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Abstract— The line coverage problem is the coverage of
linear environment features (e.g., road networks, power lines),
modeled as 1D segments, by one or more robots while respecting
resource constraints (e.g., battery capacity, flight time) for each
of the robots. The robots incur direction dependent costs and
resource demands as they traverse the edges. We treat the line
coverage problem as an optimization problem, with the total
cost of the tours as the objective, by formulating it as a mixed
integer linear program (MILP). The line coverage problem is
NP-hard and hence we develop a heuristic algorithm, Merge-
Embed-Merge (MEM). We compare it against the optimal
MILP approach and a baseline heuristic algorithm, Extended
Path Scanning. We show the MEM algorithm is fast and suitable
for real-time applications. To tackle large-scale problems, our
approach performs graph simplification and graph partitioning,
followed by robot tour generation for each of the partitioned
subgraphs. We demonstrate our approach on a large graph
with 4,658 edges and 4,504 vertices that represents an urban
region of about 16 sq. km. We compare the performance of the
algorithms on several small road networks and experimentally
demonstrate the approach using UAVs on the UNC Charlotte
campus road network.

I. INTRODUCTION

Line coverage is the coverage of linear environment fea-
tures, for tasks such as inspection and monitoring. Linear
features include road networks, power lines, and oil and gas
lines. The linear features are modeled as 1D segments, and all
points along the segments must be visited. Since the features
are distributed over large areas, this necessitates the use
of multiple robots simultaneously to complete the coverage
tasks in a timely manner. Linear infrastructure coverage tasks
can be efficiently performed by unmanned aerial vehicles
(UAVs) as they can cover linear features over large regions
even if the terrain is untraversable by ground robots. This is
especially important for rapid assessment and response after
natural disasters such as storms and earthquakes.

In a coverage application, the robots are required to visit
specified features in the environment. Such features may be a
set of 2D regions, 1D line features, or points. Area coverage,
the coverage of 2D regions, has been widely studied [1],
[2]. Point coverage, the coverage of point features, involves
solving node routing problems, such as the traveling sales-
person problem and the vehicle routing problem [3]. Line
coverage, modeled as coverage of all the required edges of
an underlying graph, is related to arc routing problems [4].
This problem has not received much attention in the robotics
community and is the primary focus of this paper.
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The line coverage problem is modeled using a graph. The
edges are classified as required and non-required. Required
edges correspond to the linear features to be covered, and the
non-required edges can be used to travel from one vertex to
another. The vertices represent the end points of the edges.

There are two modes of travel for the robots. A robot is
said to be servicing a required edge if task-specific actions
such as collecting sensor data are performed. Each required
edge is serviced exactly once by one of the robots. A robot
may travel from one vertex to another without performing
servicing. This is known as deadheading and both types of
edges may be used any number of times for this purpose.
There is a service cost and a deadheading cost (e.g., travel
time) associated with each edge and they are incurred each
time an edge is serviced or deadheaded, respectively. The
sum of the service costs and the deadheading costs of the line
coverage problem is to be minimized. As the task-specific
sensors are not used during deadheading, the associated
deadheading costs are usually lower than the service costs.

Another key aspect of the line coverage problem is mod-
eling of resource constraints (e.g., battery life) in the form
of demands. Since both servicing and deadheading consume
resources, they have associated demands. The amount of total
demand a robot can fulfill is constrained by its specified
capacity. A depot or a base location is also specified from
where the robots can be launched, recovered, and recharged.

We now define the line coverage problem as an optimiza-
tion problem that finds a set of tours, starting and ending
at the depot, that minimizes the total cost of travel, while
respecting the capacity constraints of the robots. Figure 1
shows a road network instance of the line coverage problem,
the generated tours, and an orthomosaic generated from the
UAV images.

