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Analytical Determination of the
Proximity of Two Right-Circular
Cylinders in Space
This paper presents a novel analytical formulation for identifying the closest pair of
points lying on two arbitrary cylinders in space, and subsequently the distance between
them. Each cylinder is decomposed into four geometric primitives. It is shown that the
original problem reduces to the computation of the shortest distance between five distinct
combinations of these primitives. Four of these subproblems are solved in closed form,
while the remaining one requires the solution of an eight-degree polynomial equation.
The analytical nature of the formulation and solution allows the identification of all the
special cases, e.g., positive-dimensional solutions, and the curve of intersection when the
cylinders interfere. The symbolic precomputation of the results leads to a fast numerical
implementation, capable of solving the problem in about 50 ls (averaged over 1� 106

random instances of the most general case) on a standard PC. The numerical results are
verified by repeating all the calculations in a general-purpose commercial CAD software.
The algorithm has significant potential for applications in the various aspects of robotics
and mechanisms, as their links can be modeled easily and compactly as cylinders. This
makes tasks such as path planning, determination of the collision-free workspace, etc.,
computationally easier. [DOI: 10.1115/1.4032211]

1 Introduction

The cylindrical shape has a significant importance in multiple
fields of engineering and technology, such as robotics, mecha-
nisms, computer-aided design and manufacturing, and computer
graphics. Approximately cylindrical shape is prevalent among the
common geometries of the links of robots, e.g., the serial robots
KUKA KR5-2 arc HW3 used for welding, FANUC M-900iA3

used for assembly in the industries, or parallel robots, e.g.,
FANUC M-1iA3, FANUC 200iB4. The same is true in the case of
mechanisms as well, as shown in Ref. [1]. The cylindrical shape is
important in other fields of engineering as well, e.g., in designing
a pipeline layout [2], in determining tool collisions during a
machining operation [3], or in the design of temperature control
systems for molds [4].

In early attempts to find the shortest distance between a pair of
approximately cylindrical links of a robot, the links were
abstracted as line segments, and the distances between these seg-
ments were computed [5,6]. This is equivalent of shrinking the
cylindrical-shaped link radially till it coincides with the line seg-
ment forming the axis of the cylinder. The geometric model is
closer to the reality in Ref. [7], in which the cylinder retains its
original dimensions, but the end caps are no longer disks—they
are replaced by hemispheres. This modification is significant from
a computational perspective. A cylinder can be thought of as hav-
ing an infinite extent in the axial dimension, limited only by two
disk-shaped “end caps.” However, the disks themselves are parts
of two planes, and as such, they would have infinite extents too,
except for the bounding circles, at which they intersect the curved
surface of the cylinder (see Fig. 1(a)). The hemisphere, on the
other hand, is a subset of a closed and finite surface, and is there-
fore easier to handle mathematically. However, the “critical dis-
tance” computed on the basis of this idealization of a cylinder

does not necessarily coincide with the shortest distance between
the actual cylinders.

More recent works retain the actual geometry of the cylinders.
Consequently, they have to deal with all the relevant scenarios
that can occur. This invariably leads to algorithmic complexity, as
well as demanding computations. For instance, in Ref. [4], each
cylinder is decomposed into four simple geometric primitives,
viz., a line segment representing the axis, the cylindrical surface,
and a pair of disk and circle, forming each of the end caps. The
computation of proximity of (i.e., the least distance between) a
pair of cylinders is broken down to the computation of the prox-
imity of various pairs: once between two cylindrical surfaces,
eight times between circles and disks, four times between circles
and line segments, and four times between pairs of circles. These
computations are logically redundant, and hence, the efficiency of
the algorithm is compromised.

A different approach, based on the line geometry and dual num-
ber algebra, is adapted in Ref. [1]. In this work, the actual geome-
try of the cylinders is considered and the final result is obtained by
an algorithm covering seven possible scenarios in a hierarchical
manner. A more recent work based on a similar approach is
reported in Ref. [8].

The study of the existing works reveals several avenues for
improvement over the current state-of-the-art. First, the computa-
tions should ideally be analytical in nature, to the extent possible,
not only to avoid potentially erroneous results stemming out of
numerical inaccuracies/approximations but also to harvest the
benefit of symbolic precomputations to speed up the subsequent
numerical implementations. Next, all the reports cited above focus
on resolving the binary issue, i.e., whether two cylinders are in
interference or not, and except for Ref. [4], none of them compute
the proximity of the cylinders when they are not in interference.
Finally, none of the above compute the pair of proximal points
(i.e., the pair of points delimiting the shortest distance). In a real-
life scenario, e.g., in the case of the offline validation of a path in
a robot simulation software, it is of immense value to the user to
know which part(s) of the robot come(s) closest to the other
part(s) of the robot, or objects in its environment. This knowledge,
coupled with the direction in which the distance between the two
objects is the closest (given by the proximal points), helps the user
to decide about the required modifications in the path to steer clear
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of impending collisions downstream in a path, or to simply
increase the safety margin otherwise. In a different scenario, such
information can be used in an offline/real-time manner to achieve
algorithmic path planning for a robot, with obstacle avoidance.

This paper attempts to address the above-mentioned issues. It
presents an analytical formulation to solve the problem of finding
the proximity of two arbitrary cylinders in space in a complete
manner. Not only it finds the proximity and the pair of proximal
points, which define this distance, but it also reports interference
as and when it occurs. In addition, it addresses all the special
cases, such as computing the two lines defining the set of proximal
points when the axes of the cylinders are parallel; two patches on
the disks at the ends when they directly face each other or coin-
cide, in the case of two cylinders placed end-to-end, and so on.
This is achieved by a decomposition of each cylinder into four
geometric primitives, and then finding the shortest distance
between a few pairs among them in the symbolic form. As shown
by the authors in Ref. [9], distance queries between only five dis-
tinct pairs of primitives, when arranged in a logical sequence, suf-
fice to solve the original problem in its completeness. To compute
the distance between each of the pairs of primitives, the primitives
are represented parametrically, and the proximal points are found
in the parameter space by solving nonlinear equations arising out

of the minimization of the distance function with respect to the
said parameters. The orientation of one cylinder relative to the
other is represented in terms of rotation matrices, which in turn
are parametrized in terms of unit quaternions. This allows natural
inclusion of all the special cases in the formulation, such as the
case of two parallel cylinders. To the best of the authors’ knowl-
edge, this approach is completely novel in regard to the problem.
Owing to the symbolic nature of the formulation, the solutions are
obtained in closed form in all the cases, except in the case of a
pair of circles, in which case the problem reduces to the solution
of a polynomial equation of degree eight, as reported earlier in
Ref. [10]. Nevertheless, the coefficients of the said polynomial are
obtained in closed form, which allows for fast numerical computa-
tion of its roots.

