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Abstract—This paper introduces a new approach for the
synthesis of planar six-bar mechanisms via multi-objective
numerical optimisation. Using the input-output relation-
ship of such a mechanism, the structural error is formu-
lated. In addition to the structural error, its derivative is
also included in the objectives, leading to results which are
comparable in accuracy to the exact methods reported in
existing literature, and better than the optimisation-based
methods. Also, analytical conditions are derived for the
identification of the candidate designs which are free of sin-
gularities, mobility or branch defects. The formulation and
results are demonstrated in the context of a Stephenson-III
mechanism, though these can be generalised to the six-bar
mechanisms of other topologies.
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I. Introduction

This paper focuses on the development of mathemati-
cal formulations that allow the synthesis of planar six-bar
mechanisms for the purpose of function generation. In par-
ticular, new developments are reported with regard to (a) as-
sembly and mobility criteria for (a specific type of) six-bar
mechanisms, (b) formalisation and utilisation of a scalar
input-output relationship (similar to the Freudenstein’s ap-
proach in the case of the planar four-bar mechanism), and
(c) introducing the concept of dual order structural error
minimisation via multi-objective optimisation.

Traditionally, four-bar mechanisms are used for the pur-
pose of mechanical function generators, following, e.g., the
precision point approach introduced by Freudenstein [1].
Four-bar mechanisms posses only three independent link
ratios (i.e., design variables), and hence they can match an
arbitrary desired output function exactly at the most only at
three points. In comparison, the six-bar mechanisms have
larger design spaces—the Stephenson-II and III can be used
as function generators and have 11 architecture parameters
each, whereas the Watt-II has 9 such parameters.

Naturally, the six-bar mechanisms have better potential
in terms of accuracy, more so while approximating highly
non-linear functions that require larger numbers of preci-
sion points to describe them closely over the desired fi-
nite interval of crank motion. This fact was recognised
quite early, and there are sporadic instances of develop-
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ment of such mechanisms as far back as 1940 [2]. However,
not many applications and/or theoretical developments have
been reported in this regard. Very recently, an exact syn-
thesis of six-bar mechanisms for function generation has
been carried using 8 precision points [3]. The resulting
equations, if reduced to a univariate polynomial, would
have had a total degree of 705432, which would have been
practically impossible to solve accurately, even if it could
be derived. Hence the set of equations were solved using
a homotopy-based numerical method, implemented in the
special purpose software, Bertini [4], leading to 92736
non-singular and non-degenerate real solutions.

While such a study is of great kinematic significance, it
demands a great amount of effort in terms of mathemati-
cal formulation and numerical solution, not to mention the
use of very specialised computational tools. Additionally,
post-synthesis design validations are required to detect is-
sues relating to assembly, mobility, and kinematic branch-
ing. An alternative approximate approach, namely, numer-
ical optimisation, can be applied to such situations, which
can make use of simpler formulations, and more generic
computational tools, while producing results which are con-
strained a priori to satisfy the requirements listed above,
and potentially more. In the case of the four-bar, several
such studies have been reported (see, e.g., [5], [6]) for the
coupler-curve synthesis problem, even after the nine-point
synthesis problem was solved exactly [7]. In the case of the
problem at hand, i.e., kinematic synthesis of six-bar mech-
anisms for function generation, however, the authors were
not able to trace a single report pertaining to the optimi-
sation approach. This may be attributed to the fact that
the kinematic formulations of either the objectives or the
constraint functions are not available for the six-bar mech-
anisms (to the best of the knowledge of the authors). For
instance, a function generator would need to be free of sin-
gularities, at least in the desired range of the input. It is
hard to incorporate such a requirement in the optimisation
process, as no “Grashof-like” [8] analytical criterion on the
design parameters exist for the case of the six-bar mecha-
nisms.

The present work proposes an optimisation approach to
the problem of design of six-bar function generators. It
builds upon several new results relating to the assembly
criteria, as well as full-cycle mobility. These new devel-
opments allow the identification of combinations of design
variables leading to feasible mechanisms with accuracy and
certainty, requiring relatively less computation involving
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the architecture parameters alone, and hence support the de-
sign process in a significant way.

The formulation of the problem in this work starts with
the elimination of the unknown joint variables from the
loop-closure equations, till only the desired output variable
remains. Solution of this scalar univariate equation (termed
as the FKU, following [9]) leads to the kinematic branches
of the mechanism. The branches are identified using the
singularity functions, which are derived following the anal-
ysis of the constraint Jacobian matrices, as shown in [10].
Each branch is studied independently to identify a potential
solution in it, and also alleviating the branch-error problem
in the process. The singularity conditions are converted to
polynomials in an algebraic variable related to the crank
motion. Characterisation of the roots of these polynomi-
als leads to the identification of the singularity-free mech-
anisms, possessing full-cycle mobility. The problem of as-
sembly constraints is also solved similarly, leading to the
identification of link geometries capable of assembling into
the mechanism at a nominal computational expense. Fi-
nally, the structural error, to be minimised in the optimi-
sation process, is defined in a novel manner. The devi-
ation in the output function is treated as the zeroth-order
error, and its derivative, the first-order error, is also con-
sidered simultaneously, in what may be called a dual or-
der formulation. As the latter objective aids the former,
the final results obtained are typically better than in the
traditional methods, wherein only the zeroth-order struc-
tural errors are considered. For the solution of the prob-
lem formulated thus, a Genetic Algorithm (GA)-based op-
timiser, namely NSGA-II [11], has been used. Such an opti-
miser is ideally suited for the problem at hand, since it han-
dles multi-objective problems; performs global exploration,
and hence does not require a “good” initial guess; further-
more, is relatively insensitive to the dimension of the de-
sign space—which allows the complete exploitation of the
potential of the mechanism, that is not possible yet in the
exact approaches due to the stiff rise in the computational
complexity with each additional variable utilised.