In many robotics applications, the cost of travel is direction
dependent. For example, for ground robots, the cost of
traveling uphill can be significantly higher than that of
traveling downhill. Similarly, for UAVs, the cost of an edge
may differ in the two directions due to wind conditions.
Hence, we consider the graph to have asymmetric edge costs
for both servicing and deadheading. Similarly, the service
and deadheading demands can also be dependent on the
direction of travel, and thus are considered to be asymmetric.
For example, ground robots consume more energy going
uphill than going downhill, and UAVs flying against the
wind consume more energy than when flying with the wind.
We use the phrase fully asymmetric to emphasize that all
four quantities—the two costs and the two demands—are
considered to be asymmetric to distinguish the line coverage
problem from its special cases.



 0

 0.5

 1

 0  0.5  1  1.5

Y-
ax

is 
(x

 1
03  m

)

X-axis (x 103 m)

 0

 0.5

 1

 0  0.5  1  1.5

Y-
ax

is 
(x

 1
03  m

)

X-axis (x 103 m)

1
2

3

4

5

6

Fig. 1. Line coverage of a road network graph by multiple UAVs. (left) A map of the UNC Charlotte campus. (middle) The graph is clustered into
smaller components, each represented by a different color. The generated tours for UAVs covering the graph are shown, with dashed segments indicating
deadheading travel. (right) An orthomosaic of the road network computed from photos taken by the UAVs flown autonomously along the generated tours.

The line coverage problem is a generalization of the
Capacitated Arc Routing Problem (CARP) [4], described
in Section II. The NP-hardness of CARP implies the line
coverage problem is NP-hard. This makes it imperative to
study heuristic and approximation algorithms.

In this paper we elucidate the line coverage problem
using multiple robots with resource constraints, and make
the following contributions. (1) We pose the line coverage
problem as an optimization problem, and develop a mixed
integer linear programming (MILP) model. (2) We develop
two heuristic algorithms, Merge-Embed-Merge and Extended
Path Scanning, that are computationally efficient. Our algo-
rithms are designed to handle the fully asymmetric nature
of the problem—the service and deadheading costs, and
service and deadheading demands are all considered to be
asymmetric. (3) We present a clustering based approach to
efficiently partition large graphs where it may not be possible
to reach all the required edges from a single depot location
due to resource constraints. We present simulation results on
six different real-world road networks, and an experimental
validation on the UNC Charlotte campus.

The practical benefits of our line coverage approach are:
(1) The algorithms ensure that the required edges are covered
efficiently, thereby optimizing the total cost of tours in terms
of operation time. (2) In contrast to area coverage, only the
relevant features are covered, thus reducing the coverage
time, the amount of sensor data, and the time for analysis.
(3) The formulation can handle multiple robots, battery life
constraints, and asymmetric tour costs and demands.

II. RELATED WORK

Area Coverage: Most work in robotic coverage focuses
on area coverage of environments [1], [2]. This includes work
on multiple-robot area coverage [5], [6], [7], and some recent
work that considers robot battery constraints [8], [9], [10].

Line Coverage: There has been a little work on using
UAVs for line coverage tasks. Dille and Singh [11] presented
algorithms for a single UAV, with kinematic constraints, to
perform coverage of a road network. Oh et al. [12] presented
an algorithm for road coverage by a team of UAVs while
considering their turn constraints. UAV energy constraints
are modeled using a knapsack formulation.

Arc Routing Problems: Arc Routing Problems (ARP)
consider the task of covering a specified set of edges of a
graph by one or more vehicles [4]. The ARP has not been
used much in robotics, in contrast to the Vehicle Routing
Problem (VRP) [13], where the tours must visit nodes of
the graph. The ARP is usually applied to transportation
problems in which servicing is related to tasks such as
delivery and pickup of goods. Hence the travel times are
used as costs, and have the same value whether the edge is
serviced or deadheaded. Separate service and deadheading
costs are typically not considered, and are usually symmetric
even when considered.