Utilizing the analytical results precomputed in the commer-
cially available computer algebra system, MATHEMATICA,5 the
numerical implementation in Cþþ computes the proximity
and the proximal points for about 20,000 random pairs of cyl-
inders every CPU-second, making it ideal for inclusion in a
real-time6 application. It can also be used to scan the design
space or configuration space of robots for self-collisions,
which is an essential step in the computation of the safe work-
ing zone (as defined in Ref. [11]) of a robotic manipulator, or
in planning the paths of hyper-redundant robots, such as the
“snake robots” [12,13].

The rest of the paper is organized as follows: The formulation
for computing the proximity and identifying the proximal points
is explained in detail in Sec. 2. The details of the decomposition
of the cylinder into four primitives and the corresponding decom-
position of the original problem into different proximity queries
among these primitives are presented in Sec. 3. The formulation
of the proximity query for each of the above-mentioned pairs, and
their solutions, including the special cases is documented. Section 4
presents the numerical examples. In particular, an example of the
computationally worst-case scenario is described in detail. The vali-
dation of the final results produced by the algorithm and an analysis
of the same are presented in Sec. 5. Finally, the paper is concluded
in Sec. 6.

2 Formulation of the Overall Problem

In this section, the algorithm for finding the proximity and the
proximal points is discussed. Branching of the overall problem
into subcases is presented via algorithmic flowcharts and illus-
trated via figures depicting the geometric scenario in each sub-
case. The first step in the formulation is to describe a solid
cylinder in terms of four distinct types of geometric primitives,
namely, line segment, circle, disk, and cylindrical surface. For the
ith cylinder, these are shown in Fig. 1(a). The curved surface, Si,
has zi as its axis and is extended to infinity along this direction.
This surface is clipped by two planes perpendicular to zi, generat-
ing a finite cylinder Ei of length li between them. The line segment
forming the axis of the finite cylinder is denoted by Li. At the top
end, the clipping plane intersects Si to form a circle Ct

i of radius ri,
which bounds the disk-shaped end cap Dt

i. Similarly, at the bottom
end, Db

i is bound by Cb
i . A local frame of reference is attached to

the center of Db
i (or Cb

i ).
The proximity of a pair of these primitives, say, A and B, is

defined by

PðA;BÞ ¼ minðdðA;BÞÞ (1)

Fig. 1 (a) The cylinder Ei and its constituent geometric
primitives—the cylindrical surface Si; bottom end cap Db

i , top
end cap Dt

i , and their bounding circles, Cb
i ;C

t
i , respectively; the

axis, Li. (b) The relative position and orientation of the two cyl-
inders. The local coordinate system of the first cylinder serves
as the global frame of reference.

5Wolfram Mathematica, version 10.2: http://www.wolfram.com/mathematica/
6The authors are aware of numerical libraries/tools dedicated to the computation

of the distances between two surfaces/solids, e.g., Bullet Physics Library (http://
bulletphysics.org/), Proximity Query Package (http://gamma.cs.unc.edu/SSV/), and
they have verified, e.g., that Bullet (version 3.0) routines can be significantly faster
than the proposed algorithm. However, they wish to point out that the main
contribution of the present work lies in its analytical nature, and while the proposed
algorithm is not the fastest available, it is nevertheless suitable in a demanding real-
time scenario.
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where

dðA;BÞ ¼ kp1 � p2k; p1 2 A; p2 2 B (2)

Designating the pair of proximal points as p�1 2 A and p�2 2 B, one
can write

PðA;BÞ ¼ kp�1 � p�2k (3)

The above equations hold good, irrespective of whether the two
cylinders are external to each other or one appears inside the
other, e.g., as shown in Fig. 2. Therefore, to complete the physical
interpretation of the final solution, one has to check for the inclu-
sion of one cylinder into the other. This can be done easily by ver-
ifying if p�1 lies inside E2 or p�2 inside E1. However, for the rest of
the paper, it is assumed that the cylinders are external to each
other.

The shortest distance and the proximal points can be obtained
with the help of five independent distance queries (detailed in
Sec. 3), namely, the shortest distance between two cylindrical
surfaces designated by—P(Si, Sj), a disk and a line—P(Di, Lj), a
circle and a line—P(Ci, Lj), a disk and a circle—P(Di, Cj), and
two circles—P(Ci, Cj). The flowchart in Fig. 3 portrays the
branching of original problem into three different subproblems,
based on the proximal points obtained from P(S1, S2), which form
the overall hierarchy of the entire algorithm. The algorithm for
finding P(Di, Sj) is depicted in the form of a flowchart in Fig. 4.
Similarly, the flowchart depicting the algorithm for computation
of P(Di, Dj) is presented in Fig. 5. The algorithm has a possibility
of termination at every decision level. Therefore, it is

computationally efficient, since not all cases need to flow down to
the last level (see Sec. 3 for more details on this). The flowcharts
show that the algorithm posses only three different levels of
checks in the worst-case scenario. It is evident that the hierarchy
is compact, and consequently, the algorithm is simpler to imple-
ment than those reported in Refs. [1,7]. The following are the
steps to obtain P(E1, E2) in terms of the geometric primitives:

— As shown in Fig. 3, the algorithm starts with finding P(S1, S2)

PðE1;E2Þ ¼ PðS1; S2Þ (4)

The formulation to compute the same is described in Sec. 3.

Fig. 3 Flowchart of the algorithm at the first level depicting the
branching of the original problem into three subproblems. The
final results are obtained via the equations given in each termi-
nal block.

