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a b s t r a c t 

This paper introduces a new approach for the design of planar six-bar mechanisms for 

the purpose of function generation. The structural error is formulated using the input- 

output relationship of such a mechanism. In addition to the conventional structural er- 

ror, its derivative is minimised via numerical optimisation, leading to the novel concept 

of dual-order structural error , which lends itself naturally to a multi-objective formulation 

of the design problem. Furthermore, analytical conditions for the mobility of the mecha- 

nism are derived for two cases: mobility for the full cycle of the crank, and for any given 

subset of it, along with the identification of the kinematic branches. These conditions help 

confine the numerical search for the optimal designs to the feasible regions of the design 

space, leading to a very efficient computational scheme. The results obtained are better in 

accuracy as compared to the reported results in existing literature. The formulation and 

results are demonstrated in the context of the Watt-II and the Stephenson-III mechanisms. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

This paper reports new mathematical formulations, which aid the design of planar six-bar mechanisms for the purpose

of function generation. In particular, fresh developments are reported with regard to the criteria for the mobility of the

Watt-II and the Stephenson-III mechanisms. Also, a new concept, termed hereinafter as the dual-order structural error , is

introduced. It leads to a multi-objective optimisation formulation for the function generation problem, which, for a number

of sample problems studied in the paper, produces results better than those reported in the existing literature, including in

the cases where exact synthesis methods were employed. 

Traditionally, four-bar mechanisms are used for the purpose of mechanical function generators, following, e.g., the pre-

cision point approach introduced by Freudenstein [1] . Four-bar mechanisms posses only three independent link ratios (i.e.,

only three design variables ), and hence, they can match an arbitrary desired output function exactly at three points, at the

most. In comparison, the six-bar mechanisms afford much larger design spaces—the three six-bar mechanisms most suit-

able for function generation, i.e., Stephenson-II, Stephenson-III and Watt-II, have 11 architecture parameters each. Naturally,

the six-bar function generators have better potential in terms of accuracy, more so, while approximating highly non-linear

functions, which require larger numbers of precision points to describe them accurately over the desired interval of crank

motion. This fact was recognised fairly early and there have been sporadic instances of development of such mechanisms

as far back as 1940 [2] . However, not many applications and/or theoretical developments have been reported in this regard.
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Recently, an exact synthesis of six-bar mechanisms for function generation has been carried out using 8 precision points [3] .

The resulting equations, if reduced to a univariate polynomial , would have had a total degree of 705432, which would have

been practically impossible to solve accurately, even if it could be derived. Hence the set of equations were solved using

a homotopy -based numerical method, implemented in the special purpose software, Bertini [4] , leading to 92736 non-

singular and non-degenerate real solutions. In a more recent work [5] , the same group of researches have performed an

exact synthesis of Stephenson-II mechanisms, having 11 precision points. In this case, starting with a potential solution

count of 264241152, a total of 1521037 non-singular solutions are obtained, after running on a 256-core 2.2 GHz computer

for 311 h. After some additional post processing, 51 usable solutions were found for the case of hip-motion generator. In

the case of Stephenson-III mechanisms, the same team track 55050240 initial solutions to obtain 834 4 41 solutions in 40 h,

using a 512-core 2.6 GHz computer on this occasion. 

While the recent works reported above represent significant landmarks in the field of computational kinematics, they

demand colossal computing resources to obtain the mathematically feasible solutions, not to mention the additional efforts

required to identify the set of physically realisable mechanisms from this set. Besides, the use of specific mathematical for-

mulations and consequently highly specialised computational tools are warranted in such analysis. Furthermore, in spite of

the potentially huge number of candidate solutions considered at the beginning, a very small number of the final solutions

are typically found to be real and feasible . For example, only 51 feasible solutions were obtained for 11 point synthesis in [5] .

Finally, though the formulation and the solutions obtained are exact in nature (subject only to certain numerical precision

involved), the final check for feasibility/mobility is not analytical, but procedural [6] . 

An alternative approximate approach, namely, numerical optimisation, can be applied to such situations, which is capable

of using simpler formulations and more generic computational tools, while producing results which can be constrained

a priori to satisfy any additional requirements. In the case of the four-bar, several such studies have been reported (see,

e.g., [7,8] ) for the coupler-curve synthesis problem, even after the nine-point coupler-curve synthesis problem was solved

exactly in [9] . For the kinematic synthesis of six-bar mechanisms for function generation, however, the authors were not

able to trace a single report pertaining to the optimisation approach (except for a preliminary version of the present work,

reported in [10] ). This observation may be attributed to the fact that the kinematic formulations of either the objectives or

the constraint functions for the six-bar mechanisms are not available in reported literature (to the best of the knowledge

of the authors). For instance, a function generator would need to be free of singularities, at least in the desired range of

the input. It is hard to incorporate such a requirement in the optimisation process, as no generic “Grashof-like” analytical

criteria for feasibility exist in the case of the six-bar mechanisms. 

These difficulties have not allowed six-bar mechanisms to be used for function generation, up to their full potential. For

instance, a particular class of problems, known as the double-dwell synthesis, has been solved using six-bar mechanisms of

the Stephenson-III type for many years [11–13] . In this problem, the input is a crank, and the output is a rocker, that has

to dwell for finite motions of the crank at both the extremities of its excursion. However, the synthesis of this mechanism

has been done traditionally via its reduction to a simpler problem—namely, the coupler-curve synthesis of the four-bar

mechanism, having two approximately circular arcs of identical radius of curvature [12] . 

The present work proposes an optimisation approach to the design of the six-bar function generator mechanisms, in

particular, the Watt-II and the Stephenson-III mechanisms. It builds upon several new results, related to the partial and

full-cycle mobility, such as explicit conditions on the link lengths, which allow the mechanism to be assembled, and be

free of singularities. These new developments allow the identification of combinations of design variables leading to feasible

mechanisms with accuracy and certainty. Moreover, they involve only the architecture parameters in such calculations (as

opposed to the joint variables), leading to fewer computations. 

The formulation of the problem in this work starts with the elimination of the unknown joint variables from the loop-

closure equations, till only the desired output variable remains. Solutions of this scalar univariate equation (termed as the for-

ward kinematic univariate or the FKU in brief, following [14] ) define the kinematic branches of the mechanism. The branches

are identified using the singularity functions, which are derived following the analysis of the constraint Jacobian matrices,

as shown in [15] . Each branch is studied independently to identify the potential solutions in it, alleviating the branch-error

problem as well in the process. The singularity conditions are converted to polynomials in an algebraic variable represent-

ing the crank motion. Characterisation of the roots of these polynomials leads to the identification of the singularity-free

mechanisms. The problem of computation of assembly constraints is also solved similarly, leading to the identification of

link geometries capable of assembling into a feasible mechanism, at a nominal computational expense. Finally, the struc-

tural error , to be minimised in the optimisation process, is defined in a novel manner. The departure of the generated

output function, from the desired output function, is treated as the zeroth-order error function, which is in accordance with

the standard practice. In addition, a first-order error function is defined, which is the derivative of the zeroth order error

function. The design method tries to reduce both the errors simultaneously, and independently, in what may be called a

dual-order formulation of the design problem. As the latter objective aids the former, the final results obtained are typically

better than in the conventional methods, wherein only the zeroth-order structural errors are considered. 

For the solution of the problem formulated as above, a Genetic Algorithm (GA)-based optimiser, namely, NSGA-II [16] ,

has been used. Such an optimiser is ideally suited for the problem at hand, since it handles multi-objective problems. It also

performs a global exploration, and hence, does not require any initial guess. Furthermore, it is relatively insensitive to the di-

mension of the design space—which, aided by the confinement of the search for optimal designs to only the feasible regions,

allows for satisfactory exploration of the design space in a computationally efficient manner. The results obtained prove to
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be of very high quality—they are better than the results reported in existing literature in all the benchmark problems stud-

ied in this paper, in terms of the accuracy, measured in terms of the maximum absolute (zeroth-order) structural error over

the designated range of motion. It may be noted, that the said results are obtained at a tiny fraction of the computational

expenses warranted by the exact method—typically, in about 10 min, while running four processes simultaneously on a

standard desktop computer. The accuracy of the design solutions, their guaranteed adherence to the mobility criteria and

additional constraints, and the computational efficiency with which they are achieved, make the proposed design method

fairly attractive from the perspective of practical design. From a broader theoretical perspective, the concept of dual-order

structural error, and the conditions for mobility over a full cycle of the input or a specified part thereof, constitute the main

contributions of this work. 

The rest of the paper is organised as follows: the description of the mechanisms and the corresponding kinematic for-

mulations are given in Section 2 . The formulation of the mobility criteria, using assembly and singularity conditions, is

described in Section 3 . The derivation of the mobility conditions over a desired range, and the discussion on identifying

branches of the mechanisms is detailed in Section 4 . Formalisation of the function generation problem with dual-order ob-

jectives is done in Section 5 . The numerical studies on several benchmark problems are presented in Section 6 . Finally, the

conclusions are presented in Section 7 . 

2. Kinematic formulation 

The zeroth and first order position kinematics of the Watt-II and the Stephenson-III mechanisms are derived in this

section. 