In a Rural Postman Problem (RPP), the vehicle capacities
are not considered. Easton and Burdick [14] introduced
kRPP, RPP with k vehicles. They modeled coverage of 2D
object boundaries as a kRPP and presented a cluster first
and route second heuristic. Xu and Stentz [15] considered
the kRPP for street coverage with incomplete prior map
information.

The Capacitated Arc Routing Problem (CARP) [16], the
most relevant variant, is a special case of the line cov-
erage problem—there are no deadheading demands, and
all costs and demands are symmetric. Since the CARP is
NP-hard [16], several heuristic algorithms [4] have been
developed for the CARP. An approximation algorithm A-
ALG, with an approximation factor of 7/2, was presented
in [17].

Several variants of the ARP partially and individually
address a subset of the features of the line coverage problem
(Table I). The Windy Rural Postman problem (WRPP) [18]
considers asymmetric travel costs. The CARP with dead-
heading demands (CARP-DD) was introduced by Sipahioglu
et al. [19], and studied further in [20], [21]. The CARP-DD
does not consider asymmetric graphs. Gouveia et al. [22]
presented a lower bound approach for the CARP on mixed
graphs using mixed integer linear programming. Its exponen-
tial complexity makes it unsuitable for large scale robotics
applications. All these variants are NP-hard. Since the line
coverage problem generalizes all these CARP variants, it
poses significant computational challenges.



TABLE I
THE LINE COVERAGE PROBLEM, WITH ITS SPECIAL CASES

Literature Number of
robots

Deadheading Service

Cost Demand Cost Demand

Line coverage K A A A A
Mixed-CARP [22] K A − A A
CARP-DD [19] K S S −* S
CARP [4] K S − −* S
WRPP [18] 1 A − −* −
kRPP [14], [15] K S − −* −

S: symmetric, A: asymmetric, and −: not considered.
*: The service costs are equal to the deadheading costs.

III. LINE COVERAGE PROBLEM

We now define the line coverage problem. We are given
a connected graph G = (V,E,ER) where V is the set of
vertices, E is the set of edges, and ER ⊆ E is the set of
required edges. The task is to find a set of tours on the graph
that minimizes the total cost of travel, such that (1) the tours
start and end at a specified depot location v0 ∈ V , (2) all the
required edges are serviced, and (3) none of the tours exceed
the capacity Q of the robots. The costs and the demands are
provided as inputs along with the graph.

Each edge is represented by a pair of vertices (i, j). When
a robot traverses edge (i, j) from vertex i to vertex j, we also
say directed edge (i, j) to emphasize the direction of travel.

We now describe the costs and demands. (1) If a robot
services a required edge (i, j) ∈ ER from vertex i to vertex j,
then a service cost csij and a service demand qsij are incurred.
These are also denoted as cs(i, j) and qs(i, j). (2) If a
robot traverses an edge without servicing it, the robot is
said to be deadheading and deadheading cost and demand
are incurred. This occurs when a robot is traveling from a
vertex of a required edge to that of another required edge, and
both required and non-required edges may be deadheaded.
Deadheading cost is denoted by cdij and demand by qdij for
edge (i, j) ∈ E from vertex i to vertex j. These are also
denoted as cd(i, j) and qd(i, j). When the triangle inequality
does not hold for a graph, or a direct path does not exist
between two given vertices i and j, cdij and qdij correspond
to the shortest cost path from i to j.

We consider the edge costs and demands, for both service
and deadheading, to be direction dependent (for example,
csij(q

s
ij) may differ from csji(q

s
ji)). The service and deadhead-

ing costs and demands can all be arbitrary positive numbers.
The costs affect the objective function, and the demands are
related to the robot capacity, i.e., the sum of demands for a
tour should not exceed the robot capacity Q. For example,
the travel time may constitute the costs, and the energy
consumed may represent the demands.

The line coverage problem can be thought of as a fully
asymmetric CARP with deadheading demands, i.e., the ser-
vice and deadheading costs, and service and deadheading
demands are all asymmetric. The fully asymmetric nature of
the problem, coupled with deadheading demands, poses seri-
ous computational challenges, especially when applications
require fast generation of tours on large graphs.