Fig. 4 Flowchart of the algorithm for finding proximity of a
disk and a cylindrical surface. The final results are given by the
equations mentioned in each terminal block.

Fig. 5 Flowchart of the algorithm for finding proximity of two
disks

Fig. 2 One cylinder inside the other cylinder
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— Since S1, S2 are theoretically infinite, the proximal points,
p�1 2 S1; p�2 2 S2, could fall beyond the actual extent of the
cylinders, i.e., it may so happen that p�i 2 Si, but p�i 62 Ei,
for one or both of the cylinders. This observation gives rise
to three possible cases:

� Case 1: If both p�1; p
�
2 are on the cylinders, i.e., p�1 2 E1

and p�2 2 E2, then the situation is designated as Case 1.
No further queries are required and the algorithm termi-
nates successfully. Such a scenario is shown in Fig. 6.

� Case 2: If one of p�1;p
�
2 is beyond the corresponding cyl-

inder while the other point is on it, i.e., either p�1 62 E1 or
p�2 62 E2, then it is designated as Case 2. Further distance
queries are made as per the algorithm, and the proximal
points, p�1;p

�
2, are updated accordingly. Three different

configurations belonging to this case are shown in Fig. 7.
It should be noted that the proximal points marked in the
figure correspond to the final distance query and not the
initial ones given by P(S1, S2).

� Case 3: If both the points p�1; p
�
2 are beyond the corre-

sponding cylinders, i.e., p�1 62 E1 and p�2 62 E2, then such
a scenario falls under Case 3. The proximal points are
updated again following the algorithm (see Figs. 3–5).
Figure 8 shows one such configuration.

— Case 2: One of the points among p�1; p
�
2, say p�2, lies beyond

the corresponding cylinder, E2, and therefore, the final
proximal point would not lie on the cylindrical surface of
E2, but on the end disk or end circle closest to p�2, say Db

2,
as shown in Fig. 7(a). Therefore, the distance is given by

PðE1;E2Þ ¼ PðDb
2; S1Þ (5)

However, the perpendicular dropped from Db
2 to S1 is orthogonal

to the z1 axis (carrying the line segment L1), as shown in
Fig. 7(a), PðDb

2; S1Þ ¼ PðDb
2; z1Þ � r1.Thus, PðDb

2; z1Þ is computed
instead of PðDb

2; S1Þ, as the former is computationally less
demanding. Upon computation, if p�1 2 L1, then it corresponds to
Case 2.1; else to Case 2.2.

— Case 2.1: The solution point, p�1, corresponding to
PðDb

2; z1Þ, lies on the line segment, L1, i.e., p�1 2 L1, as
shown in Fig. 7(a). The shortest distance is

PðE1;E2Þ ¼ PðDb
2; z1Þ � r1 (6)

It is to be noted that in this case, the cylinders interfere if
PðDb

2; z1Þ < r1. If p�2 62 E2, i.e., the proximal point lies outside the
boundary of the disk, Db

2, then the shortest distance is given by

PðE1;E2Þ ¼ PðCb
2; z1Þ � r1 (7)

The point p�1 is updated to lie on the cylindrical surface using vec-
tor proportions.

— Case 2.2: The proximal point, p�1, corresponding to
PðDb

2; z1Þ, lies beyond L1, as shown in Fig. 7(b). In such a
situation, while the proximal point on E2 lies on Db

2, the
proximal point on E1 would not be on S1, but on the disk
closest to p�1, say Dt

1. Following that

PðE1;E2Þ ¼ PðDt
1;D

b
2Þ (8)

It is to be noted that the shortest distance between two disks
always involves a point on the bounding circle of at least one of
the disks. Thus, computationally less expensive P(D, C) is used
instead of P(D, D) to obtain

PðDt
1;D

b
2Þ ¼ minðPðDt

1;C
b
2Þ;PðDb

2;C
t
1ÞÞ (9)

For PðDt
1;C

b
2Þ, if p�1 62 E1, then the proximal point p�1 lies on the

boundary of the disk Dt
1, i.e., the circle Ct

1. Hence, PðCt
1;C

b
2Þ is

computed to get the proximal points. Similarly, PðDb
2;C

t
1Þ is eval-

uated. However, it may also lead to PðCt
1;C

b
2Þ.

Fig. 6 Case 1.1: proximal distance and points are given by
P(S, S)

Fig. 7 Configurations illustrating Case 2. The translucent part
is the theoretical extension of the actual (i.e., finite) cylinders.
The initial proximal point obtained from P(S1, S2) does not lie
on the first cylinder, E1 and thus, the scenario falls under Case 2.
(a) Case 2.1: proximity and proximal points are given by P(C, L).
As the foot of the perpendicular drawn from Cb

2 lies on L1, it
belongs to Case 2.1. (b) Case 2.2: proximity and proximal points
are given by P(C, C). As the foot of the perpendicular drawn from
Cb

2 does not lie on L1, it belongs to Case 2.2. (c) Case 2.2: prox-
imity and proximal points are given by P(D, C). The foot of the
perpendicular from Cb

2 does not lie on L1 and hence, it belongs
to Case 2.2.
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— Case 3: Both p�1 and p�2 corresponding to P(S1, S2) lie
beyond the actual cylinders. Say, Db

1 and Db
2 are the disks

closest to the proximal points p�1 and p�2, respectively. In
such a situation, PðDb

1; S2Þ and PðDb
2; S1Þ are computed and

the proximity is given by

PðE1;E2Þ ¼ minðPðDb
1; S2Þ;PðDb

2; S1ÞÞ (10)

where PðDb
1; S2Þ and PðDb

2; S1Þ are computed following the logic
used in Case 2. A configuration illustrating Case 3 is given Fig. 8,
where the final proximal points are given by PðCb

1;C
t
2Þ (details are

given in Sec. 4).

3 Formulation of the Proximity Functions for Distinct

Pairs of Primitives

As described in Sec. 2, the original problem can be reduced to
the computation of proximity of five combinations of the primi-
tives. The approach followed to find P(A, B), where A and B are
any of the five primitives, in each of the cases has the following in
common:

(1) A pair of generic points, p1 � A and p2 � B, are described
in terms of n independent geometric parameters, x¼ [x1,…,
xn]>. The set of parameters and their number may vary
from one entity to the other.