2.1. Kinematics 

The single independent (i.e., input/actuated) joint variable is denoted by θ , hereafter. The m dependent (i.e., pas-

sive/unactuated) variables are denoted by φ. The dependent variables are related to the independent variables via m scalar

loop-closure constraint equations, which can be written as: 

η(θ, φ) = 0 , φ ∈ R 

m . (1) 

In general, it is possible to eliminate (m − 1) passive variables from the loop-closure equations to obtain a univariate equa-

tion in the output variable, say, φm 

. The coefficients of this equation would be functions of the architecture parameters and

the input variable, θ . This univariate equation has been termed as the forward kinematics univariate (FKU) [14] equation and

can be written as: 

f (θ, φm 

) = 0 . (2) 

In order to obtain the velocity coefficient (see, e.g., [13] ) of the output variable with respect to the input variable, the FKU,

given in Eq. (2) , is differentiated with respect to time: 

∂ f 

∂θ
˙ θ + 

∂ f 

∂φm 

˙ φm 

= 0 . (3) 

The velocity coefficient of φm 

w.r.t. θ is given by: 

J φm θ = 

˙ φm 

/ ˙ θ . (4) 

From Eq. (3) : 

˙ φm 

= −
(

∂ f 

∂θ

)/(
∂ f 

∂φm 

)
˙ θ . (5) 

Comparing Eqs. (4) with (5) , the velocity coefficient is given by: 

J φm θ = −
(

∂ f 

∂θ

)/(
∂ f 

∂φm 

)
, (6) 

with the understanding that ∂ f 
∂φm 

� = 0 at a non-singular configuration. The velocity coefficient, J φm θ , is a function of φm 

, θ

and the architecture parameters of the mechanism. 

2.2. Forward kinematics of the Watt-II mechanism 

The six-bar mechanism of the type Watt-II is shown in Fig. 1 . The input angle, θ1 , is associated with link l 1 . The passive

joint angles are given by φ = (φ2 , φ3 , φ4 , φ5 ) 
� . The output angle, φ5 , is associated with the link l 5 . The points o 1 = (0 , 0) � ,

o 2 = (l 0 , 0) � and o 3 = (o 3 x , o 3 y ) 
� locate the fixed pivots of the mechanism. The link bo 2 c is ternary in nature and is defined

by the lengths l and l a , and the included angle α. The angles θ and φ are constant offsets to the input and output angles,
3 0 0 
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Fig. 1. Schematic of the Watt-II mechanism. The fixed pivots are located at the points o 1 , o 2 and o 3 . The link bo 2 c is ternary in nature and is defined by 

the lengths l 3 and l a , and the included angle α. The input angle ( θ1 ) and the output angle ( φ5 ) are associated with the links l 1 and l 5 , respectively. The 

angles θ0 and φ0 are constant offsets to the input and output angles, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively. The mechanism has 12 architecture parameters, given by x = (l 0 , l 1 , l 2 , l 3 , l 4 , l 5 , α, l a , o 3 x , o 3 y , θ0 , φ0 ) 
� . For the

four-bar loop o 1 abo 2 o 1 , the constraint equations can be written as: 

η1 := l 1 cos θ1 + l 2 cos φ2 − l 0 − l 3 cos φ3 = 0 , (7)

η2 := l 1 sin θ1 + l 2 sin φ2 − l 3 sin φ3 = 0 . (8)

Similarly, for the other four-bar loop o 2 cdo 3 o 2 , the constraint equations can be written as: 

η3 := l 0 + l a cos (φ3 − α) + l 4 cos φ4 − o 3 x − l 5 cos φ5 = 0 , (9)

η4 := l 0 + l a sin (φ3 − α) + l 4 sin φ4 − o 3 y − l 5 sin φ5 = 0 . (10)

The constraint equations, Eqs. (7 )–( 10 ), can be compactly written as: 

η := (η1 , η2 , η3 , η4 ) 
� = 0 . (11)

The following steps are employed to obtain the FKU from Eq. (11) : 

• Eqs. (7) and ( 8 ) are linear in the sine and the cosine of φ2 . Hence, the variable φ2 is eliminated by finding cos φ2 and

sin φ2 , and thereafter using the trigonometric identity cos 2 φk + sin 

2 φk = 1 , to obtain the equation: 

g 1 (θ1 , φ3 ) = 0 . (12)

• Similarly, the Eqs. (9) and ( 10 ) are linear in the sine and the cosine of φ4 . The variable φ4 is eliminated as above to

obtain the equation: 

g 2 (φ3 , φ5 ) = 0 . (13)

• The functions g 1 and g 2 , given in Eqs. (12) and (13) , respectively, are linear in the sine and the cosine of φ3 . The vari-

able φ3 is eliminated to obtain the FKU equation: 

g 3 (θ1 , φ5 ) = 0 . (14)

• The function g 3 is converted to a polynomial using the standard tangent half-angle substitution, i.e.: 

cos φ5 = 

1 − t 2 5 

1 + t 2 
5 

and sin φ5 = 

2 t 5 

1 + t 2 
5 

, where, t 5 = tan 

φ5 

2 

, 

to obtain g 4 (θ1 , t 5 ) = 0 . The coefficients of the polynomial g 4 are functions of architecture parameters and input angle,
θ1 . 
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Fig. 2. Schematic of the Stephenson-III mechanism. The fixed pivots are located at the points o 1 , o 2 and o 3 . The coupler point c = (x c , y c ) � is specified with 

respect to the coupler’s local reference frame ( X c Y c ). The input angle ( θ1 ) and the output angle ( φ5 ) are associated with the links l 1 and l 5 , respectively. 

The angles θ0 and φ0 are constant offsets to the input and output angles, respectively. 

 

 

 

 

 

The derivation of the FKU is summarised in the schematic below: 

η1 (θ1 , φ2 , φ3 ) = 0 

η2 (θ1 , φ2 , φ3 ) = 0 

) 

×φ2 

−−→ g 1 (θ1 , φ3 ) = 0 

η3 (φ3 , φ4 , φ5 ) = 0 

η4 (φ3 , φ4 , φ5 ) = 0 

) 

×φ4 

−−→ g 2 (φ3 , φ5 ) = 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

×φ3 

−−→ g 3 (θ1 , φ5 ) = 0 

φ5 → t 5 

−−−→ g 4 (θ1 , t 5 ) = 0 . (15) 

Here, ‘ 
×v 

−−→ ’ indicates the elimination of the variable v from two equations in v . The transformation of the trigonometric

functions of an angle to their respective tangent half-angle forms is denoted by ‘ 
α→ t 

−−−−→ ’ etc., where t = tan 

α
2 . 

2.3. Forward kinematics of the Stephenson-III mechanism 

The schematic of the six-bar mechanism of the type Stephenson-III is shown in Fig. 2 . The input angle, θ1 , is associated

with link l 1 . The passive joint angles are φ = (φ2 , φ3 , φ4 , φ5 ) 
� . The output angle φ5 is associated with the link l 5 . The points

o 1 = (0 , 0) � , o 2 = (l 0 , 0) � and o 3 = (o 3 x , o 3 y ) 
� locate the fixed pivots of the mechanism. Point c is the coupler point and its

coordinates in the local frame, X c Y c , of the coupler link, are given by ( x c , y c ) 
� . The angles θ0 and φ0 are constant offsets to

the input and output angles, respectively. 

For the four-bar loop o 1 abo 2 o 1 , the loop-closure equations can be written as: 

η1 := l 1 cos θ1 + l 2 cos φ2 − l 0 − l 3 cos φ3 = 0 , (16) 

η2 := l 1 sin θ1 + l 2 sin φ2 − l 3 sin φ3 = 0 . (17) 

Similarly, for the five-bar loop o 1 acdo 3 o 1 , the constraint equations can be written as: 

η3 := l 1 cos θ1 + x c cos φ2 − y c sin φ2 + l 4 cos φ4 − o 3 x − l 5 cos φ5 = 0 , (18) 

η4 := l 1 sin θ1 + x c sin φ2 + y c cos φ2 + l 4 sin φ4 − o 3 y − l 5 sin φ5 = 0 . (19) 

The constraint equations, Eqs. (16) –( 19 ), can be compactly written as: 

η := (η1 , η2 , η3 , η4 ) 
� = 0 . (20) 
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Following the elimination procedure similar to that described for the Watt-II mechanism in Section 2.2 , the FKU is obtained

in terms of the input angle, θ1 , and the output angle, φ5 . For the sake of brevity, only the summary of the derivation is

presented in the following schematic. 

η1 (θ1 , φ2 , φ3 ) = 0 

η2 (θ1 , φ2 , φ3 ) = 0 

) 

×φ3 

−−→ g 1 (θ1 , φ2 ) = 0 

η3 (θ1 , φ2 , φ4 , φ5 ) = 0 

η4 (θ1 , φ2 , φ4 , φ5 ) = 0 

) 

×φ4 

−−→ g 2 (θ1 , φ2 , φ5 ) = 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

×φ2 

−−→ g 3 (θ1 , φ5 ) = 0 

φ5 → t 5 

−−−→ g 4 (θ1 , t 5 ) = 0 . (21)

2.4. First order kinematics of the Watt-II and the Stephenson-III mechanisms 

The velocity coefficient of the output link, l 5 , of the Watt-II mechanism is obtained using Eqs. (6) and (14) : 

J φ5 θ1 
= −

(
∂g 3 
∂θ1 

)/(
∂g 3 
∂φ5 

)
. (22)

The velocity coefficient, J φ5 θ1 
, is a function of the architecture parameters and the input angle, θ1 . 

The velocity coefficient for the output link, l 5 , of the Stephenson-III mechanism, is obtained in a similar manner. 

3. Formulation of the mobility criteria 

While using a numerical optimisation algorithm for design, ranges for each of the design variables, i.e., the architecture

parameters, have to be specified. The union of these ranges form the design space to be scanned by the optimiser. Not all

points in the design space form a mechanically feasible mechanism. Hence, it is important to reject such designs outright

without considering them in further computation. Often, one criterion for mechanical feasibility is the full-cycle mobility ,

such that a rotary actuator can be used, without any constraint on the range of the input angle. 

A mechanism is said to possess full-cycle mobility if: (1) assembly of the mechanism is possible for the given architecture

parameters, and (2) there is no singularity, for a complete rotation of the crank. Analysis of the loop-closure equations can

lead to specific conditions, e.g., Grashof’s condition (see, e.g., [17] ) in the case of the four-bar mechanism. Similar analysis is

carried out in the following, for the six-bar mechanisms of the Watt-II and the Stephenson-III types. 