In this paper, the Stephenson-III mechanism is used in
all the formulations and examples, using 9 of the total of 11
variables that can be considered, as opposed to 8 in [3].
Two numerical examples are chosen from existing reports,
allowing a quantitative comparison of the results achieved,
which validates the efficacy of the proposed approach. It
may also be noted, while this paper focuses only on the
Stephenson-III, the approach can be easily adopted to any
of the other six-bar mechanism topologies.

The rest of the paper is organised as follows: formula-
tion of the mobility criteria, using assembly and singularity
conditions, is described in Section II. Formalisation of the
function generation problem with dual order objectives is
done in Section III. The numerical studies for two function
generation problems—parabola function [12], [3], and dou-
ble dwell [13], [14]—and the corresponding results are pre-

sented in Section IV. Finally, the conclusions are presented
in Section V.

II. Formulation: mobility criteria

A mechanism is said to possess full-cycle mobility if
(1) assembly of the mechanism is possible for the given ar-
chitecture parameters, and (2) there is no singularity, for a
complete rotation of the crank. Analysis of the loop-closure
equations can lead to specific conditions, e.g., Grashof’s
condition [8] in the case of four-bar mechanism. Simi-
lar analysis is carried out for the six-bar mechanism of
Stephenson-III type.

A. Forward kinematics

A n-degree-of-freedom mechanism has ‘n’ independent
(or input) variables organised in the vector θ ∈ Rn. Them-
dependent (or passive variables) are denoted by φ ∈ Rm.
The dependent variables are related to the independent
variables via ‘m’ scalar loop-closure constraint equations.
For a one-degree-of-freedom mechanism, the loop-closure
equations can be written as:

η(θ,φ) = 0. (1)

In general, it is possible to eliminate (m − 1) passive vari-
ables from the loop-closure equations to obtain a univari-
ate in the remaining passive variable, say φm, with coef-
ficients in terms of architecture parameters and the input
variable, θ. This univariate equation has been termed as the
forward kinematics univariate (FKU) [9] equation and can
be written as:

f(φm) = 0. (2)

In order to obtain the velocity coefficient (see, e.g., [14])
of the output variable with respect to the input variable, the
FKU, given in Eq. (2), is differentiated with respect to time:

∂f

∂θ
θ̇ +

∂f

∂φm
φ̇m = 0. (3)

The velocity coefficient of φm w.r.t. θ is given by:

Kφmθ = φ̇m/θ̇. (4)

From Eq. (3):

φ̇m = −
(
∂f

∂θ

)
/

(
∂f

∂φm

)
θ̇. (5)

Comparing Eq. (4) with Eq. (5) the velocity coefficient is
given by:

Kφmθ = −
(
∂f

∂θ

)
/

(
∂f

∂φm

)
, (6)

where
(
∂f
∂φm

)
6= 0 at a non-singular configuration. The

velocity coefficient, Kφmθ is a rational function of φm, θ,
and the architecture parameters of the mechanism.
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A.1 Position kinematics of Stephenson-III mechanism

The six-bar mechanism of type Stephenson-III, shown
in Fig. 1, is used to illustrate the above theories. The for-
mulation can be extended to other types of six-bar mecha-
nism. The input angle, θ1, is associated with link l1. The

Fig. 1. Stephenson-III mechanism. The fixed pivots are denoted by
o1,o2, and o3. The coupler point c = (xc, yx)> is specified with re-
spect to the coupler’s coordinate frame (XcYc). The input angle (θ1) and
the output angle (φ5) are associated with the links l1 and l5, respectively.

passive joint angles are φ = (φ2, φ3, φ4, φ5)>. The out-
put angle φ5 is associated with the link l5. The points
o1 = (0, 0)>, o2 = (l0, 0)>, and o3 = (o3x, o3y)> are
the fixed pivots of the mechanism. Point c is the coupler
point and its coordinates in the local frame, XcYc, of the
coupler link is given by (xc, yc)

>. For the four-bar loop
o1abo2o1, the constraint equations can be written as:

η1 = l1 cos θ1 + l2 cosφ2 − l0 − l3 cosφ3 = 0, (7)
η2 = l1 sin θ1 + l2 sinφ2 − l3 sinφ3 = 0. (8)

Similarly, for the five-bar loop o1acdo3o1 the constraint
equations can be written as:

η3 = l1 cos θ1 + xc cosφ2 − yc sinφ2 + l4 cosφ4

− b3x − l5 cosφ5 = 0, (9)
η4 = l1 sin θ1 + xc sinφ2 + yc cosφ2 + l4 sinφ4

− b3y − l5 sinφ5 = 0. (10)

The constraint equations, Eqs. (7–10), can be compactly
written as:

η = (η1, η2, η3, η4)> = 0. (11)