(2) The square of the distance between the two points is then
obtained as function of the parameters

hðxÞ ¼ d2ðp1; p2Þ ¼ ðp1 � p2Þ � ðp1 � p2Þ (11)

(3) The function h(x) is then analyzed for its extreme values,
over the set of valid values of x.

(4) Upon finding the partial derivatives and setting them to
zero, one obtains the following set of equations:

fi ¼ 0; where fi ¼
@h

@xi
; i ¼ 1;…; n (12)

(5) Equation (12) is typically nonlinear in xi. The unknown var-
iables xi are eliminated sequentially to finally obtain a uni-
variate polynomial.

(6) The roots of the univariate polynomial are then computed.
The real-valued solutions are retained and substituted back
into the original/intermediate equations to complete the sol-
ution(s) to Eq. (12).

(7) The value of d(A, B) is computed for all real solutions of
Eq. (12). The pair of points p�1;p

�
2 corresponding to

min(d(A, B)) are the closest points for the set of primitives,

and following Eq. (1), the proximity is computed as
PðA;BÞ ¼ jjðp�1 � p�2Þjj.

The rest of this section deals with the specific details of the
pairwise proximity functions for the relevant pairs.7

3.1 Proximity of Two Cylindrical Surfaces, P(S, S). The
following are the steps to be followed to find the shortest distance
between two cylindrical surfaces:

� Without any loss of generality, the cylinder E1 is considered
to be along the z1 axis as shown in Fig. 6. Any point on the
cylindrical surface S1 can be represented as

p1 ¼ ½r1 cos h1; r1 sin h1; l1t1�>

where t1 2 ½0; 1�; h1 2 ½0; 2p�

� The cylinder E2 is considered at a generic configuration
given by the position of its origin, as o¼ [ox, oy, oz]

>, and
orientation, given in terms of the unit quaternion (see, e.g.,
Ref. [14]) q¼ [q0, q1, q2, q3]>, with q0 being the scalar part
of the quaternion. Any point on S2, with respect to the global
frame of reference, is given by

p2 ¼ oþ R½r2 cos h2; r2 sin h2; l2t2�>

where t2 2 ½0; 1�; h2 2 ½0; 2p�

The rotation matrix R 2 SOð3Þ is obtained in terms of the unit
quaternion components (see, e.g., Ref. [14], p. 16). The parame-
ters x¼ [h1, h2, t1, t2]> in this case.

� The distance function is obtained as shown in Eq. (11).
� Subsequently, the equations fi¼ 0, i¼ 1,…, 4, are obtained.
� The equations f3¼ 0 and f4¼ 0 turn out to be linear in t1, t2.

Therefore, these yield unique solutions for t1 and t2 in the
closed form, in terms of h1 and h2.

� These solutions are substituted into f1¼ 0 and f2¼ 0 to obtain
two new equations, g1(h1, h2)¼ 0 and g2(h1, h2)¼ 0, respec-
tively. Upon further study, it is found that g1 and g2 can be
factorized, and they share a common factor k(h1, h2)

g1 ¼ mðh1Þkðh1; h2Þ
g2 ¼ jðh2Þkðh1; h2Þ; where

mðh1Þ ¼ ðq0q2 þ q1q3Þcos h1 � ðq0q1 � q2q3Þsin h1

jðh2Þ ¼ ðq0q2 � q1q3Þcos h2 � ðq0q1 þ q2q3Þsin h2; and

kðh1; h2Þ ¼ ðq0q1 � q2q3Þox þ ðq0q2 þ q1q3Þoy

þðð�q0q1 þ q2q3Þcos h1 � ðq0q2 þ q1q3Þsin h1Þr1

þððq0q1 þ q2q3Þcos h2 þ ðq0q2 � q1q3Þsin h2Þr2

(13)

The equations g1¼ 0 and g2¼ 0 can be satisfied simultane-
ously in any one of the following five cases:

(a) k 6¼ 0, m¼ 0, j¼ 0

(b) k¼ 0, m 6¼ 0, j 6¼ 0

(c) k¼ 0, m 6¼ 0, j¼ 0

(d) k¼ 0, m¼ 0, j 6¼ 0

(e) k¼ 0, m¼ 0, j¼ 0

The general scenario is given by case (a)—the solution con-
sists of only isolated points in the h1–h2 space, which are
obtained in closed form. Case (b) admits only a one-
dimensional solution, namely, a curve in the h1–h2 space that
satisfies the equation k¼ 0. This curve corresponds to the

Fig. 8 Configuration corresponding to Case 3. Proximity and
proximal points are given by PðCb

1 ;C
t
2Þ. The translucent parts

are the theoretical extensions of the actual cylinders, E1 and E2.
The initial proximal points obtained from P(S1, S2) lie outside
their respective cylinders, resulting in the classification Case 3.

7For the relevant pairs discussed below, the first geometric entity belongs to the
cylinder E1, and the second to E2. However, the mathematical formulation is generic
and exhaustive, so all the possible cases are covered.
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curve of intersection, when the cylinders interfere. The
cases (c) and (d) admit isolated solutions, which lie on the
curve k¼ 0. Case (e) includes the interesting scenario
where the curve of intersection shrinks to a point, and the
isolated solutions obtained from m¼ j¼ 0 coincide with
this point. Thus, this case captures the special case of a sin-
gle point interference between the two cylinders, as shown
in Fig. 9(a).

In each case, the real solutions are retained and substituted

back to obtain t1 and t2—thus completing the computation

of all the unknowns.
� Among the real solutions of x, the one corresponding to

min(d(S1, S2)) is then found out. If this solution is such that
t1, t2 � [0, 1], then the scenario falls under case 1. If either
t1 62 ½0; 1� or t2 62 ½0; 1�, then the situation represents Case 2,
and if both t1; t2 62 ½0; 1�, then Case 3.

The formulation captures the special cases as well, where the solu-
tions may be of dimension(s) one or two, or involve interference
of cylinders. These are described below.