3.1. Mobility criteria for the Watt-II mechanism 

The four-bar loop o 1 abo 2 o 1 can be assembled iff ∀ θ1 ∈ R , the distance ao 2 ∈ [ | l 2 − l 3 | , l 2 + l 3 ] (see Fig. 3 ), leading to the

conditions: 

(l 1 cos θ1 − l 0 ) 
2 + (l 1 sin θ1 ) 

2 ≥ (l 2 − l 3 ) 
2 , (23)

(l 1 cos θ1 − l 0 ) 
2 + (l 1 sin θ1 ) 

2 ≤ (l 2 + l 3 ) 
2 . (24)

Upon simplification and the use of slack variables ε1 and ε2 , these inequalities are converted to equations as: 

F 1 := −l 2 0 − l 2 1 + 2 l 0 l 1 cos θ1 + (l 2 − l 3 ) 
2 + ε1 = 0 , ε1 ≥ 0 ; (25)

F 2 := l 2 0 + l 2 1 − 2 l 0 l 1 cos θ1 − (l 2 + l 3 ) 
2 + ε2 = 0 , ε2 ≥ 0 . (26)

The second four-bar loop o 2 cdo 3 o 2 can be assembled iff ∀ θ1 ∈ R , the distance co 3 ∈ [ | l 4 − l 5 | , l 4 + l 5 ] : 

(l 0 + l a cos (φ3 − α) − o 3 x ) 
2 + (l a sin (φ3 − α) − o 3 y ) 

2 ≥ (l 4 − l 5 ) 
2 , (27)

(l 0 + l a cos (φ3 − α) − o 3 x ) 
2 + (l a sin (φ3 − α) − o 3 y ) 

2 ≤ (l 4 + l 5 ) 
2 . (28)

Upon simplification and the use of slack variables ε3 and ε4 , these inequalities are converted to equations as: 

F 3 := 2 l a (l 0 − o 3 x ) cos (α − φ3 ) + (l 0 − o 3 x ) 
2 + l 2 a + 2 l a o 3 y sin (α − φ3 ) + o 2 3 y − (l 4 − l 5 ) 

2 − ε3 = 0 , ε3 ≥ 0 ; (29)

F 4 := 2 l a (l 0 − o 3 x ) cos (α − φ3 ) + (l 0 − o 3 x ) 
2 + l 2 a + 2 l a o 3 y sin (α − φ3 ) + o 2 3 y − (l 4 + l 5 ) 

2 + ε4 = 0 , ε4 ≥ 0 . (30)
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Fig. 3. The geometric representation of the assembly conditions of the Watt-II mechanism. 

 

 

 

 

 

The slack variables εi , i = 1 , . . . , 4 , are termed as the mobility margins . For the mechanism to be feasible, or in other words,

for it to be assembled, the mobility margins should always be positive. The feasibility conditions given in Eqs. (25) , (26),

(29) and ( 30 ) have been represented geometrically in Fig. 3 . The annular region—bounded by two concentric circles centred

at o 3 and of radii | l 4 − l 5 | and l 4 + l 5 , respectively—define the permissible locations of the point c . 

Singularity of a mechanism can be studied via the degeneracy of the Jacobian matrix of the constraint equations with

respect to the passive variables [15] . Finding the partial derivatives of the loop-closure equations, η (given in Eq. (11) ), with

respect to φ gives the constraint Jacobian matrix: 

J ηφ = 

∂ η

∂ φ
. (31) 

Singularity occurs when the determinant of J ηφ is zero, where: 

det (J ηφ) = l 2 l 3 l 4 l 5 sin (φ2 − φ3 ) sin (φ4 − φ5 ) . (32) 

As the link-lengths need to be non-zero for the mechanism to exist, Eq. (32) factors into two distinct singularity functions, s 1 
and s 2 : 

s 1 := sin (φ2 − φ3 ) , (33) 

s 2 := sin (φ4 − φ5 ) , and (34) 

s 1 = 0 ⇒ φ3 = φ2 , or φ2 − π, considering φ2 − φ3 ∈ [0 , 2 π ] . (35) 

s 2 = 0 ⇒ φ5 = φ4 , or φ4 − π, considering φ4 − φ5 ∈ [0 , 2 π ] (36) 

The signs of the singularity functions identify the kinematic branches of the mechanism uniquely , as shown in Fig. 4 : 

a) Branch UU, if s 1 < 0 and s 2 < 0; 

b) Branch UD, if s 1 < 0 and s 2 > 0; 

c) Branch DU, if s 1 > 0 and s 2 < 0; 
d) Branch DD, if s 1 > 0 and s 2 > 0. 
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Fig. 4. The four branches of the Watt-II mechanism. 

Fig. 5. The geometric representation of the four singularity conditions of the Watt-II mechanism. These conditions are mathematically equivalent to van- 

ishing of the singularity functions S 1 , S 2 , S 3 and S 4 , respectively. 

 

 

 

 

 

 

 

 

 

 

Here, the first and the second letters in the branch name denote the configurations of the chains abo 2 and cdo 3 , respec-

tively: ‘U’ denotes elbow up and ‘D’ denotes elbow down configurations. 

The singularity function given by s 1 in Eq. (33) represents the singularity in the four-bar loop o 1 abo 2 o 1 . Singularity

occurs when φ3 = φ2 , or φ2 − π, i.e., links l 2 and l 3 become collinear. These conditions are depicted in Fig. 5 (a) and (b),

respectively. 

In order to obtain the singularity conditions in terms of the architecture parameters, φ3 is eliminated from Eqs. (7 ) and

( 8 ) by directly using Eq. (35) in the loop-closure equations, thereby leading to two different sets of equations: 

(a) φ3 = φ2 ⇒ e 1 (θ1 , φ2 ) = (e 11 , e 12 ) 
� = 0 , 

(b) φ3 = φ2 − π ⇒ e 2 (θ1 , φ2 ) = (e 21 , e 22 ) 
� = 0 . 

Treating these singularity-specific loop-closure equations in the same way as described in Section 2.1 , a non-linear equa-

tion is derived, having the input variable θ1 as the only unknown. The sequential elimination of φ2 and φ3 can be schemat-

ically represented as follows: 

η1 (θ1 , φ2 , φ3 ) = 0 

η2 (θ1 , φ2 , φ3 ) = 0 

) 

φ3 = φ2 

−−−−−−−→ 

e 11 (θ1 , φ2 ) = 0 

e 12 (θ1 , φ2 ) = 0 

) 

×φ2 

−−→ S 1 (θ1 ) = 0 ;

η1 (θ1 , φ2 , φ3 ) = 0 

η2 (θ1 , φ2 , φ3 ) = 0 

) 

φ3 = φ2 −π

−−−−−−−→ 

e 21 (θ1 , φ2 ) = 0 

e 22 (θ1 , φ2 ) = 0 

) 

×φ2 

−−→ S 2 (θ1 ) = 0 . 

(37)

The singularity in the loop o 2 cdo 3 o 2 is governed by the function s 2 , given in Eq. (34) , and occurs when φ5 = φ4 , or φ4 − π .

This is geometrically equivalent to l 4 and l 5 being collinear, as depicted in Fig. 5 (c) and (d), respectively. Following the same

steps used in deriving S 1 and S 2 , φ5 is eliminated from the loop-closure equations, Eqs. (9) and ( 10 ), to obtain a special set

of constraint equations, describing the singular configurations: 

(a) φ5 = φ4 ⇒ e 3 (φ3 , φ4 ) = (e 31 , e 32 ) 
� = 0 ; 

� 
(b) φ5 = φ4 − π ⇒ e 4 (φ3 , φ4 ) = (e 41 , e 42 ) = 0 . 
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The sequential elimination of φ4 and φ5 can be schematically represented as follows: 

η3 (φ3 , φ4 , φ5 ) = 0 

η4 (φ3 , φ4 , φ5 ) = 0 

) 

φ5 = φ4 

−−−−−−−→ 

e 31 (φ3 , φ4 ) = 0 

e 32 (φ3 , φ4 ) = 0 

) 

×φ4 

−−→ S 3 (φ3 ) = 0 ;

η3 (φ3 , φ4 , φ5 ) = 0 

η4 (φ3 , φ4 , φ5 ) = 0 

) 

φ5 = φ4 −π

−−−−−−−→ 

e 41 (φ3 , φ4 ) = 0 

e 42 (φ3 , φ4 ) = 0 

) 

×φ4 

−−→ S 4 (φ3 ) = 0 . 

(38) 

The singularity functions S 1 and S 2 in Eq. (37) correspond to the assembly conditions F 1 and F 2 given in Eqs. (25) and

( 26 ), when ε1 and ε2 vanish, respectively. Similarly, the singularity functions S 3 and S 4 in Eq. (38) correspond to the assem-

bly conditions F 3 and F 4 given in Eqs. (29 ) and ( 30 ), when ε3 and ε4 fall to zero, respectively. Hence, for the mechanism

to possess mobility, i.e., be feasible and non-singular, F i = 0 must hold for some ε i > 0, i = 1 , . . . , 4 . 

