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Abstract— This paper presents an approach for the de-
sign of parallel manipulators, from the perspective of opti-
mal dynamic performance over a given safe working zone.
It is shown that no single index is sufficient to fully quan-
tify the dynamic performance of such a system. Two dif-
ferent indices are therefore developed from the study of
the generic equation of motion of such systems. The re-
sulting bi-objective optimisation problem is solved using
a genetic algorithm-based numerical optimiser, namely,
NSGA-II. The proposed algorithm is applied to an existing
planar 3-RRR parallel manipulator, to obtain an improved
design. It is found that the improved design, though ob-
tained by optimising the intrinsic performance indices, per-
form better in terms of extrinsic dynamic indices, such as
the required torque for tracking a set of given trajectories.

Keywords: manipulator dynamics, parallel robots, optimisation,
genetic algorithm

I. Introduction

A manipulator is typically designed for certain desir-
able features, such as a large workspace (in comparison
to its dimensions) [1], good dynamic performance ([2],
[3], [4]), dexterity [5], etc. The task of designing paral-
lel manipulators presents many challenges. For example,
the “workspace” needs to be qualified further as a sub-
set of the actual workspace (termed as the safe working
zone (SWZ) in [6]), which is free from singularity defects
and link interferences, and needs to be identified at addi-
tional computational cost. On the other hand, it is difficult
to find quantifiable measures of dynamic performance that
can be used as design objectives. From a practical stand-
point, a manipulator can be said to have “good” dynamic
behaviour, when it can track trajectories without requiring
high levels of forces/torques from its actuators, irrespective
of the shape of the path, and its location in the workspace.
This has a direct impact on the sizing of the actuators—
better its dynamics, lower the actuator specifications for
a given set of motion generation tasks. This view point
may be termed as an “extrinsic” one, since it depends on
the specification of the trajectory, which is independent of
the design of the manipulator. For example, in [7], extrin-
sic measures such as the magnitude of the actuator/input
torque and power in the worst case scenario, are directly
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used as indices for dynamic performance. A better alterna-
tive might be to look for intrinsic properties of the manip-
ulator, which imparts upon it good dynamic performance,
irrespective of the trajectory demanded of it. If such prop-
erties can be quantified in terms of indices, then such in-
dices would be functions of the architecture parameters and
the configuration of the manipulator alone. It is, therefore,
possible to associate such an index, to each point of the
workspace, so as to study the dynamic performance of a
manipulator over a given finite region inside its workspace.
Many indices have been proposed in literature towards this
end, in the case of the serial manipulators. Asada anal-
ysed the isotropy of the Generalised Inertia Ellipsoid [8].
Yoshikawa proposed a measure to capture the dynamic per-
formance [9]. Most of the indices proposed are based on the
condition number of Generalised Inertia Matrix (GIM). In
[10], [11] non-homogeneity in the task space is taken care
of by studying the isotropy of the non-dimensional inertia
matrix. Very few researchers have extended the concept of
dynamic performance indices to parallel manipulators. For
example, [12] introduced indices for analysing 3-degree-of-
freedom parallel manipulators, but their correlation to the
extrinsic measures are not established in literature.

In spite of the proliferation of different dynamic perfor-
mance indices in literature, it is difficult to find ones which
are intrinsic in nature, and yet, can predict the extrinsic be-
haviour. It is indeed non-trivial to formulate such indices in
the case of dynamics, since the governing equation (i.e., the
equation of motion) has two types of rate variables: veloc-
ities and accelerations. Furthermore, the velocities appear
quadratically in the Coriolis and centripetal terms, leading
to strong coupling between the different motion parame-
ters. In order to define a meaningful measure, it is desirable
to decouple the terms in multi-body dynamics first, so that
some desirable property of the resulting system could be
studied for the stated purpose. A measure for the extent of
decoupling, termed as the coefficient of coupling, has been
introduced in [13], and used for simplification of non-linear
kinematic and dynamic coupling of robot dynamics.

In this work, a strategy is employed to decouple the
equations of motion in a manner that the effect of Corio-
lis and centripetal terms, which are in correlation with that
of the mass matrix, is reduced. This allows the study of the
mass matrix alone using techniques from linear algebra. By
studying the mass matrix, two intrinsic measures are devel-
oped which correlate with an extrinsic property, namely, the
actuator torques required for the manipulator.