The following steps are employed to obtain the FKU:
• The Eqs. (7,8) are linear in the sine and cosine
of φ3. Hence, the variable φ3 is eliminated by finding
cosφ3 and sinφ3, and using the trigonometric identity
cos2 φk + sin2 φk = 1, to obtain the equation:

g1(θ1, φ2) = 0. (12)

• Similarly, the Eqs. (9,10) are linear in the sine and cosine
of φ4. The variable φ4 is eliminated as above to obtain the
equation:

g2(θ1, φ2, φ5) = 0. (13)

• The functions g1 and g2, given in Eq. (12) and Eq. (13),
respectively, are linear in the sine and cosine of φ2. The
variable φ2 is eliminated to obtain the FKU equation:

g3(θ1, φ5) = 0. (14)

• The function g3 can be converted into a polynomial using
the standard tangent half-angle substitution t5 = tan φ5

2 :

g4(θ1, t5).

The coefficients of the polynomial g4 are functions of ar-
chitecture parameters and input angle, θ1.

The derivation of the FKU can be described schemati-
cally as in (15).

η1(θ1, φ2, φ3) = 0

η2(θ1, φ2, φ3) = 0

 ×φ3

−−→ g1(θ1, φ2) = 0

η3(θ1, φ2, φ4, φ5) = 0

η4(θ1, φ2, φ4, φ5) = 0

 ×φ4

−−→ g2(θ1, φ2, φ5) = 0


×φ2

−−→ g3(θ1, φ5) = 0
φ5→t5
−−−→ g4(θ1, t5) = 0. (15)

Here,
×v
−−→ denotes elimination of the variable v. The transformation of trigonometric functions of the angle to its equivalent

tangent half-angle form is represented by
φ5→t5
−−−→.
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A.2 First order kinematics of Stephenson-III mechanism

The velocity coefficient for Stephenson-III mechanism is
obtained using Eq. (6) and Eq. (14):

Kφ5θ1 = −
(
∂g3

∂θ1

)
/

(
∂g3

∂φ5

)
. (16)

The velocity coefficient, Kφ5θ1 , can be expressed as a ra-
tional function in t5:

Kφ5θ1(θ1, φ5)
φ5→t5
−−−→ Kt5θ1(θ1, t5). (17)

The coefficients of the rational function, Kt5θ1 are func-
tions of the architecture parameters and the input angle, θ1.

B. Singularity criteria of Stephenson-III mechanism

Singularity of a mechanism can be studied via the con-
straint Jacobian matrix of the mechanism [10]. Finding the
partial derivatives of the loop-closure equations, η given
in Eq. (11), with respect to φ gives the constraint Jacobian
matrix:

Jηφ =
∂η(θ1,φ)

∂φ
. (18)

Singularity occurs when the determinant of the ma-
trix, Jηφ, is zero:

det(Jηφ) = l2l3l4l5 sin(φ2 − φ3) sin(φ4 − φ5). (19)

As the link-lengths are non-zero for the mechanism to ex-
ist, Eq. (19) leads to two distinct singularity functions:

s1
∆
= sin(φ2 − φ3), (20)

s2
∆
= sin(φ4 − φ5), and (21)

s1 = 0⇒

{
φ3 = φ2 or
φ3 = φ2 ± kπ, k ∈ Z+.

(22)

s2 = 0⇒

{
φ4 = φ5 or
φ4 = φ5 ± kπ, k ∈ Z+.

(23)

The signs of the singularity functions identify the kinematic
branches of the mechanism uniquely:
a) Branch UU, if s1 < 0 and s2 < 0.
b) Branch UD, if s1 < 0 and s2 > 0.
c) Branch DU, if s1 > 0 and s2 < 0.
d) Branch DD, if s1 > 0 and s2 > 0.

Here, the first and the second letters in the branch name
denote the configuration of abo2 and cdo2 chain, respec-
tively: ‘U’ denotes elbow up and ‘D’ denotes elbow down
configurations. These have been depicted in Fig. 2.

The singularity function given by s1 in Eq. (20) repre-
sents the singularity in the four-bar loop o1abo2o1. Singu-
larity occurs when1 φ3 = φ2 − kπ, k = 0, 1, geometrically

(a) UU: s1 < 0, s2 < 0 (b) UD: s1 < 0, s2 > 0

(c) DU: s1 > 0, s2 < 0 (d) DD: s1 > 0, s2 > 0

Fig. 2. The four branches of the Stephenson-III mechanism.

equivalent to l2 and l3 being collinear. These conditions are
depicted in Fig. 3(a) and Fig. 3(b), respectively.

In order to obtain the singularity conditions in
terms of architecture parameters, φ3 is eliminated from
the Eqs. (7,8) by directly substituting φ3 = φ2 and φ3 =
φ2 − π. Two different sets of loop-closure equations,
namely, e1(θ1, φ2) = (e11, e12)> = 0 and e2(θ1, φ2) =
(e21, e22)> = 0 are obtained, respectively. Solving these
specialised loop-closure equations in the same way as de-
scribed in Section II-A, a non-linear equation only in the in-
put variable θ1 is derived. The sequential elimination of φ2

and φ3 can be schematically represented as follows:

e11(θ1, φ2) = 0

e12(θ1, φ2) = 0

 ×φ2

−−→ h1a(θ1) = 0
θ1→t1
−−−→ h1b(t1) = 0,

e21(θ1, φ2) = 0

e22(θ1, φ2) = 0

 ×φ2

−−→ h2a(θ1) = 0
θ1→t1
−−−→ h2b(t1) = 0.