For further analysis, Eqs. (25 ) and ( 26 ) are converted to their respective polynomial forms by using the tangent-half angle

substitution, which are further rearranged to obtain: 

ε1 (t 1 ) = t 2 1 

(
(l 0 + l 1 ) 

2 − (l 2 − l 3 ) 
2 
)

+ (l 0 − l 1 ) 
2 − (l 2 − l 3 ) 

2 and, (39) 

ε2 (t 1 ) = t 2 1 

(
(l 2 + l 3 ) 

2 − (l 0 + l 1 ) 
2 
)

− ( l 0 − l 1 ) 
2 + ( l 2 + l 3 ) 

2 , where t 1 = tan 

θ1 

2 

. (40) 

Further, recall that a quadratic polynomial with real coefficients, say, u 0 t 
2 
1 

+ u 1 t 1 + u 2 , is positive for all real values of t 1 
if the leading coefficient, u 0 , is positive and the discriminant, u 2 1 − 4 u 0 u 2 , is negative. For ε1 , ε2 > 0 ∀ t 1 ∈ R , the following

conditions are hence, derived from Eqs. (39) and (40) , respectively: 

M 1 := 

{ 

M 1 a := l 0 + l 1 + l 3 − l 2 > 0 , 

M 1 b := l 0 + l 1 + l 2 − l 3 > 0 , 

M 1 c := (l 0 − l 1 ) 
2 − (l 2 − l 3 ) 

2 > 0 ;
(41) 

M 2 := 

{ 

M 2 a := l 1 + l 2 + l 3 − l 0 > 0 , 

M 2 b := l 0 + l 2 + l 3 − l 1 > 0 , 

M 2 c := (l 2 + l 3 ) 
2 − (l 0 + l 1 ) 

2 > 0 . 

(42) 

The mobility functions, M 1 and M 2 , depend only on the link lengths, and hence, represent the characteristics of the mech-

anism’s architecture—and not of a particular configuration. It is required that the values of these functions are greater than

zero in a non-singular feasible mechanism. These lead to (an equivalent of) the Grashof’s condition (see, e.g., [17] ), as ex-

pected, for the four-bar loop of the mechanism. 

Similarly, the Eqs. (29) and ( 30 ) can be converted to their polynomial forms using the function g 1 ( θ1 , φ3 ) appearing in

Eq. (12) and tangent half-angle substitution: 

F 3 (φ3 , ε3 ) = 0 

g 1 (θ1 , φ3 ) = 0 

) 

×φ3 

−−→ h 1 (θ1 , ε3 ) = 0 

θ1 → t 1 −−−→ h 3 (t 1 , ε3 ) = 0 ;

F 4 (φ3 , ε4 ) = 0 

g 1 (θ1 , φ3 ) = 0 

) 

×φ3 

−−→ h 2 (θ1 , ε4 ) = 0 

θ1 → t 1 −−−→ h 4 (t 1 , ε4 ) = 0 . 

(43) 

The functions h 3 and h 4 are quadratic in ε i : h i = A i (t 1 ) ε
2 
i 

+ B i (t 1 ) εi + C i (t 1 ) , i = 3 , 4 . As ε i are assumed to be positive, the

roots of the equations, h i = 0 , should be real and positive. The leading coefficients, A i ( t 1 ), are found to be always positive,

and hence, the conditions for the quadratics to have positive real roots can be stated as: 

f ia (t 1 ) = −B i (t 1 ) > 0 , 

f ib (t 1 ) = C i (t 1 ) > 0 , 

f ic (t 1 ) = B 

2 
i (t 1 ) − 4 A i (t 1 ) C i (t 1 ) ≥ 0 , i = 3 , 4 . (44) 

The three inequalities, given by Eq. (44) , are functions of t 1 and the architecture parameters. The polynomials f ia , f ib and

f ic are of degree 4, 4 and 8 in t 1 , respectively. However, f ic factorises into two quadratics, k a and k b , and the square of a

quadratic, k c : 

f ic = k a k b k 
2 
c . (45) 

The quadratics k a and k b correspond to the mobility conditions M 1 and M 2 given in Eqs. (41) and (42) , respectively. Thus,

the mobility conditions of the four-bar are retrieved as a subset of the mobility conditions of the six-bar mechanism, as

expected. The factor k 2 c is obviously non-negative. Hence, the function f ic does not impose any additional restrictions. 
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Fig. 6. The geometric representation of the assembly conditions of the Stephenson-III mechanism. 

 

 

 

 

 

 

 

 

 

 

 

In order to analyse the conditions for the polynomials to be positive, as required by Eq. (44) , it may be noted that: a

quartic polynomial, p 0 t 
4 
1 

+ p 1 t 
3 
1 

+ p 2 t 
2 
1 

+ p 3 t 1 + p 4 , is positive ∀ t 1 ∈ R , iff it does not have any real root and the coefficient

of the highest degree term is positive. Thus, the conditions can be written as: 

p 0 > 0 , and 

( P > 0 ∨ D > 0 ) and 

	 ≥ 0 , where 

P = 8 p 0 p 2 − 3 p 2 1 ;
D = 64 p 3 0 p 4 − 16 p 2 0 p 

2 
2 + 16 p 0 p 

2 
1 p 2 − 16 p 2 0 p 1 p 3 − 3 p 4 1 . (46)

In Eq. (46) , 	 denotes the discriminant of the polynomial (see, e.g., [18] for the expressions and derivations). Hence, the

mobility conditions can be written as: 

M 3 := 

{
M 3 a := f 3 a > 0 , 

M 3 b := f 3 b > 0 ; (47)

M 4 := 

{
M 4 a := f 4 a > 0 , 

M 4 b := f 4 b > 0 . 
(48)

As stated for the mobility functions M 1 and M 2 , the functions M 3 and M 4 depend only on the architecture parameters,

and it is required that the values of these functions are greater than zero for non-singular feasible mechanisms. 

3.2. Mobility criteria for the Stephenson-III mechanism 

As in the case of the Watt-II mechanism, the four-bar loop o 1 abo 2 o 1 can be assembled iff ∀ θ1 ∈ R , the distance ao 2 ∈
[ | l 2 − l 3 | , l 2 + l 3 ] (see Fig. 6 ), leading to the following conditions: 

F 1 := − l 2 0 − l 2 1 + 2 l 0 l 1 cos θ1 + (l 2 − l 3 ) 
2 + ε1 = 0 , ε1 ≥ 0 ; (49)

F 2 := l 2 0 + l 2 1 − 2 l 0 l 1 cos θ1 − (l 2 + l 3 ) 
2 + ε2 = 0 , ε2 ≥ 0 . (50)

Similarly, the loop o 1 acdo 3 o 1 can be assembled iff ∀ θ1 ∈ R , the distance co 3 ∈ [ | l 4 − l 5 | , l 4 + l 5 ] : 

(x − o 3 x ) 
2 + (y − o 3 y ) 

2 ≥ (l 4 − l 5 ) 
2 , (51)
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Fig. 7. The four branches of the Stephenson-III mechanism. 

Fig. 8. The geometric representation of the four singularity conditions of the Stephenson-III mechanism. These conditions are mathematically equivalent 

to vanishing of the singularity functions S 1 , S 2 , S 3 and S 4 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

(x − o 3 x ) 
2 + (y − o 3 y ) 

2 ≤ (l 4 + l 5 ) 
2 , (52) 

where, x = l 1 cos θ1 + x c cos φ2 − y c sin φ2 , and y = l 1 sin θ1 + x c sin φ2 + y c cos φ2 (see Fig. 2 ). The annular region, bounded by

the two concentric circles centred at o 3 and of radii | l 4 − l 5 | and l 4 + l 5 , respectively, define the feasible locations of the

coupler point c . The inequalities in Eqs. (51) and (52) are converted to equations using the slack variables ε3 and ε4 : 

F 3 := −(x − o 3 x ) 
2 − (y − o 3 y ) 

2 + (l 4 − l 5 ) 
2 + ε3 = 0 , ε3 ≥ 0 ; (53) 

F 4 := (x − o 3 x ) 
2 + (y − o 3 y ) 

2 − (l 4 + l 5 ) 
2 + ε4 = 0 , ε4 ≥ 0 . (54) 

The singularity condition, obtained from the vanishing of the determinant of the matrix, J ηφ , is identical to that ob-

tained in (32) , for the Watt-II mechanism. The four kinematic branches of the Stephenson-III mechanism are depicted in

Fig. 7 . Here, the first and the second letters in the branch name indicate the configurations of the chains abo 2 and cdo 3 ,

respectively. 

The singularity conditions for the four-bar loop o 1 abo 2 o 1 are depicted in Fig. 8 (a) and (b). The steps to obtain the sin-

gularity conditions, S 1 and S 2 , in terms of the input angle, θ1 , are exactly same as in Eq. (37) for the Watt-II mechanism,

and hence, are not reproduced here. 

The singularity in the loop o 1 acdo 3 o 1 is governed by the function s 2 , and occurs when φ5 = φ4 , or φ4 − π . This is

geometrically equivalent to l 4 and l 5 being collinear, as depicted in Fig. 8 (c) and (d), respectively. For the singularity condi-

tion s 2 = 0 , the variable φ5 is eliminated by substituting φ5 into the original loop-closure equations, Eqs. (18 ) and ( 19 ), to

obtain a new set of constraint equations describing the singularities: 

(a) φ5 = φ4 ⇒ e 3 (φ3 , φ4 ) = (e 31 , e 32 ) 
� = 0 , 

(b) φ5 = φ4 − π ⇒ e 4 (φ3 , φ4 ) = (e 41 , e 42 ) 
� = 0 . 

The sequential elimination of φ4 and φ5 can be schematically represented as follows: 

η3 (θ1 , φ2 , φ4 , φ5 ) = 0 

η4 (θ1 , φ2 , φ4 , φ5 ) = 0 

) 

φ5 = φ4 

−−−−−−−→ 

e 31 (θ1 , φ2 , φ4 ) = 0 

e 32 (θ1 , φ2 , φ4 ) = 0 

) 

×φ4 

−−→ S 3 (θ1 , φ2 ) = 0 ;

η3 (θ1 , φ2 , φ4 , φ5 ) = 0 

η4 (θ1 , φ2 , φ4 , φ5 ) = 0 

) 

φ5 = φ4 −π

−−−−−−−→ 

e 41 (θ1 , φ2 , φ4 ) = 0 

e 42 (θ1 , φ2 , φ4 ) = 0 

) 

×φ4 

−−→ S 4 (θ1 , φ2 ) = 0 . 

