for faster computation. Themethod thus affords high computation
speed, while retaining the exactness and generic nature of the results. The numerical
results are validated against those obtained from an established numerical algebraic
geometry tool, namely, Bertini, and are illustrated via an example.

1 Introduction

This paper presents a method for finding a sphere inside the position workspace of
a semi-regular Stewart platform manipulator (SRSPM), which is free of gain-type1

singularities. The singularity-free sphere (SFS) is derived for a given orientation of
the moving platform, and is centred at a designated point of interest. The choice of
this point is typically motivated by the intended applications of the manipulator.

1Gain-type singularities (also known as type-II singularities) occur when the forward kinematic
solutions of a manipulator merge. See [1] and the references therein for more details.
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The identification of such an SFS facilitates several aspects of path-planning
and design of such manipulators. As the sphere describes a convex region in R3, it is
obvious that anypath consisting of line segments is free of (gain-type) singularities, so
long as the end-points of the segments are inside the SFS. For any given manipulator,
such a calculation needs to be done only once, for any given orientation. If such an
SFS is to be identified for a range of orientations of the moving platform, then one
can scan the said range (up to some desired resolution), and identify the smallest SFS,
which would be free of singularities for the entire range of orientations. Identifying
such an SFS forms an important part of computing the “Safe Working Zone (SWZ)”
of such a manipulator, where the manipulator can operate without encountering
singularities and other issues, as explained in [11]. It is, therefore, possible to think
of a design algorithm, to invert the problem, and identify the geometric parameters
which would allow the manipulator to be free of singularities over a desired range
of orientations, and a spherical region in R3.

Motivated by such utilities, several attempts have been made in the recent times
to obtain such an SFS, or variants of the same. Determination of the maximal SFS
in the orientation workspace, parametrised by Euler angles for the Minimal Simpli-
fied Symmetric Manipulator (MSSM) has been presented by Jiang et al. [7]. Li et
al. [8] have tried to solve this problem in the six-dimensional space of rigid body
motions, SE(3), by finding a sphere that is tangential to the gain-singularity mani-
fold in this space. The formulation, however, seems to lack mathematical rigour for
several reasons, as explained below. It is well-known that SE(3) does not admit a
bi-invariant Riemannian metric (see, e.g., [9], Corollary A.5.1, pp. 427), and hence
the notion of “distance” or length in SE(3) is non-unique. Thus, the application of
the Euclidean metric to define a sphere in SE(3) is mathematically inaccurate, given
that the Euclidean metric is a bi-invariant one. Furthermore, because of the non-
existence of a unique “natural/characteristic length” in SE(3), the results obtained
by the application of this method are always subject to the choice of the assumed
characteristic length, and have therefore limited value in any generic problem. Also,
it is not clear as to how the eliminations were implemented to solve the system of
equations, and the corresponding computational efforts involved are not mentioned.
Finally, in the process of solution, the number of solutions is stated to be 81, which
is much higher than the total-degree Bézout’s number of 27.

In this paper, the formulation adheres to the standard definition of a sphere in R3,
and accordingly, the SFS is computed only in the position space. Thus, there is an SFS
for each point in SO(3)which is accessible to the moving platform. The formulation
is therefore free of any mathematical inaccuracies, and it renders the problem to be
solvable analytically. The analytical description of the singularity manifold of an
SRSPM is available in [2], which is used in this work. The formulation leads to three
cubic equations in the coordinates of the point of tangency between the SFS and the
singularity surface. By elimination of two of the coordinates, a univariate polynomial
of degree 48 is obtained in the remaining one. It may be noted that the degree of the
final polynomial is still higher than the theoretical limit of 27, but is closer to the same.
The coefficients of this polynomial are computed exactly, via a series of intermediate
expressions which are evaluated numerically in the end. Thus, the entire formulation
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is implemented symbolically and the final univariate polynomial expression obtained
in a manner, which can be ported to any numerical programming environment like C
or C++, thereby making the steps performed inside CAS a one-time procedure. The
roots obtained are validated numerically, as well as against the numerical algebraic
geometry (NAG) tool Bertini [3], and the solution are illustrated geometrically.

It may be noted that a complementary formulation of the problem is feasible, i.e.,
a singularity-free sphere could be identified in SO(3), for a given position of the
end-effector. It is mathematically consistent, when the Euclidean distance is used in
conjunction with the quaternion-based representation of SO(3) [6, 10]. However, the
computations required are very demanding in this case, as the problem is defined in
terms of four polynomials, one of total degree 2, and the rest of total degree 6 each,
resulting in a Bézout number of 432, which puts this problem out of the scope of the
present work.