A. Mixed Integer Linear Programming Formulation
We develop a mixed integer linear programming (MILP)

formulation for the line coverage problem, by extending
that for CARP on mixed graphs [22] and incorporating
deadheading demands. In a mixed graph, arcs are used
to represent one-way streets. Hence we assign two arcs
(representing the two directions of travel) for each of the
edges in the original graph. The formulation uses network
flows to represent the demands. The depot v0 (i.e., vertex 0)
acts as the source for the flow and the flow is absorbed along
the arcs. The flow constraints ensure that the generated tours
are connected and the robot capacities are respected.
MILP formulation and notation:
• K: Maximum number of tours; to be specified
• A: Set of arcs {(i, j), (j, i) : (i, j) ∈ E}
• AR: {(i, j), (j, i) : (i, j) ∈ ER}, AR ⊆ A
• xkij : Binary variable denoting whether arc (i, j) ∈ AR

is serviced in tour k
• ykij : Integer variable denoting the number of times arc

(i, j) ∈ A is deadheaded in tour k
• fkij : Continuous variable denoting the flow across arc

(i, j) ∈ A in tour k
• Q,λ: Robot capacity, and tour setup cost

Minimize:
K∑
k=1

 ∑
(i,j)∈AR

csijx
k
ij +

∑
(i,j)∈A

cdijy
k
ij + λ

∑
(0,i)∈AR

xk0i + λ
∑

(0,i)∈A

yk0i


(1)

subject to:∑
j:(i,j)∈AR

xkij +
∑

j:(i,j)∈A

ykij =
∑

j:(j,i)∈AR

xkji +
∑

j:(j,i)∈A

ykji ∀i, k (2)

K∑
k=1

(xkij + xkji) = 1 ∀(i, j) ∈ ER (3)∑
j:(0,j)∈AR

xk0j +
∑

j:(0,j)∈A

yk0j ≤ 1 ∀k (4)

∑
j:(j,i)∈A

fkji −
∑

j:(i,j)∈A

fkij =

∑
j:(j,i)∈AR

qsjix
k
ji +

∑
j:(j,i)∈A

qdjiy
k
ji ∀k, i 6= 0 (5)

∑
j:(0,j)∈A

fk0j =
∑

(i,j)∈AR

qsijx
k
ij +

∑
(i,j)∈A

qdijy
k
ij ∀k (6)

∑
i:(i,0)∈A

fki0 =
∑

i:(i,0)∈AR

qsi0x
k
i0 +

∑
i:(i,0)∈A

qdi0y
k
i0 ∀k (7)

fkij ≤ Q(xkij + ykij) ∀(i, j) ∈ A,∀k (8)

xkij ∈ {0, 1} ∀(i, j) ∈ AR, ∀k (9)

fkij ≥ 0, ykij ≥ 0, ykij ∈ Z ∀(i, j) ∈ A, ∀k (10)

It is assumed that the robot capacity Q is suffi-
ciently large to service any of the edges, i.e., Q >
min (qd0i + qsij + qdj0, q

d
0j + qsji + qdi0) ∀(i, j) ∈ ER.

The objective function (1) is the total cost of the mission
and is to be minimized. The constraints (2) ensure con-
nectivity of tours at each vertex—the number of traversed



arcs exiting a vertex is equal to number of traversed arcs
entering the vertex. Constraints (3) ensure all the required
edges are serviced. Constraints (5) are the generalized flow
constraints at vertex i such that qsji + qdji units of flow are
absorbed if tour k services (and/or deadheads) edge (j, i)
in the direction j → i. Constraints (6) and (7) specify the
amount of flow coming out of and into the depot vertex,
respectively. Constraints (5)–(8) ensure that the tours are
connected. Constraints (8), along with (4) and (6), guarantee
that the robot capacities are respected. Constraints (5)–(8) all
include modifications to incorporate deadheading demands.
Additional constraints that give tighter bounds for the MILP
formulation and eliminate some of the symmetric solutions
are also used. We have extended the proofs in [22] for
tour capacity constraints and connectivity. (The additional
constraints and proofs are omitted for space reasons.)