(55) 

As in the case of Watt-II mechanism, the singularity functions S 1 and S 2 correspond to the feasibility conditions F 1 and F 2 

given in Eqs. (49 ) and ( 50 ), when ε and ε vanish, respectively. Consequently, the singularity functions S and S in
1 2 3 4 
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Eq. (55) correspond to the feasibility conditions F 3 and F 4 given in Eqs. (53) and ( 54 ), when ε3 and ε4 reduce to zero,

respectively. Hence, as before, for the mechanism to possess mobility, i.e., be feasible and non-singular, F i = 0 , i = 1 , . . . , 4

for some εi > 0 , i = 1 , . . . , 4 . 

Obviously, the four-bar loop o 1 abo 2 o 1 has the same mobility conditions as the four-bar loop for the Watt-II mechanism

(reproduced here only for the sake of completeness): 

M 1 := 

{ 

M 1 a := l 0 + l 1 + l 3 − l 2 > 0 , 

M 1 b := l 0 + l 1 + l 2 − l 3 > 0 , 

M 1 c := (l 0 − l 1 ) 
2 − (l 2 − l 3 ) 

2 > 0 ;
(56)

M 2 := 

{ 

M 2 a := l 1 + l 2 + l 3 − l 0 > 0 , 

M 2 b := l 0 + l 2 + l 3 − l 1 > 0 , 

M 2 c := (l 2 + l 3 ) 
2 − (l 0 + l 1 ) 

2 > 0 . 

(57)

Eqs. (53) and ( 54 ) can be converted to polynomial equations in t 1 and ε i using the function g 1 ( θ1 , φ2 ) given in (21) and

tangent half-angle substitution: 

F 3 (θ1 , φ2 , ε3 ) = 0 

g 1 (θ1 , φ2 ) = 0 

) 

×φ2 

−−→ h 1 (θ1 , ε3 ) = 0 

θ1 → t 1 −−−→ h 3 (t 1 , ε3 ) = 0 ;

F 4 (θ1 , φ2 , ε4 ) = 0 

g 1 (θ1 , φ2 ) = 0 

) 

×φ2 

−−→ h 2 (θ1 , ε4 ) = 0 

θ1 → t 1 −−−→ h 4 (t 1 , ε4 ) = 0 . 

(58)

The functions h 3 and h 4 are quadratic in ε i : i.e., h i = A i (t 1 ) ε
2 
i 

+ B i (t 1 ) εi + C i (t 1 ) , i = 3 , 4 . As ε i are required to be positive,

the conditions for the roots to be real and positive are similar to those described in (44) . However, in this case, the polyno-

mials f ia , f ib and f ic are of degrees 6, 6 and 12 in t 1 , respectively. The function f ic does not contribute further to the mobility

conditions for the same reasons as in the case of the Watt-II mechanism. 

In order to analyse the condition for a six-degree polynomial in t 1 to be positive ∀ t 1 ∈ R , it may be first observed that

as t 1 → ∞ , 

P 6 (t 1 ) → 

{
∞ , if p 0 > 0 , 

−∞ , if p 0 < 0 , 
(59)

where P 6 (t 1 ) = p 0 t 
6 
1 

+ p 1 t 
5 
1 

+ p 2 t 
4 
1 

+ p 3 t 
3 
1 

+ p 4 t 
2 
1 

+ p 5 t 1 + p 6 . 

For the case p 0 < 0, the polynomial is negative for some t 1 ∈ R , hence it is required that p 0 > 0 for P 6 (t 1 ) > 0 ∀ t 1 ∈ R .

Furthermore, it is required that the minima of the polynomial are also positive, i.e., P 6 (t ∗
1 
) > 0 ∀ t ∗

1 
such that P ′ 

6 
(t ∗

1 
) = 0 . 

These requirements lead to the mobility conditions: 

M 3 := 

{
M 3 a := f 3 a > 0 , 

M 3 b := f 3 b > 0 ; (60)

M 4 := 

{
M 4 a := f 4 a > 0 , 

M 4 b := f 4 b > 0 . 
(61)

As with the other mobility functions, M 3 and M 4 depend only on the architecture parameters, and it is required that the

values of these functions are greater than zero for the mechanism to be feasible and free of singularities. 

4. Range mobility and branch identification 

A general function generation problem may be defined over a range of the input angle, i.e., θ1 ∈ [ θ a , θb ]. The mobility

conditions given in the Section 3 ensures singularity-free feasible mechanisms for all θ1 ∈ [0, 2 π ]. These may reduce the

solution space when an application demands mobility only for a finite range of motion, i.e., the range of the input angle may

be a subset of [0, 2 π ]. Moreover, the mobility conditions above ensure that all the branches are feasible and non-singular. In

general, one might be interested in a particular branch of the mechanism. In this section, the mobility conditions for a finite

range of motion is derived, and also the branches of the mechanism are identified—using the formulation in the previous

section. 

4.1. Four-bar chain 

The mobility conditions of the four-bar chain are common for both types of six-bar mechanism considered. For the four-

bar chain to be non-singular and feasible for θ1 ∈ [ θ a , θb ], the mobility margins, ε1 , ε2 need to be positive over the said

range only. The values of t 1 for which the mobility margins become zero can be obtained from Eqs. (39) and (40) : 

ε1 (t 1 ) = t 2 1 

(
(l 0 + l 1 ) 

2 − (l 2 − l 3 ) 
2 
)

+ (l 0 − l 1 ) 
2 − (l 2 − l 3 ) 

2 = 0 , (62)
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Fig. 9. The mobility of a four-bar mechanism over a specified range of values of input angle, θ 1 , is determined by whether the mobility margins, ε1 and 

ε2 , are positive over the range. 

 

 

 

 

 

 

 

ε2 (t 1 ) = t 2 1 

(
(l 2 + l 3 ) 

2 − (l 0 + l 1 ) 
2 
)

− ( l 0 − l 1 ) 
2 + ( l 2 + l 3 ) 

2 = 0 . (63) 

The corresponding real values of t 1 (and thereby of θ1 ) for which εi = 0 , i = 3 , 4 , bound the range of the crank motion: 

θ1 | ε1 =0 = 

{ 

θ1 | ε1 

(
tan 

θ1 

2 

)
= 0 , θ1 ∈ R 

} 

(64) 

θ1 | ε2 =0 = 

{ 

θ1 | ε2 

(
tan 

θ1 

2 

)
= 0 , θ1 ∈ R 

} 

. (65) 

The mobility margins, in terms of the input variable, θ1 , are obtained from Eqs. (25) and (26) : 

ε1 (θ1 ) = l 2 0 + l 2 1 − 2 l 0 l 1 cos θ1 − (l 2 − l 3 ) 
2 , (66) 

ε2 (θ1 ) = −l 2 0 − l 2 1 + 2 l 0 l 1 cos θ1 + (l 2 + l 3 ) 
2 . (67) 

The mobility condition over a finite range of input (which is less than a full-cycle) can be written as: 

R i = 

{ 

εi (θa ) > 0 

εi (θb ) > 0 

θ1 / ∈ [ θa , θb ] ∀ θ1 ∈ θ1 | εi =0 

i = 1 , 2 . (68) 

The range mobility conditions are explained pictorially in the Fig. 9 —the mechanism is non-singular and feasible only in

the range where both the mobility margins are positive. The singular configurations are characterised by merging of the

branches and also by the vanishing of one or both of the mobility margins. It should be noted that the mechanism becomes

infeasible beyond the singularity, as at least one of the mobility margins become negative. Furthermore, the branches show

similar characteristics in pair(s) , i.e., the two branches meet at a singularity and become infeasible thereafter together.

The formulation also provides a means for finding the range over which the mobility conditions hold, rather than simply

validating the mobility over a given range. However, the mechanism may have disjoint regions of mobility—a fact that needs

to be incorporated in the implementation. 
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4.2. Watt-II mechanism 

The mobility margins, ε3 and ε4 , can be written as functions of φ3 from Eqs. (29) and ( 30 ): 

ε3 (φ3 ) = 2 l a (l 0 − o 3 x ) cos (α − φ3 ) + (l 0 − o 3 x ) 
2 + l 2 a + 2 l a o 3 y sin (α − φ3 ) + o 2 3 y − (l 4 − l 5 ) 

2 , (69)

ε4 (φ3 ) = −2 l a (l 0 − o 3 x ) cos (α − φ3 ) − (l 0 − o 3 x ) 
2 + l 2 a + 2 l a o 3 y sin (α − φ3 ) − o 2 3 y + (l 4 + l 5 ) 

2 . (70)

The steps for checking the mobility over a finite range of crank motion are detailed below. 

1. Obtain the real values of θ1 , such that ε3 or ε4 is zero, from h 3 = 0 and h 4 = 0 given in (43) : 

θ1 | ε3 =0 = 

{ 

θ1 | f 3 b 

(
tan 

θ1 

2 

)
= 0 , θ1 ∈ [ θa , θb ] 

} 

, (71)

θ1 | ε4 =0 = 

{ 

θ1 | f 4 b 

(
tan 

θ1 

2 

)
= 0 , θ1 ∈ [ θa , θb ] 

} 

. (72)

2. It may be noted that the coefficients of the quadratic polynomials, defining the mobility margins, ε3 and ε4 (see Eqs.

(43) and ( 44 )), are themselves polynomials, and hence, continuous functions of the input angle. Therefore, their roots

cannot change sign without passing through zero. Physically, this means that the mechanism cannot become infeasible ,

from a state of being feasible, without passing through a singularity. Hence, it is sufficient to check whether at least one

of the roots of the polynomials vanishes inside the range of interest. Therefore, only the product of the roots, given by

the functions f 3 b and f 4 b are considered. 