The rest of the paper is organised as follows: in Sect. 2 the mathematical formula-
tion of the problem is described, followed by the solution of the resulting equations.
The results are described in Sect. 3. Finally, the paper is concluded in Sect. 4.

2 Mathematical Formulation

This section describes the geometry of the manipulator and the derivation of the
equations describing the SFS in the position workspace of the SRSPM.

2.1 Geometry of the Manipulator

The SRSPM has semi-regular hexagonal top and bottom platforms, with alternate
sides in each platform having equal lengths. The angular spacings between the adja-
cent pairs of legs are denoted by 2γt and 2γb for the top (see Fig. 1a, b) and the bottom
platforms, respectively.Without any loss of generality, the radius of the circum-circle
of the bottom platform is scaled to unity, thus rendering all the linear dimensions
unit-less in this work. The circum-radius of the top platform is denoted by rt . The
orientation of the top platform is represented by the Rodrigue’s parametrisation (see,
e.g., [5], pp. 31) of SO(3), namely, {c1, c2, c3}.

2.2 Derivation of the SFS Equations

The objective of this work is to find the largest sphere in R
3, centred at a given

point of practical interest, say, p0 = {x0, y0, z0}�. The formulation is motivated by
the observation that such a sphere would be the smallest among those tangential
to the singularity surface in R

3. Thus, the first and the main task is to find all the
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(a) Schematic diagram of SRSPM. (b) Geometry of the top platform.

Fig. 1 Architecture of the SRSPM manipulator

spheres centred at p0, which are tangential to the singularity surface. In this case, the
singularity surface is given by f (x, y, z) = 0, where:

f (x, y, z) = a1x
2z + a2x

2 + a3xyz + a4xy + a5xz
2 + a6xz + a7x + a8y

2z

+ a9y
2 + a10yz

2 + a11yz + a12y + a13z
3 + a14z

2 + a15z + a16.
(1)

The coefficients ai ∈ R depend only on the orientation parameters c1, c2, c3, and the
architecture parameters γb, γt , and rt [2]. The equation of the sphere is given by:

g(x, y, z) = (x − x0)
2 + (y − y0)

2 + (z − z0)
2 − r2 = 0, (2)

where r is the radius of the sphere, and p = {x, y, z}� is the point of tangency
between the sphere and the singularity surface. Therefore, at p, the normals to these
two surfaces should align (see Fig. 2), giving rise to the tangency conditions:

∇f × ∇g = 0 ⇒ hi (x, y, z) = 0, i = 1, 2, 3. (3)

As only two of the equations hi = 0 are linearly independent, any two of the three can
be taken in combination with the equation defining the singularity surface, namely,
Eq. (1), to complete the set of three equations in the three unknowns, x, y, z. Each
real root of these equations leads to a sphere that is tangent to the singularity surface.
The one with the smallest value of r among these is the SFS.

2.3 Solution Procedure

The degrees of h1, h2, h3 in x, y, z individually are found to be {2, 3, 3}, {3, 2, 3} and
{2, 2, 2}, respectively, while the total degree in x , y, and z equals 3 in each case. In
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Fig. 2 Tangency of sphere with the singularity surface at the point p(x, y, z)

view of these, h1 = 0, h3 = 0 are chosen for the solution process, alongside f = 0.
From these equations, x, y are eliminated sequentially,2 as shown schematically in
Eq. (4):

f (x, y, z) = 0
h1(x, y, z) = 0
h3(x, y, z) = 0

⎞
⎠ ×x−→ g1(y, z) = 0

g2(y, z) = 0

⎞
⎠ ×y−→ g3(z) = 0. (4)

In the above, “
×x−→” denotes the elimination of the variable x from two or more

equations in x , via computation of resultants with respect to x . The functions g1
and g2 have degrees {4, 8} and {6, 7} in y and z, respectively. However, g2 is of the
form yg′

2, i.e., g
′
2 is of degree 5 in y. The variable y is eliminated between g1 = 0

and g′
2 = 0 (under the assumption y �= 0; the case y = 0 is treated separately) using

Bézout’s method, leading to a Bézout matrix of size 5 × 5. Direct expansion of the
determinant of this matrix leads to a polynomial in the only remaining unknown, z.
However, the size3 of the resulting symbolic expression is huge (about 29GB). The
time taken for expanding the determinant symbolically is about 17min. The time
taken for evaluating the determinant and the complexity of the resulting expression,
makes this method computationally inefficient and practically eliminates the chance
of it being used to find the SFS for a range of orientations, as a part of a larger but
more relevant analysis/design problem.