The equations h1b(t1) = 0 and h2b(t1) = 0 are quadratic
in t1. For the mechanism to be non-singular, these equa-
tions should not be satisfied for any θ1 ∈ [0, 2π], or equiv-
alently, t1 ∈ R. Hence, the discriminants of the two
quadratic equations should be negative so that they do not
have real roots. The singularity functions, S1 and S2, hence
derived, can be written as:

S1 = (l0 − l1)2 − (l2 − l3)2 from φ3 = φ2. (24)

S2 = −(l0 + l1)2 + (l2 + l3)2 from φ3 = φ2 − π. (25)

The singularity functions S1 and S2 depend only on ar-
chitecture parameters, and hence represent characteristics

1For the singularity condition s1 = 0, φ2 − φ3 = ±kπ. Considering
φ2 − φ3 ∈ [0, 2π], φ2 − φ3 = 0 or π.
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of the mechanism’s architecture—and not of a particular
configuration. It is required that the values of these func-
tions are greater than zero for non-singular mechanism.
These lead to (an equivalent of) the Grashof’s criteria [8],
as expected, for the four-bar loop of the mechanism.

The singularity in the loop o1acdo3o1 is governed by
the function s2, and occurs when φ5 = φ4 − kπ, k = 0, 1.
This is geometrically equivalent to l4 and l5 being collinear,
as depicted in Fig. 3(c) and Fig. 3(d), respectively.

Following the same steps used for deriving S1 and S2, φ5

is eliminated by substituting φ5 = φ4 and φ5 = φ4 − π,
respectively, into the constraint equations Eqs. (7–10). Two
different sets of loop-closure equations are obtained:

k1(θ1, φ2, φ3, φ4) = (k11, k12, k13, k14)> = 0, (26)

k2(θ1, φ2, φ3, φ4) = (k21, k22, k23, k24)> = 0. (27)

Solving the specialised loop-closure equations k1 = 0,
in the same way as described in Section II-A, a non-
linear equation involving only one joint variable, θ1 is ob-
tained. The sequential elimination of φ2, φ3 and φ4 can be
schematically represented as follows:

k11(θ1,φ23) = 0

k12(θ1,φ23) = 0

×φ3

−−→ q1(θ1, φ2) = 0

k13(θ1,φ24) = 0

k14(θ1,φ24) = 0

×φ4

−−→ q2(θ1, φ2) = 0


×φ2

−−→ q(θ1) = 0

where, φ23 = (φ2, φ3)> and φ24 = (φ2, φ4)>. The func-
tion q(θ1) is converted into a polynomial using the standard
tangent half-angle substitution, t1 = tan θ1

2 . This results
in a six-degree polynomial in t1, whose real solutions give
the singular configurations. The six-degree polynomial is
of the form P61(t) = A1t

6 +B1t
5 +C1t

4 +D1t
3 +E1t

2 +
F1t + G1. Similarly, the condition k2 = 0 (in Eq. (27))
leads to another six-degree polynomial P62(t) = A2t

6 +
B2t

5 +C2t
4 +D2t

3 +E2t
2 + F2t+G2. The coefficients

Ai, . . . , Gi, i = 1, 2, are independent of the configuration
variables and contain only architecture parameters of the
mechanism. For the mechanism to be non-singular for all
values of θ1 ∈ [0, 2π] or equivalently, t1 ∈ R, the poly-
nomials P61 and P62 should not have any real roots. The
condition for no real root for any polynomial of even degree
can be found as follows. First, it may be observed that:

Pn(t)→∞ as t→ ±∞, if A > 0, (28)
Pn(t)→ −∞ as t→ ±∞, if A < 0, (29)

whereA is the leading coefficient of the polynomial, Pn(t).
Considering the case A > 0, for the polynomial Pn(t) to

have no real roots, Pn(t) > 0 ∀t ∈ R. Therefore, the min-
imum value of the polynomial should be greater than zero.
When A < 0, for the polynomial Pn(t) not to have any real

root, Pn(t) < 0 ∀t ∈ R. Therefore, the maximum value of
the polynomial Pn(t) should be less than zero. The maxi-
mum and the minimum values can be calculated by finding
the roots of the derivative of the polynomial and evaluating
the polynomials for those values. Thus, the conditions for
non-singularity can be written as:

min (P61(t)) > 0, if A1 > 0; (30)
max (P61(t)) < 0, if A1 < 0; (31)
min (P62(t)) > 0, if A2 > 0; (32)
max (P62(t)) < 0, if A2 < 0. (33)

The singularity functions S3 and S4 are given by:

S3
∆
=

{
min (P61(t)), if A1 > 0

−max (P61(t)), if A1 < 0.
(34)

S4
∆
=

{
min (P62(t)), if A2 > 0

−max (P62(t)), if A2 < 0.
(35)

The singularity functions Si, i = 1, . . . , 4 should be greater
than zero for the mechanism to be non-singular for full-
cycle of the crank. All the four possible singular configura-
tions have been shown in Fig. 3.