Using the intrinsic measures defined as the two objec-
tives and SWZ volume of the workspace as a constraint,
a bi-objective optimisation problem is formulated to find
designs fulfilling specific requirements. The optimisation
problem is solved using NSGA-II [14], an optimiser based
on genetic algorithms (GA). As GA uses a population-
based approach, the computational demands for such an
optimiser is rather high. To meet the high computational
demands, a strategy exploiting the inherent parallelism in
the objectives and constraint functions have been used, al-
lowing for the use of GPU-based acceleration. To vali-
date the proposed formulation, a planar parallel manipu-
lator (PPM), namely the 3-RRR, is re-designed. The per-
formance of the optimal design obtained is compared with
the existing prototype available in the Robotics Laboratory,
Department of Engineering Design, IIT Madras. The op-
timal design obtained shows improvements over its prede-
cessor in terms of both the intrinsic performance indices,
as expected. Moreover, such improvements seemingly cor-
relate positively with the extrinsic performance index, such
as the torque required to track the same set of representative
trajectories—thus validating the main concept of the paper.

The rest of the paper is organised as follows: the formula-
tion of the dynamic indices is introduced in Section II. The
multi-objective optimisation problem is formulated in Sec-
tion III, and the constraints, objectives and computational
strategy used are elaborated. A case study is presented
in Section IV using the PPM 3-RRR and the results are ex-
plained. The paper is concluded in Section V.

II. Dynamic performance indices

The equation of motion of a parallel manipulator can be
written in the actuator space (see e.g., [15]) as:

Mθ(q)θ̈ +Cθ(q, q̇)θ̇ +Gθ(q) = τ , (1)

where q is the set of generalised coordinates, Mθ is
the mass matrix, θ is the vector of actuator space coor-
dinates, Cθ represents the Coriolis and centripetal term
and Gθ is the gravity term. Eq. (1) is fundamental in the
analysis of the dynamic performance of a manipulator. As
this equation involves two different types of input-rate vari-
ables, namely, the velocity θ̇, and the acceleration θ̈, the
dynamic performance of a manipulator cannot be quanti-
fied in the same way as its kinematic performance. In kine-
matics, it is customary to use a unit speed constraint [16]
to free the intrinsic properties from the scale effects (i.e.,
study the properties of kinematics which do not depend on
the input rates, but only on the geometry and configuration
of the manipulator). While this cannot be done explicitly in
the case of dynamics, one can observe that the effects of θ̇,
and θ̈ are not entirely different in the context of Eq. (1).
For instance, the input speed, θ̇, occurs only in the second
term Cθθ̇, which is qualitatively of the same nature as the
first termMθθ̈ (as they both represent generalised forces).

Moreover, there is an innate relation between the termsMθ

and Cθ, which is explored in the following in such a man-
ner that the transformation of the mass matrix Mθ modi-
fies Cθ for the betterment of dynamic performance1.

A. Relationship between theM and C matrices

It is known that the equation of motion of a conservative
system can be derived from the principle of least action
(see, e.g., [17]), i.e.,

δI = 0, (2)

where the functional I is given by the action integral:

I =

∫ t2

t1

Ldt. (3)

In Eq. (3), L stands for the Lagrangian of the dynamic sys-
tem under consideration. Focusing only on the dynamic
terms (i.e., keeping the rate-independent term, potential en-
ergy out of consideration), L = 1

2 θ̇
>
M(q)θ̇. In such a

case, one could write the equation of motion of a conserva-
tive system as:

δ

∫ t2

t1

1

2
θ̇
>
M(q)θ̇dt = 0. (4)

Eq. (4) leads to a differential equation of a particular form:

Mij θ̈k + Γijkθ̇iθ̇j = 0, where (5)