� If L1 and L2 are parallel, then z1 � z2 ¼ 1. Since z2¼Rz1

(see Fig. 9(d)), this means z>1 Rz1 ¼ 1 ¼ 1� 2q2
1 � 2q2

2. Hence,

q1¼ q2¼ 0, and since q is a unit quaternion, q2
0 þ q2

3 ¼ 1. In
this case, f1 and f2 simplify to become functions of h1 and h2

only, and are free of t1 and t2. Further, f3¼�f4¼ l1t1� l2t2� oz.
This implies that if oz � [� l2, l1], then f3 (or f4) can vanish for
some combination of t1, t2, and this situation would fall under
Case 1. Else, it would be considered under Case 3.

� In the antiparallel case, z1 � z2 ¼ z>1 Rz1 ¼ �1, and hence
q2

1 þ q2
2 ¼ 1. Consequently, q0¼ q3¼ 0. If oz � [0, l1þ l2],

then this scenario falls under Case 1, else Case 3.
� If the cylinders interfere, i.e., the distance obtained is zero

and both t1, t2 � [0, 1], then the simultaneous vanishing of

Fig. 9 Examples of special cases. These include the cases when there is interference and the
solution of proximal points being one-/two-dimensional. (a) One point interference: the solu-
tion is given by P(S, S). (b) One common face: the two cylinders are parallel to each other and
the faces overlap when seen along the axes. It has a two-dimensional solution. (c) Interfering
cylinders: the curve of intersection is given by the formulation for finding P(S, S) described in
Sec. 3.1. (d) Solution given by P(S, S). The axes of the cylinders are parallel to each other and
the proximal points form line segments Ls1 on the cylinder E1 and Ls2 on the cylinder E2. (e)
Solution given by P(D, L). The axes of the cylinders are orthogonal to each other and the proxi-
mal points form line segments LD on the disk and LS on cylindrical surface.

041010-6 / Vol. 8, AUGUST 2016 Transactions of the ASME

Downloaded From: http://mechanismsrobotics.asmedigitalcollection.asme.org on 10/29/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



g1, g2 implies k¼ 0. As mentioned above, the proximal
points lie on the curve of intersection of the two cylinders in
this case.8

3.2 Proximity of a Disk and a Line Segment, P(D, L). As
explained in Sec. 1, the disks forming the end caps of the cylinder
are parts of infinite planes. However, the part of these planes cut
off by the cylinder is of interest in the following. Any point on the
disk of radius r1 may be represented as

p1 ¼ ½r1s1 cos h1; r1s1 sin h1; 0�>; where

s1 2 ½0; 1Þ; h1 2 ½0; 2p� (14)

The disk is bounded by the circle corresponding to s1¼ 1. The
shortest distance between a disk and a line segment can be
obtained in the following manner:

� The line segment is considered at a generic configuration
given by o and R, such that any point on it is given by
p2¼ oþR[0, 0, l2t2]>, where t2 � [0, 1] and l2 is the length
of the line segment under consideration.

� Similar to the case of P(S, S), a distance function h(x) is for-
mulated and its partial derivatives with respect to x¼ [s1, h1,
t2]> are set to zero to obtain the equations fi¼ 0, i¼ 1, 2, 3.

� The equation f3¼ 0 turns out to be linear in t2, and therefore,
yields a solution for t2 readily as a function of h1 and s1.

� Upon substituting the expression of t2 in f1¼ 0 and f2¼ 0,
new equations g1¼ 0 and g2¼ 0 are obtained, both of which
are linear in s1.

� The expression for s1 in terms of h1 is obtained from g1¼ 0.
Upon substituting this expression in g2¼ 0 and simplifying,
one obtains g3¼ 0, which is linear in cos h1 and sin h1.

� The two solutions of h1 can be obtained analytically by solv-
ing g3¼ 0. Upon back substitution, s1 and t2 are obtained.

� If s1 62 ½0; 1Þ, then the proximal point p�1 falls beyond the fi-
nite disk under consideration. This implies p�1 would finally
lie on the boundary circle of the disk, and the shortest dis-
tance between the bounding circle C1 and the line z2 is com-
puted by P(C, L) function. The scenario is depicted in
Fig. 7(a).

The formulation captures the special case where the normal to
the disk, i.e., z1, is perpendicular to the line segment L2

(see Fig. 9(e)). This implies that z1� z2¼ 0. Consequently,
z>1 Rz1 ¼ 0 ¼ 1� 2q2

1 � 2q2
2, and hence, q2

1 þ q2
2 ¼ q2

0 þ q2
3

¼ 1=2. Equivalently, q0 ¼ a cos /1; q3 ¼ a sin /1; q1 ¼ a cos /2,
and q2 ¼ a sin /2, where a ¼ 1=

ffiffiffi
2
p

and /1;/2 are constants. In
this case, g1 and g2 factorize as

g1ðh1; s1Þ ¼ g4ðh1Þcosðh1 � /Þ
g2ðh1; s1Þ ¼ g4ðh1Þsinðh1 � /Þ; where / ¼ /1 þ /2

g4ðh1; s1Þ ¼ �ox cos /� oy sin /þ r1s1 cosðh1 � /Þ (15)

The general solution is obtained when g2
1 þ g2

2 ¼ g2
4 ¼ 0. Thus,

the solution lies on a curve in the space h1–s1, satisfying g4(h1,
s1)¼ 0. It represents a line (see Fig. 9(e)). A special solution
emerges when cosðh1 � /Þ ¼ 0, provided ox=oy ¼ �tan /
¼ ½ðq3q1Þ þ ðq0q2Þ�=½ðq3q2Þ � ðq0q1Þ�. The solution set is given
by the two values of h1 satisfying cosðh1 � /Þ ¼ 0 and all s1 �
[0, 1). Similarly, solutions in the form of isolated points are
obtained when sinðh1 � /Þ vanishes.

3.3 Proximity of a Circle and a Line Segment, P(C, L). The
following steps are followed to find the shortest distance between
a circle and a line segment:

� As the circle under consideration forms the boundary of the
disk, the distance function is the same as in P(D, L), except
that in this case, s1¼ 1. The proximity conditions, fi¼ 0,
i¼ 1, 2, are obtained in terms of x¼ [h1, t2]>.