(a) Singularity in four-bar loop:
φ3 = φ2, S1 ≤ 0

(b) Singularity in four-bar loop:
φ3 = φ2 − π, S2 ≤ 0

(c) Singularity in RR chain:
φ5 = φ4, S3 ≤ 0

(d) Singularity in RR chain:
φ5 = φ4 − π, S4 ≤ 0

Fig. 3. The geometric representation of the four singularity conditions
of the Stephenson-III mechanism. These conditions are mathematically
equivalent to singularity conditions S1, S2, S3, and S4 becoming non-
positive, respectively.
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C. Assembly criteria

While using a numerical optimisation algorithm, such as
genetic algorithm, Cuckoo search, differential evolution, a
range for the architecture parameters is specified. Not all
combinations in these ranges form a mechanism. Hence, it
is important to reject such designs outright without consid-
ering them in further computation.

The loop o1acdo3o1 can be assembled iff ∀θ1 ∈ R, the
distance co3 ∈ [|l4 − l5|, l4 + l5]:

(x− o3x)2 + (y − o3y)2 < (l4 + l5)2, (36)

(x− o3x)2 + (y − o3y)2 > (l4 − l5)2, (37)

where, x = l1 cos θ1 + xc cosφ2 − yc sinφ2, and y =
l1 sin θ1 + xc sinφ2 + yc cosφ2 (see Fig. 1). The two con-
centric circles, centred at o3 and radii of l4 +l5 and |l4−l5|,
define the workspace of the coupler point c. On simplifica-
tion and substitution of the tangent half-angle t2 = tan φ2

2
these inequalities take the form:

f1(θ1, t2)
∆
= A1t

2
2 +B1t2 + C1 < 0, (38)

f2(θ1, t2)
∆
= A2t

2
2 +B2t2 + C2 < 0, (39)

where the coefficients A1, B1, C1 and A2, B2, C2 are func-
tions of θ1, as well as the architecture parameters of the
mechanism. Converting the inequalities in Eqs. (38, 39) to
equations using the slack variables ε1 and ε2:

f3(θ1, t2)
∆
= A1t

2
2 +B1t2 + C1 + ε1 = 0, ε1 > 0, (40)

f4(θ1, t2)
∆
= A2t

2
2 +B2t2 + C2 + ε2 = 0, ε2 > 0. (41)

As the four-bar loop o1abo2o1 constrains the angle φ2

in the loop o1acdo3o1, the loop-closure equations for
four-bar given in Eqs. (7,8) are considered. The an-
gle φ3 is eliminated and using tangent half-angle substitu-
tion t2 = tan φ2

2 the constraint equation is derived:

f5(θ1, t2)
∆
= A3t

2
2 +B3t2 + C2 = 0, (42)

where the coefficients A3, B3, C3 are functions of θ1

and architecture parameters of the mechanism. Since
Eq. (40) shares common roots with Eq. (42), resultant (see,
e.g., [15]) of f3 and f5 with respect to t2 is zero:

A2
3ε

2
1 + (A1(B2

3 − 2A3C3) +A3(−B3B1 + 2A3C1))ε1

+A2
1C

2
3 +A1(−B3B1C3 +B2

3C1 − 2A3C3C1)

+A3(B2
1C3 −B3B1C1 +A3C

2
1 ) = 0. (43)

Similarly, Eq. (41) shares common roots with Eq. (42) and
the hence resultant of f4 and f5 with respect to t2 is zero:

A2
3ε

2
2 + (A2(B2

3 − 2A3C3) +A3(−B3B2 + 2A3C2))ε2

+A2
2C

2
3 +A2(−B3B2C3 +B2

3C2 − 2A3C3C2)

+A3(B2
2C3 −B3B2C2 +A3C

2
2 ) = 0. (44)

The Eqs. (43, 44) are quadratic in εi: u0iε
2
i+u1iεi+u2i, i =

1, 2. As εi > 0, the roots of the equations should be real and
positive. As u0i = A2

3 > 0 for all real A3, the condition for
the quadratics to have positive real roots can be derived as:

f6i
(θ1) = u1i < 0, f7i

(θ1) = u2i > 0,

f8i(θ1) = u2
1i − 4uoiu2i ≥ 0, i = 1, 2. (45)

The three constraints, given by Eq. (45), are functions of θ1

and the architecture parameters. Using tangent half-angle
substitution, f6i , f7i , and f8i are converted to polynomials
in t1. The resulting constraints can be written as:

f9i(t1) < 0, f10i(t1) > 0, f11i(t1) ≥ 0. (46)

The polynomials, f9i
, f10i

, and f11i
, given in Eq. (46), are

of degrees 6, 6, and 12 in t1, respectively. Following an ap-
proach similar to that given in II-B, the conditions obtained
on the coefficients of f9i

and f10i
are:

Af9i < 0, max (f9i(t1)) < 0,

Af10i > 0, min (f10i
(t1)) > 0,

where Af9i and Af10i are the leading coefficients of the
polynomials f9i

and f10i
and i = 1, 2. The assembly crite-

ria are now defined as Fia > 0 and Fib > 0, where

F1
∆
=

{
F1a

∆
= −Af91 ,

F1b
∆
= −max (f91

(t1)).
(47)

F2
∆
=

{
F2a

∆
= Af101 ,

F2b
∆
= min (f101

(t1)).
(48)

F3
∆
=

{
F3a

∆
= −Af92 ,

F3b
∆
= −max (f92

(t1)).
(49)

F4
∆
=

{
F4a

∆
= Af102 ,

F4b
∆
= min (f102(t1)).