Γijk =
1

2

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
, i, j, k = 1, . . . , n,

where n is the degree-of-freedom (DoF) of the system.
It may be noted that the terms Γijk are functions of the
configuration and architecture of the manipulator. The
terms Γijkθ̇iθ̇j , when summed up, generate the familiar
termCθ̇ in the equation of motion. However, Γijk can also
be interpreted, from the perspective of differential geome-
try, as the Christoffel symbols of the first kind associated
with the metric tensor M (see, e.g., [18]) for more details
on these topics). To understand the physical significance of
the terms Γijk, it is instructive to specialise Eq. (5) to the
simple system of a particle of mass m, moving in IRn. In
such a case, one can show trivially:

M = mIn×n ⇒ Γijk = 0. (6)

where In×n is an identity matrix of order n.
It is interesting to note the following:

• For a particle (of constant mass), the equation of mo-
tion, Eq. (5), coincides with the equation of the geodesic
in IRn (i.e., θ̈ = 0). In other words, such a system has

1It may be noted here, that the third term in the equation of motion,
namely, Gθ , is not considered in this work. It is the subject matter of a
different study, namely, static balancing of manipulators and mechanisms.



the best dynamic behaviour, given that the system can al-
ways move along geodesic paths, which are the best possi-
ble, from a kinematic perspective.
• The vanishing of the Christoffel symbols in this case
demonstrates the flatness of the configuration space IRn, as
well as the fact that the individual degree-of-freedom of the
particle are completely decoupled in nature.
• When the Christoffel symbols are not all zeros, they re-
late to the non-zero curvature of the configuration space. It
is consistent with the fact that in the equation of motion,
they are associated with the Coriolis and centripetal accel-
erations. It is easy to see, in the case of the particle, that
these accelerations appear only when there is a curvature in
the path of the particle.
From these observations, one concludes that if the equa-
tion of motion of a system can be made to appear like
that of a particle, then the system’s dynamics would ac-
quire the “particle-like” desirable properties, thereby mo-
tivating the indices for dynamic performance proposed in
this study. Firstly, it is understood that if the mass matrix
can be made isotropic, then it would reduce the coupling
effects in the term Cθ as well—resulting in greater unifor-
mity of the dynamic behaviour over the configuration space,
than can be expected otherwise. However, the isotropy by
itself is not sufficient to ensure faster dynamic response (or
equivalently, lower demands on the actuators for fast mo-
tions), which is also a desirable property from a practical
perspective. To address this issue, one has to consider the
repeated eigenvalues, λ, of the mass matrix. The value λ,
being analogous to the “mass” of the equivalent particle, is
the measure of the inertia of the reduced system. A simi-
lar measure, termed as the “swiftness ratio” has been used
in [19], from similar considerations.

B. Development of the indices

In the following, two different indices are developed to
take care of the two aspects of dynamics, as noted above.
The first one is a non-dimensional one, which quantifies
the deviation of a mass matrix from its diagonal form. The
second index has the dimension of inertia, and it captures
the equivalent inertia of the system.

To develop the first index, the condition number based
on the L1 norm is used. Given A ∈ IRn×n, its condition
number is given by

κ(A) = ‖A−1‖‖A‖, where (7)

‖A‖L1
=

n∑
i=1

n∑
j=1

|xij |. (8)

Mass matrix, Mθ ∈ IRn×n, can be transformed to its diag-
onal form Λ, where Λ is matrix of the eigenvalues of Mθ.
SinceMθ is positive semi-definite, Eq. (8) reduces to:

‖Λ‖L1
=

n∑
i=1

λi, (9)

where λi are the eigenvalues of Mθ. Therefore, the con-
straint on the workspace to be inside SWZ is imperative.
Using Eq. (9), the condition number of Λ can be written as:

κL1
(Λ) =

(
1

λ1
+ · · ·+ 1

λn

)
(λ1 + · · ·+ λn) . (10)

Using κL1
, the dynamic performance index µ1(Mθ) is de-

fined as:

µ1(Mθ) =
n2

κL1(Λ)
, such that µ1(Mθ) ∈ [0, 1]. (11)

As the value of µ1(Mθ) approaches unity, eigenvalues of
the mass matrix approach each other, i.e., the mass ma-
trix Mθ approaches isotropy. At an isotropy, λmax =
λmin = λ, and hence, Λ = λIn×n. Therefore,

Mθ = QΛQ>, whereQQ> = In×n

= λQQ>

= λIn×n. (12)