� Upon solving linearly for t2 from f2¼ 0, one obtains

t2 ¼� ðozðq2
0 � q2

1 � q2
2 þ q2

3Þ þ 2r1 sin h1ðq0q1 � q2q3Þ
�2r1 cos h1ðq0q2 þ q1q3Þ þ ð2q0q2 þ 2q1q3Þox

þð2q2q3 � 2q0q1ÞoyÞ=l2 (16)

Substituting the value of t2 into f1¼ 0 leads to g1¼ 0. Since g1 is
nonlinear in the sine and cosine of h2 in this case, the trigonomet-
ric entities in g1 are converted to algebraic entities using the stand-
ard half-tangent substitution (see, e.g., Ref. [15]), to obtain a
quartic polynomial, g2, in v, where v ¼ tanðh2=2Þ.
� The equation g2¼ 0 can be solved analytically to obtain v

and h2 therefrom. Upon substituting back into Eq. (16), t2 is
obtained.

3.4 Proximity of a Disk and a Circle, P(D, C). The steps
followed to find the shortest distance between a disk and a circle
are given below:

� A point p1 on the disk is represented as in Eq. (14). The
circle of radius r2 is considered in a generic configuration
given by o and R, such that any point on it is
p2 ¼ oþ R½r2 cos h2; r2 sin h2; 0�>, where h2 � [0, 2p].

� The geometric variables in this case are x¼ [h1, h2, s1]>. Set-
ting the partial derivatives, @h=@xi, to zero, the equations
fi¼ 0, i¼ 1, 2, 3, are obtained.

� The equation f3¼ 0 is linear in s1 and is solved for the same
to obtain

s1 ¼ ðr2ðq2
0 � q2

3Þcosðh1 � h2Þ þ 2q0q3r2 sinðh1 � h2Þ
þ q2

1r2 cosðh1 þ h2Þ þ 2q1q2r2 sinðh1 þ h2Þ
� q2

2r2 cosðh1 þ h2Þ þ ox cos h1 þ oy sin h1Þ=r1 (17)

The expression for s1 is then substituted into f1¼ 0 and f2¼ 0 to
obtain g1¼ 0 and g2¼ 0, respectively.
� The trigonometric entities in g1 and g2 are converted to alge-

braic entities with the help of half-tangent substitutions to
obtain g3¼ 0 and g4¼ 0 in terms of v1, v2, where v1¼ tan(h1/
2) and v2¼ tan(h2/2).

� The resultant (see, e.g., Ref. [16], pp. 77–94) of the equa-
tions g3(v1, v2)¼ 0 and g4(v1, v2)¼ 0 with respect to v2 is
computed, to obtain g5(v1)¼ 0, an eight-degree polynomial
equation in v1. The polynomial g5 factorizes into two
quartics: g6(v1)¼ 0 and g7(v1)¼ 0. These quartics can be
solved analytically to obtain their roots.

� The real solutions to g5¼ 0 are retained, and upon back substi-
tution into g3¼ 0 and g4¼ 0, solutions to v2 are obtained. The
angles h1 and h2 are obtained from the real values of v1 and v2,
respectively, by using tangent half-angle relationship, which
upon substituting in Eq. (17) gives s1. If s1 62 ½0; 1Þ, then the
boundary circle of the disk is considered and the shortest dis-
tance between the two circles is computed using P(C, C).

The formulation also brings out the special case when the plane
of the circle is parallel to the plane of the disk, i.e., z1� z2¼61.
As explained in Sec. 3.1, when z1 � z2¼ 1, q1¼ q2¼ 0, and conse-
quently, q2

0 þ q2
3 ¼ 1. The condition q2

0 þ q2
3 ¼ 1 can be restated

as q0 ¼ cos / and q3 ¼ sin /, where / is a constant. Under this
condition, g4 factorizes as

g4 ¼ 2g3ðv1; v2Þðð1þ v1 þ ðv1 � 1Þv2Þcos /

�ð1� v1 þ ðv1 þ 1Þv2Þsin /Þ
ðð1� v1 þ ðv1 þ 1Þv2Þcos /

þð1þ v1 þ ðv1 � 1Þv2Þsin /Þ (18)
8It may be noted that the analytical description of the curve can be used for the

development of the surfaces of the intersecting cylinders.
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The factor g3(v1, v2) is linear in v1, v2. All the real pairs of v1, v2

satisfying g3¼ 0 and the corresponding h1 and h2 define a one-
dimensional solution, signifying the projection of the circle onto
the disk. The other factors of g4 lead to isolated points, which may
or may not fall on the one-dimensional solution mentioned above.
The conditions for the case z1 � z2¼�1 can be derived similarly.

3.5 Proximity of Two Circles, P(C, C). The steps to be fol-
lowed to find the shortest distance between two circles are
delineated below:

� The distance function in this case is the same as that of P(D, C),
as discussed in Sec. 3.4, with s1¼ 1.

� Equations f1¼ 0 and f2¼ 0 are obtained next.
� The equations f1¼ 0 and f2¼ 0 are treated similar to g1¼ 0

and g2¼ 0 as in the case of P(D, C) (Sec. 3.4), to obtain a
univariate polynomial, g3, of degree eight in terms of v1,
where v1¼ tan(h1/2). In this case, however, the polynomial
does not factorize into lower degree polynomials, and hence
needs to be solved numerically.

All the coefficients of the polynomial g3 have been obtained
in closed form, using symbolic computations in the CAS

MATHEMATICA. The size of the polynomial9 g3 is about 700 kB in
MATHEMATICA. In Sec. 4, the coefficients of the polynomial are
given for a numerical example.

4 Numerical Studies

In this section, the algorithm developed in Secs. 2 and 3 is
applied to various configurations of a pair of cylinders to illustrate
the different cases and the corresponding distance queries. The
numerical parameters used are: r1¼ 2, r2¼ 5/2, l1¼ 12, and
l2¼ 18. As the numerical values chosen are solely for the purpose
of illustration, they are considered to be free of any units in this
paper. Figures 6–8 show five different configurations of the pair
of cylinders and the corresponding proximal points. Table 1 lists
the relative position o and orientation q, and the corresponding
proximity of the cylinders, for each of the cases.