It is also important to check whether the relevant branch is affected, which leads to the steps mentioned below. 

3. The values of φ3 are calculated for all θ1 | ε3 =0 , θ1 | ε4 =0 and { θ a , θb }, corresponding to the desired branch, following the

procedure described in Section 2.2 and given by the function g 1 ( θ1 , φ3 ) in Eq. (12) . The branch can be identified using

the signs of singularity functions, s 1 and s 2 , given in Eqs. (33) and ( 34 ). 

4. The mobility margins, ε3 and ε4 , are evaluated from Eqs. (69) and ( 70 ), respectively. For the mechanism to be feasible

and non-singular, these should be positive, leading to the conditions: 

R k := εk ( θ1 , φ3 ) > 0 ∀ φ3 s.t. g 1 ( θ1 , φ3 ) = 0 , and θ1 ∈ { θa , θb } ∪ θ1 | εk =0 , k = 3 , 4 . (73)

5. The previous step is necessary to check whether the mobility margin is positive, as being free of singularity does not

guarantee that the mechanism can be assembled. 

6. The mobility margin serves as a measure of closeness of the mechanism to becoming infeasible. This has been illustrated

in the example of the parabolic function generator described in Section 6 . 

7. It may be further observed that the range mobility conditions continue to be closed-form functions of the architecture

parameters and do not involve any inaccuracies stemming out of any numerical computations. 

4.3. The Stephenson-III mechanism 

The mobility margins, ε3 and ε4 , can be written as functions of φ2 from Eqs. (53 ) and ( 54 ): 

ε3 = (x − o 3 x ) 
2 + (y − o 3 y ) 

2 − (l 4 − l 5 ) 
2 , (74)

ε4 = −(x − o 3 x ) 
2 − (y − o 3 y ) 

2 + (l 4 + l 5 ) 
2 . (75)

The steps for checking the mobility over a finite range are detailed below. 

1. Obtain the real values of θ1 , such that ε3 or ε4 is zero, from h 3 and h 4 given in Eq. (58) : 

θ1 | ε3 =0 = { θ1 | f 3 b 

(
tan 

θ1 

2 

)
, θ1 ∈ [ θa , θb ] } , (76)

θ1 | ε4 =0 = { θ1 | f 4 b 

(
tan 

θ1 

2 

)
, θ1 ∈ [ θa , θb ] } . (77)

2. The values of φ2 are calculated for all θ1 | ε3 =0 , θ1 | ε4 =0 and { θ a , θb }, corresponding to the desired branch, from the

equation g 1 (θ1 , φ2 ) = 0 (see Eq. (21) ). The branch can be identified using the signs of singularity conditions, s 1 and s 2 . 

3. The values of ε3 and ε4 are evaluated from Eqs. (74) and ( 75 ). For the mechanism to be feasible and non-singular, these

values should be positive: 
R k := εk ( θ1 , φ2 ) > 0 ∀ φ2 s.t. g 1 ( θ1 , φ2 ) = 0 , and θ1 ∈ { θa , θb } ∪ θ1 | εk =0 , k = 3 , 4 . (78) 
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Fig. 10. Types of errors in function generation and their implications. 

 

 

 

 

 

 

 

 

 

 

 

5. Function generation using dual-order structural error 

5.1. Definition of the dual-order structural error 

For the Watt-II and the Stephenson-III mechanism, the function generation problem can be stated as: 

φ5 (θ1 ) = φ5 d (θ1 ) , θ1 ∈ [ θa , θb ] , (79) 

where φ5 d ( θ1 ) is the desired function, and φ5 ( θ1 ) is the actual function generated by the mechanism, over θ1 ∈ [ θ a , θb ]. This

leads to the traditional definition of the (zeroth-order) structural error as: 

E 0 (θ1 ) = φ5 (θ1 ) − φ5 d (θ1 ) , θ1 ∈ [ θa , θb ] . (80) 

Minimisation of the maximum absolute value of the zeroth-order structural error (over the specified range of motion)

leads to a mechanism in which this value is bounded by some upper limit. However, an objective considering only this

aspect is insensitive to the variations of the error function within this bound. For instance, as shown in Fig. 10 , both the

cases (a) and (b) would lead to the same value of E 0 , whereas case (b) is clearly more desirable, since it would lead to

lesser unwanted fluctuations in the output of the resulting mechanism. It is easy to see that the first-order error measure

would be able to capture these fluctuations and mitigate them by reducing the variations in the error function. However,

this measure, by itself, is insensitive to a constant error, however large. Therefore, it is logically appealing to use these

measures of error together , in what may be termed as a dual-order formulation of the structural error. This has been done

in the present work by means of a multi-objective formulation of the synthesis problem, in which each objective relates to

the error in a distinct order. To the best of the knowledge of the authors, such a formulation is entirely novel. 

The first-order structural error is defined as the derivative of the zeroth-order structural error: 

E 1 (θ1 ) = 

dE 0 (θ1 ) 

dθ1 

(81) 

= 

dφ5 (θ1 ) 

dθ1 

− dφ5 d (θ1 ) 

dθ1 

(82) 

= J φ5 θ1 
(θ1 ) − dφ5 d (θ1 ) 

dθ1 

, θ1 ∈ [ θa , θb ] , (83) 

where J φ5 θ1 
(θ1 ) is a velocity coefficient, defined in (22) . 

5.2. Design of function generators as an optimisation problem 

An optimisation problem with constraints can be mathematically expressed as: 

Minimise F i (x ) , i = 1 , 2 , . . . , p;
subject to G j (x ) ≥ 0 , j = 1 , 2 , . . . , q ;

H k (x ) = 0 , k = 1 , 2 , . . . , r;
x l ∈ [ a l , b l ] , l = 1 , 2 , . . . , w ; (84) 

where F i ( x ) are the objective functions, x = (x 1 , . . . , x w 

) � is the vector of design variables, with x l being bounded between a l 
and b l . The inequality and equality constraint functions are represented by G j ( x ) and H k ( x ), respectively. A maximisation

problem can be converted to a minimisation problem by negating the appropriate objective(s). 

The steps for posing the function generation problem as an optimisation problem are explained below. 
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1. The link dimensions of the mechanism are scaled with respect to one of the links, as the function generation problem is

insensitive to the scale of the mechanism. In this paper, the link l 1 is assumed to have unit length, thereby reducing one

dimension of the design space without affecting the generality of the solutions. 

2. The input angle offset variable, θ0 , is incorporated into the formulation at this stage. The range of the function generation

problem, say θ f ∈ [ θ a , θb ] (as shown in Fig. 6.1), changes to: 

θ f = (θ1 − θ0 ) ∈ [ θa , θb ] . (85)

3. For incorporating the output angle offset, φ0 , the desired output function to be generated, say φ5 f ( θ f ), is modified to: 

φ5 d (θ1 ) = φ5 f (θ1 − θ0 ) + φ0 . (86)

4. The error functions are modified as given below: 

E 0 (θ f ) = φ5 (θ1 ) − φ5 d (θ1 ) , (87)

E 1 (θ f ) = J φ5 θ1 
(θ1 ) − dφ5 d (θ1 ) 

dθ1 

, (88)

where , θ f = θ1 − θ0 ∈ [ θa , θb ] . 

5. A bi-objective optimisation problem is formulated. The first objective function is the maximum absolute zeroth-order

error, i.e., |E 0 (θ f ) | . The second objective function is given by the maximum absolute first-order error, i.e., |E 1 (θ f ) | . The

goal is to minimise these errors. 

6. The mobility criteria, governed by the functions M i , i = 1 , . . . , 4 and R i , i = 1 , . . . , 4 , described in Sections 3 and 4 , form

the constraints. For full-cycle mobility, the constraints given by M i is used, whereas, for range mobility the constraints

given by R i are incorporated. 

7. The objectives are computed by sampling the error functions at N uniformly-spaced discrete points in the range of in-

terest of the input, N being decided based on a desired resolution. The number of sample points is decided based upon

the resolution at which the error functions need to be evaluated. It may be noted that the mobility conditions are inde-

pendent of the inputs and hence the sample size etc. 

8. Roots of the FKU equation represent the solutions to the position kinematics for a given value of θ1 . The branches

are distinguished on the basis of the sign of the singularity functions, as discussed in Section 3 . A particular branch

of interest is tracked for the function generation problem. The numerical optimisation is performed on each branch

independently, thereby eliminating the possibility of the existence of branch-errors in the solutions obtained. This also

ensures the exhaustive coverage of the potential solutions appearing in all the kinematic branches of the mechanism. 

The dual-order function generation problem can be mathematically expressed as: 

Minimise: F 1 := max |E 0 (θ f ) | , 
F 2 := max |E 1 (θ f ) | , where, θ f ∈ [ θa , θb ] ;

subject to: M k (for full cycle mobility) 

or R k (for range mobility) where, k = 1 , . . . , 4 . (89)

6. Numerical examples 

The above formulation of optimal design of the Watt-II and the Stephenson-III mechanisms for function generation is

applied to a number of functions previously studied in literature: 

1. A parabolic function, originally used by McLarnan in [19] , and revisited in [3] , generated using the Watt-II and the

Stephenson-III mechanisms. 

2. Range ballistic function as described in [20] and [3] , generated using the Watt-II and the Stephenson-III mechanisms.

The range ballistic function is used (in conjunction with elevation ballistic function) to find the orientation of guns to hit

a target at a given distance and altitude. 

3. Hip-motion generator as described in [5] , generated using the Watt-II and the Stephenson-III mechanisms. The hip-

motion generator is one of the three parts of a walking mechanism composed of six-bar mechanisms. 