The MILP formulation gives the optimal solution if such
a solution exists. Since the problem is NP-hard, we next
present heuristic algorithms to solve it on large maps.

IV. HEURISTIC LINE COVERAGE ALGORITHMS

The heuristic algorithms in the literature for the CARP [4],
[23] are not directly applicable to the line coverage problem,
due to the asymmetric costs and demands and inclusion of
deadheading demands. In this section, we first present our
extension of the Path Scanning heuristic to the line coverage
problem. We then present a new heuristic algorithm, Merge-
Embed-Merge. In both the heuristic algorithms, the number
of tours is computed by the algorithm.

A. Extended Path Scanning: A Greedy Approach

Path scanning is a greedy heuristic algorithm originally
proposed for the Chinese Postman Problem (CPP) [24]. The
original algorithm does not consider deadheading demands
and was not designed for fully asymmetric graphs. We ex-
tended the heuristic algorithm to the line coverage problem,
and use it as a simple and fast heuristic for obtaining a
baseline solution. The algorithm builds tours starting from
the depot by adding the closest (unserviced) required edges.
For each required edge two arcs, corresponding to the two
directions, are maintained in a list F . Initially, F = AR.
Before a new arc is appended to a tour, the algorithm ensures
that the robot has sufficient residual capacity to return to
the depot via the shortest path. This is done by checking
if the sum of (a) current total demand for the tour, (b) the
demand for the new arc, and (c) the demand to return back
to the depot, is less than the capacity of the robot. For
a tour r with l as the vertex at the end of the current
sequence of required edges, the constraint for checking if a
required directed edge (i, j) can be added is: demand(r) +
qd(l, i) + qs(i, j) + qd(j, v0) ≤ Q. The cost of the tour is
then updated to be cost(r) ← cost(r) + cd(l, ī) + cs(̄i, j̄),
where (̄i, j̄) corresponds to the arc with least deadheading
cost: (̄i, j̄) = argmin{

(
cd(l, i)

)
: (i, j) ∈ F}. The arc (̄i, j̄),

and its opposite arc (j̄, ī), are both then removed from F
after being appended to a tour.

The end of the sequence of required edges is then updated
to l← j̄. If no such arc can be added, the tour returns to the
depot and ends, and the final cost is given by cost(r) ←
cost(r) + cd(l, v0) + λ, where λ is the setup time. The
algorithm generates new tours until all the required edges
belong to one of the tours.

When there are equidistant arcs, tie-breaking rules can
be used [4]. We found that selecting an equidistant arc at
random [25], and running the entire algorithm several times,
produces the best results. The number of times we run the
algorithm is proportional to the number of vertices with more
than two incident edges. The set of tours with the least total
cost over all the runs is returned. The running time of the
Extended Path Scanning (EPS) algorithm is O(M2) for each
run, where M is the number of required edges.

B. Merge-Embed-Merge: A Greedy Constructive Heuristic

We present a new algorithm, Merge-Embed-Merge
(MEM), for the line coverage problem. The underlying
concept of the algorithm is to start with M tours, one per
required edge. Subsequently, the tours are merged together
in greedy fashion to form a smaller set of tours. This concept
was first presented in the Clarke and Wright Heuristic [26]
for the capacitated vehicle routing problem, and later adopted
in the Augment-Merge algorithm [24] for CARP. However,
the Augment-Merge algorithm cannot handle the asymmetric
costs and demands, as well as the deadheading demands of
the line coverage problem.

The Merge-Embed-Merge algorithm, given in Algo-
rithm 1, is composed of four components: (1) initialization
of tours, (2) computation of savings, (3) merging, and
(4) embedding the new merged tour.