From Eq. (12) one can observe that the isotropy ensures
diagonality, i.e., complete decoupling of the inertia term,
and it is not necessary to consider their decoupling sepa-
rately. The norm mentioned in Eq. (8) is chosen because of
its simplicity, ease of computation, and to represent the in-
dex in terms of matrix invariants.For example, the isotropy
index, µ1, for the three degree-of-freedom 3-RRR PPM can
be written in terms of their invariants using Eq. (10) and
Eq. (11) as:

µ1(Mθ) =
9

κL1
(Λ)

(13)

=
9(

1
λ1

+ 1
λ2

+ 1
λ3

)
(λ1 + λ2 + λ3)

=
9λ1λ2λ3

(λ1 + λ2 + λ3) (λ1λ2 + λ2λ3 + λ1λ3)

=
9I3(Mθ)

I1(Mθ)I2(Mθ)
,

where I1(Mθ) = tr(Mθ), I2(Mθ) = 1
2 ((tr(Mθ))2 −

tr(M2
θ)), and I3(Mθ) = det(Mθ) are the invariants of

mass matrix Mθ. Similarly, this can be extended to matri-
ces of higher orders.

The second index involves the eigenvalues of the mass
matrix. It is defined simply as

µ2(Mθ) = max{λi}, i = 1, . . . , n. (14)

The indices µ1(Mθ), µ2(Mθ) are both local in nature,
as the mass matrix itself varies over the configuration space.
To extend these to global indices over a workspace of inter-
est, the following strategies are employed.



1. Using the average value of the index µ1 over the
workspace of interest (V ), a global index, µ̄1, is defined:

µ̄1(Mθ) =

∫
V
µ1(Mθ)dv∫
V
dv

. (15)

2. It is of interest to find the design parameters such that
the maximum equivalent inertia, considered over the de-
sired range of motion (i.e., workspace of interest, W ), is
minimised. Therefore, another global index, µ̄2 is defined:

µ̄2 = max
W

(µ2) = max
W

(λmax(Mθ)). (16)

III. Formulation of the optimisation problem and com-
putational scheme

Design problem of a parallel manipulator is inherently
multi-objective in nature (as explained above), and hence
requires computation of many functions, such as the size
of the SWZ, computation of dynamic performance index,
isotropy, dexterity etc., which are often computationally ex-
pensive and not known analytically. It may not be possible
to find the gradient of all these functions at every point,
precluding the use of gradient-based local techniques to
solve the optimisation problem. Genetic Algorithms (GA),
employed for optimisation in the present work, can han-
dle such multi-objective optimisation problems. In order to
eliminate the need of a “good” initial guess, and to explore
a search space better, the GA uses a population-based ap-
proach and optimises iteratively over generations. In this
section, the formulation of the objective functions and the
constraints used in the optimisation are described, and their
implementation in NSGA-II2 [14] is explained. A compu-
tational scheme is presented to exploit the inherent paral-
lelism in the evaluation of the objective functions over a
search space and its implementation in GPU for faster com-
putations is demonstrated.

A. Objective functions and constraints

The objective functions and constraints for the problem
are motivated from the idea that a manipulator should have
a desired SWZ and it should also have a good dynamic per-
formance over the SWZ. Two different design objectives—
large µ̄1 and small µ̄2—are considered in this work. The
constraint function, g(x), is chosen based on the minimum
dimension of the SWZ3 denoted as ρo. The optimisation
problem can be written as:

Minimise f1(x) = −µ̄1 and
f2(x) = µ̄2

subject to g(x) : ρ− ρo ≥ 0,

xj ∈ [aj , bj ], j = 1, . . . , k. (17)

where k is the number of design parameters.
2NSGA-II is available for download from Kanpur Genetic Algorithms Lab-
oratory at http://www.iitk.ac.in/kangal/codes.shtml.

3The mass matrix (Mθ) is defined only at a non-singular configuration.
Hence, it is imperative to confine the domain of analysis to the SWZ.