(50)

Each of the polynomials f11i, i = 1, 2, factorises into two
quadratics and square of a quartic. The square of the quartic
is always greater than or equal to 0. The two quadratics cor-
respond to the conditions given by S1 and S2, in Eq. (24),
and give the following feasibility conditions:

F5
∆
=

{
F5a

∆
= l1 + l2 + l3 − l0,

F5b
∆
= l0 + l2 + l3 − l1.

(51)

F6
∆
=

{
F6a

∆
= l0 + l1 + l3 − l2,

F6b
∆
= l0 + l1 + l2 − l3.

(52)

The functions Fia and Fib, i = 1, . . . , 6 should be
greater than 0 so that the mechanism can be assembled
∀ θ1 ∈ [0, 2π].

Hence, for Stephenson-III mechanism, the conditions for
full-cycle mobility are governed by S1, S2, S3, S4, F1, F2,
F3, F4, F5, and F6. These functions depend only on the
architecture parameters.
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Fig. 4. The two concentric circles, centred at o3 and radii of l4 + l5
and |l4 − l5|, define the workspace of the coupler point c. The assembly
criteria are derived from these constraints.

III. Function generation

For the Stephenson-III in Fig. 1, the function generation
problem can be stated as:

φ5(θ1) = φ5d(θ1), θ1 ∈ [θ1i, θ1f ], (53)

where φ5(θ1), and φ5d(θ1) are the actually generated, and
the desired functions, respectively, over θ1 ∈ [θ1i, θ1f ].
This leads to the traditional definition of the (zeroth order)
structural error as:

E0(θ1) = φ5(θ1)− φ5d(θ1), θ1 ∈ [θ1i, θ1f ]. (54)

In this work, the first-order structural error is considered
as well. It is defined as the deviation of the derivative of the
generated function, from that of the desired one:

E1(θ1) =
dE0(θ1)

dθ1
=
dφ5(θ1)

dθ1
− dφ5d(θ1)

dθ1

= Kφ5θ1(θ1)− dφ5d(θ1)

dθ1
, θ1 ∈ [θ1i, θ1f ], (55)

where Kφ5θ1(θ1) is the velocity coefficient as in Eq. (16).
Minimisation of the maximum zeroth-order structural er-

ror (over the specified range of motion) leads to a mecha-
nism in which the absolute value of the structural error is
bounded by some upper limit. However, an objective con-
sidering only this aspect is insensitive to the variation of the
error function within this bound. For instance, as shown in
Fig. 5, both the cases (a) and (b) would lead to the same
objective value, whereas case (b) is clearly more desirable,
since it would lead to lesser unwanted oscillations in the
resulting mechanism. It is easy to see that the first-order
error measure would be able to mitigate these oscillations,
by reducing the variation in the error function. However,
this measure, by itself, is insensitive to a “DC-shift”, i.e., a
constant error, however large. Therefore, it is appealing to
use both these measures together, in what may be termed
as a dual-order formulation of the structural error. This has

been done in the present work by means of a multi-objective
formulation of the synthesis problem, in which each objec-
tive relates to the error in a different order. To the best of
the knowledge of the authors, such a formulation is entirely
novel.

(a) Error function oscillates within a bound of ±‘δ’ about the de-
sired value.

(b) Error is constant, at a value of ‘δ’, above/below the desired
value.

Fig. 5. Types of errors in function generation and their implications.

A. Synthesis of function generator as an optimisation prob-
lem

An optimisation problem with constraints can be mathe-
matically expressed as:

Minimise Fi(x), i = 1, 2, . . . , p

subject to Gj(x) ≥ 0, j = 1, 2, . . . , q;

Hk(x) = 0, k = 1, 2, . . . , r;

xl ∈ [al, bl], l = 1, 2, . . . , w, (56)

whereFi(x) are the objective functions,x = (x1, . . . , xl)
>

is the vector of design variables, with xl bounded be-
tween al and bl. The inequality and equality constraint
functions are represented by Gj(x) and Hk(x), respec-
tively. A maximisation objective can be converted to a
minimisation objective by negating it. For the function
generation problem of Stephenson-III mechanism, given
by Eq. (53), the error in the zeroth and first order functions
are given by Eq. (54) and Eq. (55).

The design variables are the architecture parameters:
x = (l0, l2, l3, l4, l5, xc, yc, b3x, b3y)>. Without any loss
of generality, the link lengths are normalised with respect
to l1. The mobility criteria, governed by the functions
Si, i = 1, . . . , 4 and F i, i = 1, . . . , 6, described in Sec-
tion II, form the constraints. The span of the input joint
variable θ1 was divided into N sample points. Roots of the
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FKU equation represent the branches of the position kine-
matics for a given value of θ1. The branches are distin-
guished on the basis of the sign of singularity functions, as
discussed in Section II-B. The mobility criteria ensure that
all the four branches can be assembled, and are free from
singularities. The numerical optimisation, as described be-
low, is performed on each branch independently, thereby
eliminating the possibility of the existence of branch-errors
in the solutions obtained. This also ensures exhaustive cov-
erage of all the potential solutions across all the branches.