Representation of tours: A tour is represented by a
sequence of required edges to be serviced by the robot
performing the tour. Starting from the depot, the robot travels
to the starting vertex of the first required edge, services
the sequence of required edges, and returns to the depot.
Let a tour Rp contain vertices i and j such that i is the
starting vertex of the first required edge, and vertex j is
the ending vertex of the last required edge serviced by the
tour. The robot will deadhead from the depot v0 to vertex i,
serve required edges starting from i up to the last required
edge ending at vertex j, and then deadhead back to v0.
Note that the paths v0 → i and j → v0 are shortest paths
and can include several edges, all being deadheaded. If two
successive required edges es and et are not adjacent, the
robot deadheads along the shortest path from the ending
vertex of es to the starting vertex of et. Thus, the sequence
i→ j itself may involve deadheading between the containing
required edges. Then the cost of the tour Rp is cost(p) =
c(v0, i)+c(i, j)+c(j, v0)+λ, where λ is the tour setup cost.

Initialization of tours: Initially a tour is built for each of
the required edges, comprised of the shortest path v0 → i
from the depot v0 to one of the vertices i of the edge, the
edge (i, j) itself, and then from the other vertex j of the edge
back to the depot j → v0. As the edges have asymmetric
costs the tour in the direction with the lower cost is used.



Algorithm 1: Merge-Embed-Merge algorithm
Input : G(V,E,ER), costs, demands, capacity Q
Output: Array R of tours, where each tour Ri is a

sequence of required edges
/* Initialization of tours */
r ← 1;
for (i, j) ∈ ER do

c← cd(v0, i) + cs(i, j) + cd(j, v0) + λ;
d← qd(v0, i) + qs(i, j) + qd(j, v0);
c̄← cd(v0, j) + cs(j, i) + cd(i, v0) + λ;
d̄← qd(v0, j) + qs(j, i) + qd(i, v0);
cost(r)← min(c, c̄);
Rr ← if c ≤ c̄ then (i, j), else (j, i);
demand(r)← if c ≤ c̄ then d, else d̄;
r ← r + 1;

/* Compute savings */
S ← ∅;
foreach pair of tours Rp, Rq do

Compute savings spq for Rp ]Rq;
if spq ≥ 0 and demand(Rp ]Rq) ≤ Q then

S.push
(
(p, q, spq)

)
;

make heap(S); /* max-heap */
/* Repeated Merge and Embed */
while S 6= ∅ do

(p, q, s)← S. extract-max();
if Rp 6= ∅ and Rq 6= ∅ then

/* Merge */
Rr ← Rp ]Rq; r ← r + 1;
Rp ← ∅; Rq ← ∅;
/* Embed */
foreach tour Ri such that i 6= r and Ri 6= ∅ do

Compute savings sri for Rr ]Ri;
if sri ≥ 0 and demand(Rr ]Ri) ≤ Q then

S. insert
(
(r, i, sri)

)
;

The tours are added to an array R, and the initial number of
tours is equal to the number of required edges M .

Compute savings: Consider two tours, Rp with sequence
i→ j, and Rq with sequence m→ l, as potential candidates
for merging. There are eight possible permutations to merge
the two tours, of which four are shown in Fig. 2. The
remaining four ways consist of tours in the reverse directions.
Consider the first merge sequence, v0 → i → j → m →
l → v0. The cost of this merged tour, R(pq), is cost(pq) =
c(v0, i) + c(i, j) + c(j,m) + c(m, l) + c(l, v0) + λ. There
is a saving in costs since we no longer need j → v0 and
v0 → m, and there is also a saving of a tour setup cost.
Thus, the net savings spq , for merging tours Rp and Rq , is
given by cost(p)+cost(q)−cost(pq). However, as the costs
are asymmetric, any change in directions of the segments will
affect the savings. Some of the eight permutations might not
satisfy the capacity constraint Q of the robots. We denote
by Rp ]Rq the merged tour that has the maximum savings
and satisfies the capacity constraint. If no such combination
exists, then Rp ]Rq = ∅ and saving spq = −∞.