B. SWZ computation

To identify the usable workspace of a manipulator, the
concept of SWZ [6] is used in the present work. The com-
putation of SWZ involves evaluation of the level-sets of var-
ious functions, Si, which comprise of conditions for loss-
type singularities, gain-type singularities, joint limits and
link interference functions, are non-analytic in nature re-
quiring evaluation over the entire search space. To find their
zero level-sets, the search space is divided using a polar
grid and each function, Si, is evaluated at the grid points.
The centre of the grid corresponds to that of the centre of
symmetry of the manipulator (e.g., o in Fig. 1). The reso-
lution of the search/grid space is determined based on the
desired accuracy of the solutions in task-space and a higher
accuracy demands more computation. As the evaluation of
a function at a grid point is independent of the evaluation
at the other points, the entire computation is parallelised
and GPU4 is used. The scheme affords for large population
sizes and higher number of generations for NSGA-II runs.

IV. Case Study: 3-RRR planar parallel manipulator

The optimisation strategy described in Section III is ap-
plied to a symmetric 3-DoF planar parallel manipulator,
3-RRR, shown in Fig. 1. The base points, b1, b2, and b3,
describe an equilateral triangle of side b and define the lo-
cations of the actuators. The end-effector is of the form of
an equilateral triangle of side a, with the vertices p1, p2,
and p3. The pair of points bi and pi (i = 1, 2, 3), are con-
nected by a RR chain each. The first link, biai, in each
chain, is the active link of length l. Similarly, the second
link, aipi, in each chain is a passive link of length r. The
actuator variables are θ = (θ1, θ2, θ3)> and the passive
variables φ = (φ1, φ2, φ3)>, while the task space variables
are X = (x, y, α)>.

The active links, the passive links, and the moving plat-
form are in three different parallel planes to avoid collisions
amongst them. Further, each leg of the 3-RRR has two in-
verse kinematics branches. Here each leg is considered in
the same branch of inverse kinematics to maintain symme-
try. Among the two symmetric branches, the branch shown
in Fig. 1 is chosen without any loss of generality, as the
two branches are equivalent with regard to their dynamics.

It has to be noted that dynamic model of the PPM is
dependent on the architecture parameters of the links. To
capture and simplify this dependence, the complete geo-
metric model of the link is parameterised in terms of its
link length by using three dimensional geometric primitives
such as, cylinders, cuboids, triangular prisms etc. A close
approximation to an actual link of 3-RRR PPM is obtained
by maintaining high packing efficiency. Density of the ma-
terial and the payload are then incorporated to complete the

4The GPU used is NVIDIA Tesla K40 with an Intel R© Core i7-4770 CPU
@ 3.40GHz processor with 8GB of RAM and the codes are written in
CUDA C.



Fig. 1. Kinematic details of a 3-RRR planar parallel manipulator.

dynamic model. For example, link design of the PPM is
shown in Fig. 2. Each of the dimensions, b1, h1, etc., are
functions of the length, l, making l the sole “free” variable
entering the design space. All the lateral dimensions are re-
lated to l in such a manner that the flexural stiffness of the
links remain unchanged even when the length is varied.

Fig. 2. The CAD model of an active link of 3-RRR showing its geometric
parameters

A. Design variables

As described in [6], SWZ of the 3-RRR manipulator is
computed to obtain a cylinder free from singularities and
link interferences. A three-dimensional grid is considered
such that each axis represents a DoF in the task-space. A
right circular cylinder is fitted and is placed at the centre of
the manipulator (o) with height 2∆α. The SWZ is found
for discrete values of α, with a range of αmid ±∆α, based
on the desired resolution. The radius of the cylinder is taken
as a measure for SWZ, denoted by ρ as shown in Fig. 1.

The equation of motion for a 3-RRR PPM can be derived
in task space, as given in Eq. (1), with task-space variables
as X = (x, y, α)>. In this work the PPM is designed for
axis-symmetric jobs like welding, laser cutting etc., allow-
ing the use of the orientation as a “free design” parameter

for improving dynamics in the other two directions. The dy-
namic indices µ̄1 and µ̄2, described in Section II, are eval-
uated using the actuator space mass matrixMθ.

The optimisation problem is formulated as described
in Section III-A, with the design variable as x =
(b, l, r, a, αmid)

>. The ranges of the design variables and
values of the fixed parameters are listed in Table I and Ta-
ble II, respectively.