The scenario depicted in Fig. 8 represents the worst case from a
computational perspective, as it involves the longest sequence of

steps before ending up at the proximity result. For the sake of
clarity, this example is explained in detail in the following. The
analytical form of the expressions is not included hereafter for the
sake of brevity.

(1) First, treating the problem as in case 1, using P(S1, S2), the
corresponding values of h1, h2, t1, and t2 are computed. The
value of d(S1, S2) is minimum for [h1, h2, t1, t2]¼ [�2.568,
�0.968, �0.514, 1.127]. As t1; t2 62 ½0; 1�, this results in the
classification Case 3 (see Sec. 2).

(2) The disks to be considered in this example would corre-
spond to t1¼ 0 and t2¼ 1, i.e., Db

1 and Dt
2, as they are closest

to the proximal points, p�1 and p�2, obtained from P(S1, S2).
(3) The problem is now equivalent to first finding PðDb

1; S2Þ
and then PðDt

2; S1Þ, as if solving for two problems of the
type Case 2.

(4) Following the algorithm given in Fig. 5, PðDb
1; z2Þ is com-

puted to obtain [h1, s1, t2]¼ [�1.237, 7.508, 2.000]. As
s1> 1, the proximity is queried between Cb

1 and z2 using
PðCb

1; z2Þ. The quartic equation g2¼ 0 is obtained next:
g2 ¼ 4:315v4

1 þ 0:804v3
1 þ 4:102v2

1 þ 3:271v1 � 5:683. The
real roots obtained are [h1, t2]¼ [�1.631, 1.376] or [1.227,
1.240].The solution corresponding to minðdðCb

1; z2ÞÞ is
h1¼�1.631, t2¼ 1.376. Since t2> 1, this scenario belongs
to Case 2.2.

(5) Under Case 2.2, the shortest distance between Dt
2 (since

t2> 1) and Db
1 is found. To do this, first PðCb

1;D
t
2Þ is com-

puted, following the algorithm depicted in Fig. 5. The poly-
nomials g6 and g7 are obtained as

g6 ¼� 5:663v4
1 þ 24:432v3

1 � 14:709v2
1

�24:432v1 � 5:663

g7 ¼� 54:324v4
1 þ 143:061v3

1 � 139:528v2
1

�143:061v1 � 54:324

The real solutions obtained are [s1, h1, h2]¼ [3.611, �0.696,
2.144] or [2.894, �0.806, �0.997]. As s1 62 ½0; 1Þ in any of
the solutions, the shortest distance between Cb

1 and Ct
2 is

found following the logical sequence delineated in Sec. 3.5.
The polynomial g3 is given by g3 ¼ �38:654v8

1 þ 1004:620v7
1

þ 3572:320v6
1 þ 2542:520v5

1 þ 6863:510v4
1 þ 1172:350v3

1 þ

Table 1 Configuration of the cylinders and the corresponding pairs of points having the least distance between them (Figs. 6–8)

Figure q o p�1; p
�
2

6

� 1

5
;

3

10
;

1ffiffiffi
2
p ;

ffiffiffiffiffi
37
p

10

" #> [8, �8, 8]> [1.99, �0.17, 6.66]>, [6.12, �0.51, 6.66]>

7(a)
0;

2

5
;� 3

10
;

ffiffiffi
3
p

2

� �> [6, �6, 8]> [5.31, �4.87, 10.12]>, [1.47, �1.35, 10.12]>

7(b)
0;

2

5
;� 3

10
;

ffiffiffi
3
p

2

� �> [6, �6,12]> [1.53, �1.29, 12.00]>, [5.53, �4.64, 14.05]>

7(c) 3

10
;
2

5
;

ffiffiffi
3
p

2
; 0

� �> �7

10
; 1;�7

� �> [1.16, 0.14, 0]>, [1.06, 0.14, �5.57]>

8
3

10
;
2

5
;
�3

10
;

ffiffiffiffiffi
33
p

5
ffiffiffi
2
p

" #> [�12, 12, �18]> [�1.99, 0.14, 0]>, [�3.69, 0.25, �6.90]>

Note: The proximity can be calculated as kp�1 � p�2k. The proximal points p�1; p
�
2 mentioned in the table are rounded-off to two places after the decimal

point for the sake of brevity. However, the exact results in two sample cases are reproduced below to demonstrate the capability of the proposed method

in obtaining closed-form solutions. The proximity in Fig. 6 is 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
990

ffiffiffi
2
p

2419
� 4

ffiffiffiffiffi
37
p

59
þ 1

s
� 9

2
. In Fig. 7(a), the proximity is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
69365�

ffiffiffi
3
p

c7 � c8

p
20

ffiffiffi
2
p � 2,

where c1¼ 4,720,590,918,830,961,665,569, c2¼ 18,672,176,766,028,800, c3¼ 104,197,414,989, c4¼ 23,462,497, c5¼ 241,269,141,468,479,

c6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ c2

ffiffiffiffiffi
c3
p

3
p

, c7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4 �

c5

c6

þ c6

r
; and c8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6c4 þ

3c5

c6

� 3c6 þ
687075125760

ffiffiffi
3
p

c7

s
.

9Size of the polynomial, in this context, is the amount of computer memory used
to represent the expression in a CAS’ internal format.
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3171:970v2
1 � 846:209v1 �114:347. The real results obtained are

[h1, h2] ¼ [�2.515, 2.638], [�0.197, �0.939], [0.572, 2.199],
[3.073, �0.534]. The solution corresponding to minðdðCb

1; Ct
2ÞÞ is

h1 ¼ 3.073 and h2 ¼ �0.534. The corresponding shortest distance
is 7.106 and the proximal pair of points obtained are p�1 ¼
½�1:995; 0:138; 0�> on E1 and p�2 ¼ ½�3:691; 0:253; �6:899�>
on E2, as shown in Fig. 8. Following this, the shortest distance
between Db

1 and Ct
2 is found leading to PðCb

1; Ct
2Þ, which has been

already found and need not be computed again.
(6) As mentioned in step 3, the steps are repeated to find

PðDt
2; S1Þ. This leads to PðDb

1;D
t
2Þ again, and hence need

not be computed.
(7) Therefore, the proximity of the cylinders is 7.106.