4. Double-dwell function given in [12] , and used as a benchmark in [13] , generated using the Stephenson-III mechanism.

Double-dwell mechanisms are often preferred over cam-based mechanisms, the latter being prone to wear and more

expensive [12] . 

The function generation problem is formulated as a multi-objective optimisation problem as explained in Section 5.2 and

is solved using NSGA-II [16] . Few salient features of this algorithm, from a user’s perspective, are: 

1. The Genetic Algorithm (GA) is inspired by the natural process of evolution, wherein, a given population attempts to

attain the optimal state, by improving over generations . These two parameters, i.e., the population size and the number

of generations, are defined by the user, based on how the system tends to converge to the optimal solution(s). 
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Table 1 

Bounds of the design variables in the parabola function generation problem ( x l ∈ [ a l , b l ]) for the 

Watt-II mechanism. 

Variable ( x l ) l 0 l 2 l 3 l 4 l 5 α l a o 3 x o 3 y θ0 φ0 

Lower bound ( a l ) 0.2 0.2 0.2 0.2 0.2 0 0.2 -20 -20 0 0 

Upper bound ( b l ) 6 6 6 6 6 2 π 6 20 20 2 π 2 π

Table 2 

Bounds of the design variables in the parabola function generation problem ( x l ∈ [ a l , b l ]) for the 

Stephenson-III mechanism. 

Variable ( x l ) l 0 l 2 l 3 l 4 l 5 x c y c o 3 x o 3 y θ0 φ0 

Lower bound ( a l ) 0.2 0.2 0.2 0.2 0.2 -8 -8 -20 -20 0 0 

Upper bound ( b l ) 6 6 6 6 6 8 8 20 20 2 π 2 π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. The initial population is randomly dispersed in the design space, the randomisation being seeded by a value input by

the user. 

3. The off-springs of the subsequent generations evolve, based upon crossover and mutation . The crossover operation pro-

duces children by considering the design vectors of a pair of parents in the current generation. The mutated children

are created by imparting random modifications on a single individual of the current generation. The “good” solutions are

used to create off-springs via crossover, thereby leading to convergence towards optimal solutions. The “bad” solutions

are used to create mutated children, thereby leading to exploration. These operations are controlled by four parameters:

(1) probability of crossover, (2) probability of mutation, (3) distribution index of crossover, and (4) distribution index of

mutation. It has been observed that NSGA-II is sensitive to these parameters for certain problems. However, generic

guidelines exist for appropriately choosing these control parameters [16] . 

4. For a multi-objective optimisation problem, generally, a set of optimal solutions is returned, as there may not be a single

solution which is optimal from the perspective of all the objectives. The choice of a particular solution lies in the purview

of the designer, which is often aided by the study of the Pareto front produced by NSGA-II . 
5. While other optimisation techniques may be used, the authors have chosen GA as it is a global optimisation algorithm

and does not require a “good” initial guess for the algorithm to converge. Moreover, NSGA-II has been widely used in

solving optimisation problems and is found to be fairly robust, in such cases (see, e.g., [21,22] ). 

In the following, various desired output functions are described and the obtained results are documented. 

6.1. Parabolic function 

The parabolic function generation problem is specified in [3] as: 

φ5 f (θ f ) = 

θ2 
f 

90 

, ∀ θ f ∈ [0 , 90 

◦] , where all angles are in degrees. (90) 

The function generation problem is formulated as described in Section 5.2 . The maximum of the absolute value of the error

functions, described in Eqs. (80 ) and ( 81 ), form the objective functions in the optimisation problem. The range mobility cri-

teria, R i , i = 1 , . . . , 4 , form the constraints. The problem is solved using both the Watt-II and the Stephenson-III mechanisms,

using the bounds on the design variables 1 , x l , as given in Tables 1 and 2 , respectively. In order to facilitate compactness and

ease of fabrication of the mechanism, an additional constraint on the ratio of the link lengths is incorporated: 

ρ = max { k j } / min { k j } ≤ 6 , j = 1 , . . . , 8 , (91) 

where k j comprise the parameters l i , i = 0 , . . . , 5 and also the lengths of the three sides of the coupler link. 

Two sets of optimisation runs are performed: (1) using the default numerical precision in C++ , referred to as binary64
by IEEE 754 standard, and, (2) after truncating the values of link lengths to three places after the decimal, and the angles

truncated to two places. This is done to incorporate in the design process the fact that it may not be possible to manufacture

links to beyond a certain accuracy level. 

The objective functions are evaluated by sampling the desired range of motion. The number of sample points are taken

to be N = 400 , resulting in a resolution of 0.225 ° for the input angle, θ1 . The NSGA-II is run using a population of 20 0 0,

over 10 0 0 generations, which takes nearly 10 min 

2 of CPU time to cover all the branches of the mechanism. The NSGA-II
parameters used for the optimisation runs, in all the examples, are detailed in Table 3 . In order to accommodate the sensi-

tivity of the results to these parameters, the probabilities of crossover and mutation are varied, within the ranges indicated.
1 All linear dimensions are scaled with respect to the length of the input link, and hence, are unless. All angles are in radians, unless stated otherwise 

explicitly. 
2 Computational infrastructure: Intel Core i7-4770 CPU running at 3.40 GHz, with 32GB of RAM. The four kinematic branches are covered simultaneously 

in four different processes running in parallel, wherein each core solves the problem for one branch independently. 
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Table 3 

NSGA-II parameters used in all the numerical opti- 

misations reported in this paper. 

Parameter name Value 

Population size 20 0 0 

Number of generations 10 0 0 

Probability of crossover 0.50–0.90 

Probability of mutation 0.07–0.12 

Distribution index of crossover 10 

Distribution index of mutation 50 

Seed for random number generator 0.5 

Fig. 11. Convergence of the two objective functions for the first 300 generations. The data is taken from the parabola function generation problem using 

the Watt-II mechanism. 

Fig. 12. Pareto front for parabola function generation using the Watt-II mechanism. The variation in the first-order error is of the order 10 −3 and hence, is 

very small. The design is selected based on the minimum zeroth-order error. 

 

 

 

 

 

 

 

 

 

 

The variation of the zeroth-order and the first-order errors are plotted against the number of generations in Fig. 11 .

As seen in the both the plots, the errors converge adequately within 100 generations, though the optimisation runs are

carried through to 10 0 0 generations (of which only the first 300 are depicted in the plots) mainly out of academic interest,

motivated by the fact that the computational expenses involved are nominal. 3 The values of the two objective functions,

based on the final population, are plotted in the form of a two-dimensional Pareto front (see, e.g., [23] ), shown in Fig. 12 . The

designer is free to choose the preferred solution based on the application and the relevant tolerance limits. For example, in

case of the Watt-II mechanism, it may be observed from Fig. 12 that the variation of the first-order error is very small—of the

order 10 −3 . Hence, the final design is selected based on the minimum zeroth-order error. The solution with the minimum

zeroth-order error appeared in the branch DD. This particular solution has been used in the numerical results tabulated

below. The architecture parameters obtained have been reported in Tables 4 and 5 for the Watt-II and the Stephenson-III
3 Similar trends are seen in the other examples, which are not detailed here due to space constraints. 
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Table 4 

Results: architecture parameters for the parabola function 

generation using the Watt-II mechanism (DD branch). 

l 0 2.496 α 349.50 °
l 1 1 l a 5.606 

l 2 3.165 o 3 x 4.252 

l 3 1.071 o 3 y −1.207 

l 4 4.733 θ0 154.70 °
l 5 1.997 φ0 286.48 °

Table 5 

Results: architecture parameters for parabola function gen- 

eration using the Stephenson-III mechanism (UD branch). 

l 0 4.731 x c 2.797 

l 1 1 y c -4.253 

l 2 1.022 o 3 x 0.451 

l 3 5.407 o 3 y 1.303 

l 4 4.840 θ0 180.48 °
l 5 3.835 φ0 74.48 °

Table 6 

Results and comparison with [3] for parabolic function using the 

Watt-II mechanism. 

Error Present work ( ρ ≤ 6) From [3] 

Truncated binary64 300 decimal 

max |E 0 (θ1 ) | 0.015 0.010 0.015 

max |E 1 (θ1 ) | 0.003 0.002 Data not available 

Table 7 

Results and comparison with [3] for parabolic function using the Stephenson- 

III mechanism. 

Error Present work ( ρ ≤ 6) From [10] From [3] 

Truncated binary64 300 decimal 

max |E 0 (θ1 ) | 0.019 0.011 0.042 0.025 

max |E 1 (θ1 ) | 0.003 0.002 0.023 Data not available 

 

 

 

 

 

 

 

mechanisms, respectively. The errors are reported and compared with [3] in Table 6 for the Watt-II mechanism and Table 7

for the Stephenson-III mechanism. Figs. 6.1 and 6.1 show the corresponding mechanisms for parabola function generation.

The desired function, the generated function, and the dual-order errors are shown in Figs. 13 and 14 . The plots of the output

angles and the mobility margins are given in Fig. 15 . The plots show the relation between the vanishing of the mobility

margins and the mobility of the mechanism. 

6.2. Range ballistic function 

The range ballistic function is described in [20] and reformulated in [3] : 

φ5 f (θ f ) = 45 

◦ − 1 

2 

arccos 

(
− g 

v 2 o 

(
( 25484 . 2 − 40 0 0 ) θ f 

225 

+ 40 0 0 

))
, (92) 

where v 0 = 50 m/s is the muzzle velocity of the artillery round, and g is the acceleration due to gravity, taken to

be 9.81 m/s 2 . All the angles are in degrees. It is assumed that there is no air resistance, and therefore the path of the

projectile is parabolic. 

The architecture parameters for the Watt-II are given in Table 8 , and the errors are tabulated in Table 10 . 