The dual order function generation problem can be math-
ematically expressed as:

Minimise F1
∆
=

1

N

N∑
j=1

E2
0 (θ1j),

F2
∆
=

1

N

N∑
j=1

E2
1 (θ1j),

where, θ1j ∈ [θ1i, θ1f ];

subject to GSp(x)
∆
= Sp > 0,

GFq(x)
∆
=

{
Fqa > 0,

Fqb > 0,

where, p = 1, . . . , 4, q = 1, . . . , 6,

xl ∈ [al, bl], l = 1, . . . , 9. (57)

IV. Numerical studies

The above formulation of optimal design of Stephenson-III
for function generation is applied to two functions previ-
ously studied in literature:
1. A parabolic function, originally used by McLarnan

in [12], and revisited in [3].
2. Double dwell function given in [13], and used as a

benchmark in [14].
The function generation problem is posed as an optimisa-
tion problem, and is implemented using NSGA-II2 [11].
In the sections below, the various desired functions are de-
scribed and the results are given.

A. Parabolic function

The function generation problem is defined by the
parabolic function given as:

φ5d(θ1) =
θ2

1

90
, where all angles are in degrees. (58)

The RMS value of the error functions, described
in Eqs. (54, 55), form the objective functions in the opti-
misation problem and the mobility criteria form the con-
straints. The bounds of the design variables, x, are given
in Table I.

2NSGA-II is available for free from the Kanpur Genetic Algorithms Labo-
ratory at http://www.iitk.ac.in/kangal/codes.shtml.

TABLE I. Variable bounds for design variables in parabola function gen-
eration (xl ∈ [al, bl])

xl l0 l2 l3 l4 l5 xc yc o3x o3y

al 1 1 1 1 1 0 0 1 0
bl 6 6 6 6 6 3.5 5 8 3.5

In order to facilitate compactness and easy manufactur-
ing of the mechanism, ratio of the link lengths were taken to
satisfy (max kj/min kj) ≤ 6, j = 1, . . . , 8 where kj com-
prise the parameters li, i = 0, . . . , 5 and also the lengths of
the three sides of the coupler link. The maximum ratio of
the link lengths is considered to be 6, following [16]. The
number of sample points, N , is taken to be 400, resulting in
a resolution of 0.225◦ for the input angle, θ1. The NSGA-II
optimisation was carried out for a population size of 2000
over 1000 generations, which took 12 min to cover all the
branches3. Seven design solutions were obtained. From the
Pareto plot (see, e.g., [17]), the designer is free to choose
the preferred solution based on the application and toler-
ance limits. The solution with the minimum zeroth order
error appeared in the branch DU. This particular solution
has been used in the numerical results tabulated below. The
architecture parameters obtained have been reported in Ta-
ble II. The errors are reported and compared with [3] in
Table III. It is observed that, while the structural error in [3]
is lower than the results obtained, they are of the same order
of magnitude. Figure 6 shows the mechanism for parabola
function generation. The desired function, generated func-
tion, and dual-order errors are shown in Fig. 7.

TABLE II. Results: architecture parameters for parabolic function

l0 5.78446 l5 3.51675

l1 1 xc 3.12342

l2 1.33374 yc 1.37407

l3 5.61890 o3x 0.98506

l4 4.88862 o3y -0.60812

TABLE III. Results and comparison with [3] for parabolic function

Present work From [3]
max |E0(θ1)| 0.04208◦

max |E0(θ1)| 0.0245◦
RMS (E0(θ1)) 0.02598◦

max |E1(θ1)| 0.02313

RMS (E1(θ1)) 0.00507

B. Double dwell as a function generation problem

The design of a six-bar mechanism having double dwell
at specified locations of the output link is a standard prob-

3PC configuration: Intel core i7-4770 CPU running at 3.40 GHz with 8 GB
RAM.

http://www.iitk.ac.in/kangal/codes.shtml
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Fig. 6. The mechanism for parabola function generation.

x x x x x x x x x x x x x x x x x x
x

x
x

x
x

x
x

x
x x x x x

Fig. 7. The desired function, generated function, and errors in zeroth and
first order.

lem and has been studied in [13], [14], [16] recently via
optimisation. The above formulation is applied to revisit
the problem. The double dwell problem is described as fol-
lows:

φ5(θ1) =

{
φ5 = φ51 ∀θ1 ∈ [−15◦, 15◦],

φ5 = φ52 ∀θ1 ∈ [160◦, 220◦],
(59)

where φ51 and φ52 are the desired dwell output angles. The
span of θ1 is divided into N1 = 100 and N2 = 400 sample
points for first and second dwell respectively. The desired
values of φ5 at the first and second dwell are φ51 = 225◦

and φ52 = 210◦, respectively. The full cycle mobility con-
ditions are used as constraints. The design problem is to
find the set of architecture parameters such that the double
dwell is achieved optimising dual order objective functions
and satisfying mobility criteria. The variable bounds of the
design variables are given in Table IV (adopted from [14]).

TABLE IV. Variable bounds for design variables in double dwell problem
(xl ∈ [al, bl])

xl l0 l2 l3 l4 l5 xc yc o3x o3y

al 1 1 1 1 1 0 -3.5 1 -3
bl 5 5 5 5 5 3.5 0 8 -1

A total of 34 solutions were obtained. Architecture pa-
rameters of the design corresponding to the utopia point
(see, e.g., [17]) is given in Table V. The errors in the ze-
roth and first order, and a comparison with [13] and [14]
are given in Table VI. It is observed that the results are
of one order of magnitude better than [13] and compara-
ble to [14]. However, in [14] the first and the second dwell
occur at φ5 = 114.63◦ and φ5 = 125.28◦, respectively,
as opposed to the two specific locations, φ5 = 225◦ and
φ5 = 210◦, as in this case. The schematic of the mecha-
nism is shown in Fig. 10.