In addition to the cases shown in Figs. 6–8, the analytical
approach described in this paper can also be applied to the special
cases with one-dimensional or two-dimensional solutions to the
problem of the shortest distance, such as those shown in Fig. 9.
Instead of synthesizing the geometric conditions for these cases,
the analytical formulation directly leads to the solutions in every
possible case—a fact that forms an important advantage of this
method of solving the problem. The configuration shown in
Fig. 9(d) results in a one-dimensional solution, i.e., namely, a pair
of line segments. The results show the shortest distance as zero
for other configurations and lead to the point, curve, or surface of
intersection, as the case may be. Table 2 shows the q and o corre-
sponding to the cases depicted in Fig. 9.

For example, in Fig. 9(c), the intersection curve can be obtained
directly from Eq. (13) as kðh1; h2Þ ¼ 1:046þ 0:295 cos h1

þ 0:569 cos h2 � 0:455 sin h1 � 0:369 sin h2.
Similarly, in Fig. 9(e), the one-dimensional solution can be

readily obtained from Eq. (15) as g4 ¼ s1 sin h1, which upon sub-
stitution into f1¼ 0 and f2¼ 0 yields f1¼�f2¼ 2þ s1� 9t2. This
represents a one-dimensional solution, as shown by the dashed
lines in the figure.

5 Numerical Validation Via Randomized Checks

In order to validate the algorithm, two cylinders are considered.
One of the cylinders is fixed with radius r1¼ 2 units and length
l1¼ 5 units. The radius r2 and the length l2 of the second cylinder
are chosen randomly such that 0< r2� 10r1 and 0< l2� 10l1.
The position and orientation of the second cylinder, with respect

to the fixed cylinder, are also chosen randomly. The origin of the
axis system of the second cylinder is then chosen randomly as 0 <
kok � 5l1 such that all the general cases are covered. The pose of
the second cylinder is thereafter found in terms of unit quaternions
and position of its “origin” o.

An application is created in AUTODESK INVENTOR
10 to validate the

results. A total of 100,000 such random scenarios are generated,
and the results are verified using this application. It is to be noted
that the random checks do not fully cover the scope of the algo-
rithm as the probability of encountering any of the special cases is
exactly zero, since they are only finite in number. Nevertheless,
the results of the random checks validate the proposed algorithm
for the general cases and provide an estimate of the computational
time11 required for the algorithm to compute the distances and
proximal points, as given in Table 3. The algorithm is coded in
Cþþ programming language. It is imperative to know how the
algorithm performs in different real-life application scenarios. To
study this, the random trials are further divided into two catego-
ries, near field and far field, based on the relative distance of one
cylinder from the other, given by kok. The near field is described
as the situation when the cylinders are “close to” each other. It is
designated as jjojj � maxððl1 þ l2Þ; ðr1 þ r2ÞÞ. Similarly, far field
is described as the situation when the cylinders are “far” from
each other. It is given by kok > maxððl1 þ l2Þ; ðr1 þ r2ÞÞ. The key
difference between the two fields lies in the fact that the chances
of collision increase for near field, and hence, probability of
detection in first level is increased, thereby reducing the overall
computations. This can be observed in the data given in Fig. 10,
where 51.45% of the trials fall under Case 1 for near field as
opposed to 28.12% for far field.

Table 2 Configuration of the cylinders for the special cases

Figure q o

9(a) 1ffiffiffi
2
p ; 0;

1ffiffiffi
2
p ; 0

� �>
�4;

9

2
; 4

� �>
9(b) [0, 0, 0, 1]> [2, 0, 12]>

9(c) 1

5
;
1

5
;
1

5
;

ffiffiffiffiffi
22
p

5

� �> [�4, 2, 2]>

9(d) [0, 0, 0, 1]> [2, 8, 6]>

9(e) 1ffiffiffi
2
p ; 0;

1ffiffiffi
2
p ; 0

� �> [�4, 0, �5]>

Table 3 The time taken by the algorithm for different cases
(averaged over a total of 1 3 106 randomized trials)

Case Average time taken per trial (in ls)

1 0.75
2.1 4.69
2.2 54.45
3 72.28

Fig. 10 Summary of numerical experiments depicting actual
occurrences of each case and interference at each level: (a)
near field and (b) far field. The values, e.g., “51.45(34.12)” in
Case 1 for near field, denote that the observed occurrences of
the particular case are 51.45% and actual interference detected
is 34.12%.

10Autodesk
VR

Inventor LT
TM

, version 2014: http://www.autodesk.com/products/
inventor-lt-family/overview

11The computations were performed on a PC with 32 GB of RAM and Intel
VR

Core
TM

i7-4770 CPU running at 3.40 GHz. The compiler used was gcc, version 4.8.4.
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Such an analysis is applicable in many fields, e.g., in hyper-
redundant robots and modeling of cables, wherein the number of cyl-
inders is large and an estimate of the computational time required to
find proximity and the corresponding points is necessary.

6 Conclusion

A novel analytical formulation for computing the proximity of
two arbitrary cylinders in space has been presented in this paper.
The proximity of the cylinders and the corresponding pair of
points on the cylinders are obtained by a hierarchical computa-
tion of the proximity between five pairs of geometric primi-
tives, which make up each cylinder. The formulation of the
problem is strictly analytical in nature, and the results are
obtained in closed form in all the cases, except in one where
the analytical work is limited to the computation of the coeffi-
cients of an eight-degree polynomial, whose solutions must be
obtained by numerical means.

Owing to the analytical nature of the formulation, and the use
of unit quaternions to represent relative orientations, two major
advantages are derived: all the general as well as special cases are
identified exactly, and the numerical implementation is very fast,
as most of the work is done in the symbolic precomputations
stage. The Cþþ implementation used to generate all the results in
this paper finds the proximity of 20,000 arbitrary pairs of cylin-
ders in just one CPU-second on a PC running at 3.40 GHz. The
results obtained are verified in each case by means of comparison
with a general-purpose commercial software, AUTODESK INVENTOR.
As expected, due to the specialized nature of the algorithm, it is
about 1000 times faster than the general-purpose software, while
being equally accurate. The proposed algorithm is expected to
have significant applications in robotics, in particular in the field
of path planning.
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