Similarly, for the Stephenson-III mechanism the architecture parameters are given in Table 9 , and the errors are given in

Table 11 . The mechanism and the error plots are not shown in either case, due to space constraint. 
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Fig. 13. The desired function, generated function, and errors in zeroth and first order for parabola function generation using the Watt-II mechanism. 
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Fig. 14. The desired function, generated function, and errors in zeroth and first order for parabola function generation using the Stephenson-III mechanism. 

Table 8 

Results: architecture parameters for range ballistic function 

generation using the Watt-II mechanism (DD branch). 

l 0 1.289 α 195.38 °
l 1 1 l a 2.789 

l 2 2.513 o 3 x 5.621 

l 3 2.179 o 3 y −0.398 

l 4 3.810 θ0 125.48 °
l 5 5.878 φ0 163.87 °

Table 9 

Results: architecture parameters for range ballistic func- 

tion generation using the Stephenson-III mechanism (DD 

branch). 

l 0 2.371 x c 4.156 

l 1 1 y c 2.558 

l 2 4.850 o 3 x 0.218 

l 3 3.391 o 3 y −1.336 

l 4 3.886 θ0 115.74 °
l 5 5.449 φ0 37.82 °

Table 10 

Results for range ballistic function using the Watt-II mechanism. 

Error Present work ( ρ ≤ 6) 

Truncated binary64 

max |E 0 (θ1 ) | 0.135 0.130 

max |E 1 (θ1 ) | 0.124 0.101 
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Fig. 15. The output angles and the mobility margins for the mechanism selected to generate parabola function using Watt-II mechanism. The figures 

portray the relation between the mobility margins and the mobility of the mechanism. As the mobility margin in the RR-chain, ε4 , goes to zero, a pair of 

branches merge together. This is in contrast with the singularity in the four-bar loop wherein both the pairs of branches merge. 
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Table 11 

Results and comparison with [3] for range ballistic function using 

the Stephenson-III mechanism. 

Error Present work ( ρ ≤ 6) From [3] 

Truncated binary64 300 decimal 

max |E 0 (θ1 ) | 0.098 0.070 0.100 a 

max |E 1 (θ1 ) | 0.055 0.048 Data not available 

a As read from Fig. 7 in [3] . 

Table 12 

Fourier coefficients for hip motion function generation as 

specified in [5] . 

a 0 −0 . 23899606 a ′ 0 −0 . 12764964 

a 1 0.26507432 b 1 0.04632108 

a 2 0.00265777 b 2 0.05632819 

a 3 −0 . 02058442 b 3 0.01472108 

Table 13 

Results: architecture parameters for hip motion generation 

using the Watt-II mechanism (DD branch). 

l 0 2.608 α 294.50 °
l 1 1 l a 2.901 

l 2 5.113 o 3 x 8.160 

l 3 3.678 o 3 y −4.560 

l 4 2.727 θ0 127.77 °
l 5 5.252 φ0 167.88 °

Table 14 

Results: architecture parameters for hip motion generation 

using the Stephenson-III mechanism (UD branch). 

l 0 3.396 x c 3.829 

l 1 1 y c 4.205 

l 2 2.896 o 3 x −1.322 

l 3 1.821 o 3 y 11.894 

l 4 2.786 θ0 68.76 °
l 5 4.824 φ0 320.89 °

 

 

 

 

 

 

6.3. Hip motion function 

The hip motion function, as generated by a walking mechanism, proposed in [5] , is a periodic function of time, t , de-

scribed by the truncated Fourier series 4 : 

f (t) = 

a 0 
2 

+ 

3 ∑ 

m =1 

( a m 

cos (mt) + b m 

sin (mt) ) + a ′ 0 . (93) 

The coefficients, a m 

, b m 

, are given in Table 12 . The angular velocity of the input link is given to be 1 rad/s. Therefore, the

function generation problem can finally be stated in terms of the input angle, θ f , as: 

φ5 f = f (θ f ) , (94) 

where all angles are in radians. The hip motion is generated using both the Watt-II and the Stephenson-III mechanisms. The

architecture parameters for the Watt-II mechanism are given in Table 13 , and the errors are given in Table 15 . Similarly, the

architecture parameters for the Stephenson-III mechanism are given in Table 14 , and the errors are given in Table 16 . 

6.4. Double-dwell function generation 

The design of a six-bar mechanism having double-dwell at specified locations of the output link is a standard problem

and has been studied in [12,13,24] recently using the optimisation approach. In this work, the double-dwell problem is
4 In Eq. (95) , a constant correction term, a ′ 0 , had to be added in order to conform to the first row of Table 2 in [5] . The output function given in Eq.(33) 

of [5] , as it is, does not agree with the table. 
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Table 15 

Results for hip motion function using the Watt-II mecha- 

nism. 

Error Present work ( ρ ≤ 6) 

Truncated binary64 

max |E 0 (θ1 ) | 0.656 0.591 

max |E 1 (θ1 ) | 0.410 0.382 

Table 16 

Results for hip motion function using the Stephenson-III 

mechanism. 

Error Present work ( ρ ≤ 6) 

Truncated binary64 

max |E 0 (θ1 ) | 0.186 0.182 

max |E 1 (θ1 ) | 0.014 0.014 

Table 17 

Results: architecture parameters for double-dwell func- 

tion generation using the Stephenson-III mechanism (UD 

branch). 

l 0 2.116 x c 1.262 

l 1 1 y c 1.036 

l 2 1.617 o 3 x 5.368 

l 3 1.870 o 3 y -0.026 

l 4 5.208 θ0 343.77 °
l 5 1.965 φ0 6.30 °

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

posed as a function generation problem, described as follows: 

φ5 f (θ f ) = 

{
φ5 f = φ51 ∀ θ1 ∈ [ −15 

◦, 15 

◦] , 
φ5 f = φ52 ∀ θ1 ∈ [160 

◦, 220 

◦] , 
(95)

where φ51 and φ52 are the desired dwell output angles. The span of θ1 is divided into N 1 = 100 and N 2 = 400 sample

points for the first and the second dwell periods, respectively. The desired values of φ5 at the first and the second dwell are

φ51 = 225 ◦ and φ52 = 210 ◦, respectively. 

6.5. Summary of the numerical studies 

The seven examples reported above demonstrate clearly the efficacy of the formulation and the solution method. Even

when compared with the solutions obtained using an exact synthesis method, the results obtained in this work are better in

all the cases, wherever data are available for comparison. It may be noted that all the examples ran within 10–12 min, using

no more than 4 cores of a standard desktop PC—which is minuscule, when compared to the computational requirements

of the exact method. Each core is used to scan one of the four kinematic branches in general. However, the designer can

choose to search for a feasible mechanism in any one, two, or three of the four branches, if needed. 

The above results are enabled by two key novel theoretical developments, namely, the derivation of the mobility criteria

of the mechanisms, explicitly in terms of link lengths and fixed pivot locations; and the concept of dual order formulation

of the structural error. The first one helps confine the search for the optimal solution to the feasible region, thereby reduc-

ing the computation time very significantly, while the second helps in obtaining results of superior quality. The NSGA-II
optimiser compliments the formulation very aptly. However, it may be noted that the burden of obtaining a good solution

is not put entirely on the optimiser. The optimiser is used almost as a black-box tool, with all but two of the control/input

parameters of the optimiser being kept fixed (see Table 3 ) across all the examples. Two of the parameters, namely, the

probabilities of crossover and mutation, are varied over a 6 × 6 uniform grid overlaid on their respective ranges mentioned

in the said table, and best result is reported. It is observed that all the 36 results in each example varied within the same

order of magnitude, and hence the effect of finding the best set of NSGA-II control parameters leading to the best design

results turned out to be an exercise of academic nature, than a functional one from a design standpoint. These studies show,

that in principle, any other multi-objective optimiser could be used in conjunction with the proposed kinematic formulation

of the problem( Fig. 16 , Tables 17 and 18 ). 
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Fig. 16. Results for double dwell function generation using Stephenson-III mechanism. 
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Table 18 

Results and comparison with [12] and [13] for double-dwell function generation. 

Dwell Period Error Present work [10] [12] [13] a 

Truncated binary64 

θ1 ∈ [ −15 ◦, 15 ◦] max |E 0 (θ1 ) | ( in ◦) 0.029 0.024 0.049 0.556 0.044 

φ51 = 225 ◦ max (|E 1 (θ1 ) | ) 0.001 0.001 0.014 0.053 0.014 

θ1 ∈ [160 °, 220 °] max |E 0 (θ1 ) | ( in ◦) 0.039 0.035 0.049 0.254 0.085 

φ52 = 210 ◦ max (|E 1 (θ1 ) | ) 0.001 0.001 0.018 0.031 0.006 

a In [13] the first and the second dwell occur at φ5 = 114 . 63 ◦ and φ5 = 125 . 28 ◦, respectively. The 

zeroth order error is calculated as the difference between the maximum and the minimum values of 

the generated output in the respective ranges of the dwell motions in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusions 

A new formulation for the optimal design of six-bar function generators has been presented in this paper. Several new

concepts related to the mobility analysis, as well as the formulation of a multi-objective optimisation problem using the

dual-order structural error have been introduced. The derivations and the corresponding results have been demonstrated

via application to the Watt-II and the Stephenson-III mechanisms. To establish the efficacy of the proposed formulation, it

has been bench marked against seven examples reported in the existing literature. In all of these, the results obtained in the

proposed method exhibit improvements in terms of accuracy. The obtained results are free of branch errors, and conform

to additional constraints on the range of link lengths. The CPU-time requirement associated with the formulation is very

low, i.e., around 10–12 min on a standard desktop PC, as compared to the tens/hundreds of hours needed on 256/512 core

computers necessary to implement the exact methods. The proposed formulation is applicable to other single-degree-of-

freedommechanisms, including six-bar mechanisms of the other topologies. Analyses of these would be one of the future

extensions of the present work. 
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