In order to overcome the above-mentioned drawbacks, a cascaded approach was
adopted to evaluate the 5 × 5 determinant, wherein it is expanded first in terms of
five 4 × 4 sub-determinants, which, in turn are expanded in terms of 20 (of which

2It may be noted that many different elimination sequences are possible. The one presented here
resulted in relatively smaller degrees of the intermediate and final polynomials.
3The “size” of an expression in this context indicates the amount of memory required to
store the expression in the internal format of the computer algebra system (CAS) used,
namely, Mathematica.
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only 10 are distinct) sub-determinants of size 3 × 3. Thus the coefficients of the final
univariate polynomial, g3(z), are obtained in terms of two stages of intermediate
expressions. Firstly, each of the 3 × 3 determinants are obtained in closed-form, in
terms of the coefficients a j (defined in Eq. (1)):

Δ3i =
29∑
k=1

bik(a j )z
k−1, i = 1, . . . , 20; j = 1, . . . , 16. (5)

The new sets of coefficients, bik , are obtained as closed-form expressions in terms of
the original coefficients, a j . In the next step, the five 4 × 4 determinants are obtained
in a similar manner, leading to the new set of coefficients cik :

Δ4i =
40∑
k=1

cik(blm)zk−1, i = 1, . . . , 5; l = 1, . . . , 20; m = 1, . . . , 29. (6)

Finally, the required 5 × 5 determinant is computed in terms of the 4 × 4 determi-
nants, and is cast as a polynomial in z:

Δ5 =
49∑
i=1

di (c jk) z
i−1, j = 1, . . . , 5; k = 1, . . . , 40. (7)

Therefore, the final univariate equation in z is obtained as:

g3(z) = Δ5 = 0. (8)

Equation (8) is solved to find all the 48 solutions of z. The real solutions of z are
used to find the values of x and y, and the radius of the desired sphere is obtained.
These steps are explained with the help of a numerical example in the next section.

Symbolic expansion of the determinant of each of the 3 × 3matrices takes an aver-
age of 0.5s, and their original size is about 30MB each. However, after symbolic
simplification using the built-in Mathematica routine Simplify, the sizes of
these determinants vary from 6.897 to 12.791MB, with a total size of 93.158MB (for
the ten unique determinants). The actual coefficients of the 3 × 3 determinants are
then replaced by the intermediate dummy variables (see Eq. (5)). Proceeding further,
the sizes of the five 4 × 4 determinants (defined as Δ4i in Eq. (6)) are found to be
(in MB): 1.083, 0.971, 0.892, 1.067, and 1.267, respectively. The final determi-
nant, Δ5, is obtained in a similar manner.

These steps of computing the final set of coefficients di starting from the inputs al
allowmuch faster computation (i.e., 11 s), and also leads to simpler final expressions.
The univariate equation, g3(z) = 0, consists of a total of 49 terms, with a cumulative
size of 1.842MB, while the largest term among these is only 160KB in size. The
comparison between the symbolic and the numeric computations of g3(z), in terms
of the computational efforts and sizes of the expressions involved, are presented in
Table1.
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Table 1 Comparison between the direct symbolic evaluation of the 5 × 5 determinant and the
proposed approach. CPU specifications of the computer used: Intel(R) Core(TM) i7-4790 CPU
running at a clock speed of 3.6GHz, with 16GB RAM

Symbolic evaluation Numerical evaluation

Software used Mathematica, Symbolic
mode

Mathematica, Numeric
mode, with default working
precision

Size of expressions Final univariate
polynomial, g3(z), (obtained
by direct expansion of
the 5 × 5 determinant): 29GB

Final univariate
polynomial g3(z) (computed
following Eqs. (5)–(7)): 1.842,
100.280MB inclusive of all
intermediate expressions

Time taken 17min and 33s 11s

It is important to note, that the expressions lead to the exact values of the final
coefficients, subject only to the working precision of the numerical computation
environment used.More importantly, it allows for a purely numerical implementation
of the solution process (e.g., in C or C++) without either impacting the exact nature
of the computation of the coefficients or restricting the computation to the symbolic
computation environment of a CAS. Another point worth noting is that once the
coefficients are obtained till the last level, the process need not be repeated, when
the point of interest (centre of the sphere) or the architectural parameters of the
SRSPM is changed. It also paves the way for computationally efficient scanning of
the orientation workspace of the manipulator for finding the smallest SFS.