TABLE I. Ranges of the design variables for the optimisation of 3-RRR
PPM

Variable Lower bound Upper bound
b 400 mm 1000 mm

l 100 mm 500 mm

r 100 mm 500 mm

a 50 mm 500 mm

αmid −175◦ 175◦

TABLE II. Fixed parameters for the optimisation of 3-RRR PPM

Parameter Value
ρo 300 mm

∆α 5◦

Payload 1 kg

Density 2.710×10−3 kg/mm3

B. Results

Optimal designs are found using NSGA-II with the cho-
sen parameters given in Table III and population size of 600
over 200 generations. The number of generations is chosen
to be relatively low, as it is found to suffice for the conver-
gence of the results, with a seed value of 0.5. The task-

TABLE III. Internal control parameters for NSGA-II

Parameter Value

pc 0.90

pm 0.50

ηc 5

ηm 35

space is descretised at a resolution of 0.125 mm and 0.5◦

for the computation of SWZ. A total time of 4 hours was
taken to complete the optimisation. The result obtained
from NSGA-II is studied by means of the Pareto plot,
shown in Fig. 3. For a more detailed study, three designs
are chosen from the Pareto plot—minimum µ̄2 point as
design-a, utopia point as design-b, and maximum µ̄1 point
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Fig. 3. Pareto plot for optimisation of 3-RRR PPM based on µ̄1 and µ̄2

as design-c, shown in Fig. 3. It has been observed that the
magnitude of the maximum torque does not vary signifi-
cantly over the different designs. To quantify the benefits
afforded by the optimisation, the optimal design is com-
pared with an existing prototype, which was constructed
without such considerations. The design variables of the
two cases are given in Table IV. Another observation is
that the value of r reaches its upper limit of 500 mm to ac-
commodate the required SWZ.

In order to validate the design improvement from an ex-
trinsic perspective, the actuator torques are computed, as
the manipulator tracks different paths distributed over the
SWZ. A circular path with radius rc = 50 mm is chosen.
The point, p, is made to trace the path with constant speeds
of u = 1 m/s and u = 1.5 m/s. The analysis is carried out
for the fixed orientation (α is used as design variable) of
the end-effector, α = αmid, throughout the trajectory, for
each selected design. Nine such paths, Ci, i = 0, . . . , 8, as
shown in Fig. 4, are distributed over the SWZ.

TABLE IV. Values of variables for existing and proposed design

Parameter Existing Design Proposed design

(rounded off)

b (mm) 1000 938

l (mm) 500 307

r (mm) 500 500

a (mm) 150 136

αmid 68◦ 62◦

µ̄1 0.48 0.58

µ̄2 1.19 0.12

Due to constraint of space, only the torques demanded
of the first actuator (located at b1), are presented in Fig. 5.
However, a similar trend is observed for all the results. As
seen in Table V, the peak torques in the case of design-a are
reduced by 50% compared to the existing design.

TABLE V. Indices (µ̄1, µ̄2) and absolute peak torque values (τp)

Design µ̄1 µ̄2 τp(Nm) τp(Nm)

(kg-m2) u = 1 m/s u = 1.5 m/s

Existing 0.48 1.19 16.4 37.6

Proposed 0.58 0.12 8.3 19.0

100 200 300 400

0

100

200

300

Fig. 4. Schematic of the nine circular paths, Ci, i = 0, . . . , 8, traced
by the end-effector. The shaded circular region represents the SWZ for
α = αmid.

V. Conclusion

A novel approach to the quantification of the dynamic
performance of a parallel manipulator has been defined in
this paper. Two new indices have been proposed, based en-
tirely on the intrinsic properties of the system. The locally-
defined indices have been extended to two physically mean-
ingful global indices, which are then utilised to define the
objective functions of a multi-objective design problem.
Using the example of a planar 3-RRR manipulator, such
a design problem is solved, with the additional constraint
of a given SWZ. The results show that the method leads
to better designs of the manipulator, which perform better
not just in theory, but also in practice—from the perspec-
tive of required actuator efforts to track a given trajectory.
The proposed indices, formulation, and solution, though
demonstrated here using a solitary example, can potentially
be applied to any parallel manipulator.
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Fig. 5. Torque variations in actuator at b1 for the designs given in Ta-
ble IV. Each plot shows the torques for five different paths
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