TABLE V. Results: architecture parameters for double dwell function
generation

l0 2.18080 l5 2.00476

l1 1 xc 1.27544

l2 1.62927 yc 0.94626

l3 1.93324 o3x 5.70579

l4 4.97792 o3y -0.01524

Fig. 8. Plot of the output angle φ5 for the full cycle of input angle, θ1 for
double dwell function generation.

Fig. 9. Zeroth order and first order errors for double dwell function
generation.
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TABLE VI. Results and comparison with [13] and [14] for double dwell function generation

Dwell Period Error Present work Calculated from [13] a Calculated from [14]
max |E0(θ1)|( in ◦) 0.04860 0.55610 0.04412

θ1 ∈ [−15◦, 15◦] RMS (E0(θ1))(in ◦) 0.03023 0.27447 -
φ51 = 225◦ max (|E1(θ1)|) 0.01445 0.05326 0.01419

RMS (E1(θ1)) 0.00519 0.04031 0.00518
max |E0(θ1)|(in ◦) 0.04863 0.25444 0.08468

θ1 ∈ [160◦, 220◦] RMS (E0(θ1))(in ◦) 0.03974 0.10163 -
φ52 = 210◦ max (|E1(θ1)|) 0.01828 0.03137 0.00612

RMS (E1(θ1)) 0.00511 0.01199 0.00235
a In [14] the first and the second dwell occur at φ5 = 114.63◦ and φ5 = 125.28◦, respectively. The zeroth

order error is calculated as the difference between maximum and minimum value of the generated output in the
respective ranges of the dwell motions in this case.

Fig. 10. The mechanism for double dwell function generation.

V. Conclusions

A new formulation for the optimal design of a six-bar
function generator has been presented in this paper. Sev-
eral new concepts related to the mobility analysis, as well
as the formulation of a multi-objective optimisation prob-
lem using the dual-order structural error have been in-
troduced. The derivations and the corresponding results
have been demonstrated via application to a Stephenson-
III mechanism. Numerical studies were carried out for two
function generation problems—(a) parabolic function and,
(b) double-dwell function. The results obtained were com-
parable to that of the exact 8 precision-point synthesis in
the case of the parabolic function. In the case of the double-
dwell problem, the obtained results represent an improve-
ment over those reported in existing literature. The pro-
posed formulation is applicable to other single-degree-of-
freedom mechanisms, including six-bar mechanisms of the
other topologies. Analysis of these would be one of the
future extensions of the present work.

References
[1] F. Freudenstein, “An analytical approach to the design of four-link

mechanisms,” Transactions of the ASME, vol. 76, pp. 483–492,
1954.

[2] S. Antonin, “Mechanism for use in computing apparatus,” Aug. 31
1943, US Patent 2,328,306.

[3] M. M. Plecnik and J. M. McCarthy, “Numerical synthesis of six-bar
linkages for mechanical computation,” Journal of Mechanisms and
Robotics, vol. 6, no. 3, p. 031012, 2014.

[4] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler,
“Bertini: Software for numerical algebraic geometry,” Available at
bertini.nd.edu.

[5] S. Acharyya and M. Mandal, “Performance of EAs for four-bar link-
age synthesis,” Mechanism and Machine Theory, vol. 44, no. 9, pp.
1784–1794, 2009.

[6] W.-Y. Lin, “A GA-DE hybrid evolutionary algorithm for path syn-
thesis of four-bar linkage,” Mechanism and Machine Theory, vol. 45,
no. 8, pp. 1096–1107, 2010.

[7] C. W. Wampler, A. P. Morgan, and A. J. Sommese, “Complete solu-
tion of the nine-point path synthesis problem for four-bar linkages,”
Journal of Mechanical Design, vol. 114, pp. 153–159, 1992.

[8] F. Grashof, Theoretische maschinenlehre. L. Voss, 1890, no. v. 3.
[9] R. Srivatsan and S. Bandyopadhyay, “Analysis of constraint equa-

tions and their singularities,” in Advances in Robot Kinematics,
J. Lenarc̆ic̆ and O. Khatib, Eds. Springer International Publishing,
2014, pp. 429–436.

[10] S. Bandyopadhyay and A. Ghosal, “Analysis of configuration space
singularities of closed-loop mechanisms and parallel manipulators,”
Mechanism and Machine Theory, vol. 39, no. 5, pp. 519–544, 2004.

[11] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multi-objective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[12] C. W. McLarnan, “Synthesis of six-link plane mechanisms by nu-
merical analysis,” Journal of Manufacturing Science and Engineer-
ing, vol. 85, 1963.

[13] P. Shiakolas, D. Koladiya, and J. Kebrle, “On the optimum synthe-
sis of six-bar linkages using differential evolution and the geometric
centroid of precision positions technique,” Mechanism and Machine
Theory, vol. 40, no. 3, pp. 319–335, 2005.

[14] M. Jagannath and S. Bandyopadhyay, “A new approach towards the
synthesis of six-bar double dwell mechanisms,” in Computational
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