3 Results

A sample problem was solved in CAS Mathematica [12] version 10.4 using the
default working precision of the system. The values of the architecture parameters
are adopted from [4]: γt = 0.0863 rad, γb = 0.0835 rad, and rt = 0.8479 (after scal-
ing the base circum-radius rb to 1). The fixed centre of the SFS is taken to be at
p0 = {0, 0, 1.9500}�. The orientation parameters were taken to be c1 = 0.1013,
c2 = 0.0368, and c3 = 0.2962. The monic form of Eq. (8) for these inputs is given
below (Fig. 3):

z48 + 4.4567 × 1015z47 + 3.9157 × 1019z46 + 8.4802 × 1021z45 + 8.8816 × 1023z44 − · · ·
+ 4.0056 × 1064z3 + 3.2054 × 1064z2 − 7.7684 × 1064z + 1.2071 × 1064 = 0. (9)

Bézout’s limit for the number of solutions in this casewas 3 × 3 × 3 = 27.Thehigher
degree of Eq. (9) indicates introduction of spurious solutions in the process of elimi-
nation of variables. Therefore, after completing the solutions with the corresponding
values of x, y, the original set of equations (i.e., Eq. (4)) are used to filter out any such
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Fig. 3 Manipulator pose for the given input parameters

solutions. Only three sets of real solutions survive this test, producing residues of
the order of 10−23: {x, y, z} = {−0.4384,−0.3125, 0.1696}, {−0.3996,−6.4295,
2.2232}, {0.3653,− 0.7859, 4.7318}. The corresponding values of r are: 1.8599,
6.4477, and 2.9137. Therefore, the SFS has a radius of 1.8599 for the given inputs.
The actual tangency is depicted in Fig. 2. For spheres with radii greater than the min-
imum radius, the sphere may be tangential to the singularity surface at one point, and
intersect the surface at another point, thus making them irrelevant for the purpose
at hand. Figure 4a depicts the sphere with minimal radius that is tangential to the
singularity surface. Figure 4b shows the sphere with radius 2.9137, which, though
tangential at one point, actually cuts the singularity surface at several places.

The above solutions were obtained for the case y �= 0. For y = 0, the obtained
solutions were p = {−66.3514, 0, 5.6010}�, and the corresponding r = 66.4518,
which is more than the minimum radius already obtained. Hence, the above-reported

(a) r = 1.8599 (b) r = 2.9137

Fig. 4 Tangency of the minimal sphere with the singularity surface
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radius of the SFS holds. The residues obtained on substituting this solution set in the
original set of equations was found to be of the order of 10−17.

The results obtained above are prone to numerical errors, due to the high degree
of the final equation in z and the huge variations in the order of magnitude of the
values of the coefficients in Eq. (9). Thus, it is desirable to solve the system in Eq. (4)
using another method, in order to assess the correctness of the solutions obtained.
For that purpose, the NAG tool, Bertini [3] is used, which is well-known for its
capability to compute all the solutions of a given polynomial system to a desired level
of accuracy. As expected, Bertini finds only 27 solutions, of which 22 are finite,
and the others escape to infinity. The real solutions match the solutions obtained
above up to 10 digits after the decimal point, establishing the correctness of the
solutions obtained.

4 Conclusion

A method for computing the largest gain-type singularity-free sphere inside the
workspace of the SRSPM has been presented in this paper. The said sphere is a
subset of the position workspace of the manipulator, and is derived for a given
orientation of the moving platform. The formulation leads to three cubic equations
in the coordinates of the point of tangency between the sphere and the singularity
surface. Amethod is presented to derive a univariate equation of degree 48 from these
three equations, such that all the coefficients of the intermediate as well as the final
polynomials are computed exactly, albeit in a numerical manner. This is the main
contribution of the paper, which allows, perhaps for the first time, fast computation of
these spheres inside a purely numerical computation environment, without losing the
accuracy of the solutions obtained. Although Mathematica was used to perform
the numerical computations, none of the symbolic capabilities of Mathematica
were made use of in the numerical evaluation of the coefficients.

There are existing numerical techniques, which allow the problem to be solved in
a completely numerical framework. For example, Sylvester’s dialytic method, leads
to a matrix which has polynomial entries in a single variable. This matrix can be
used to solve a generalised eigenproblem, where the eigenvalues of the system are
the same as the roots obtained by solving the univariate polynomial after expanding
the determinant. There exist efficient eigensolvers, which are capable of solving the
problem. However, the methods being purely numerical, they have difficulties of
their own. It is hard to ensure the numerical accuracy of the solutions, in particular,
when fixed precision computational environments are used.

The cascaded approach presented in this paper produces the coefficients of the
final univariate in their exact forms, thereby allowing accurate computations of these
coefficients in a purely numerical environment. Work is in progress to implement the
methodpresented inC++, so as to speedup the computations evenmore. Furthermore,
it is intended to use this method in the computation of the SWZ of SRSPM and more
general Stewart platform manipulators, as a part of their design process.
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