The maximum savings for merging each pair of tours (that
yield a feasible tour) is computed, forming a tuple (p, q, spq),
where p and q are the indices of the tours considered and
spq is the corresponding savings. These M(M −1)/2 tuples
are stored in a binary max-heap S, built in O(M2) time.

Fig. 2. Four of the eight different permutations to merge two tours.
The remaining four permutations consist of the shown permutations in the
reverse directions. The first merged tour is v0 → i→ j → m→ l→ v0,
and its reverse direction tour is v0 → l→ m→ j → i→ v0.

Next the merge and embed steps are executed repeatedly
until no further merges are possible.

Merge: The maximum element from the max-heap S is
extracted and the constituent tours are merged (if neither is
empty), i.e., the tours are merged greedily to maximize the
immediate savings. The cost of the newly merged tour Rr
is computed, and the corresponding constituent tours are set
to ∅. The merged tour Rr is appended to the array R. This
step has complexity O(log |S|), where |S| is the number of
elements in S.

Embed: Now we embed the savings due to the newly
merged tour Rr into the max-heap S so that it is considered
for future merges. Potential savings are computed for the new
tour Rr if merged with each of the other nonempty tours in
the array R. New tuples (r, i, sri) are generated and inserted
into the max-heap S. As there are |R| − 1 such new tuples,
this component has a complexity of O(|R| log(|S|+ |R|)).

The merge and embed components are executed until no
further merges are possible, i.e., S = ∅. The maximum
number of tours in the array R is upper bounded by 2M ,
with at most M non-empty tours. The maximum number of
elements in the max-heap S is O(M2), and the complexity
of the repeated merge-embed component over all possible
merges is O(M2 logM). Thus, the overall complexity of
the algorithm is O(M2 logM).

V. INTEGRATED APPROACH FOR LINE COVERAGE

We now discuss our overall approach for solving the line
coverage problem for large maps. First, a graph simplification
step based on the field of view (FoV) of the sensor and the
flight altitude of the UAV is outlined. We then describe the
clustering approach used to partition the graph and compute
the depot locations. The MILP and heuristic algorithms are
then used to generate tours for each of the subgraphs.

A. Graph Simplification

The numbers of vertices and required edges can be quite
large because the curves in the (road) network are modeled
as polylines. However, owing to the sensor FoV and the
high altitude of the UAVs, we can simplify the graph. An
algorithm, based on depth-first search, simplifies the graph
while ensuring UAV coverage of the simplified graph will
still cover the original graph. For each polyline discovered
in the algorithm, we attempt to connect its vertices directly to
increasingly distant vertices while ensuring all intermediate
vertices are in the swept FoV of a UAV flying along a
straight-line path. This provides a simpler polyline with
fewer edges and vertices, while ensuring the input polyline is
still covered. The complexity of the algorithm is O(V +E).



TABLE II
PERFORMANCE OF THE ALGORITHMS ON DIFFERENT ROAD NETWORKS

Road
network

No. of
edges*

Area
(km2)

Network
length (km)

No. of
clusters

No. of
tours

Compute time (s) Total of tour costs (s)

MILP MILP WS† MEM EPS MILP MEM EPS

Mumbai 329 (220) 0.86 13.56 3 5 83 74 0.050 0.174 3304 3416 3608
Rio 407 (264) 1.65 20.00 6 8 16 8 0.038 0.080 4792 4986 5204
Manhattan 544 (440) 2.71 38.33 5 13 7919 3718 0.073 0.321 9049 9446 9801
Naples 644 (232) 0.90 11.20 4 5 66 33 0.042 0.147 2731 2843 3035
UNCC 768 (282) 2.29 14.16 6 6 24 3 0.055 0.067 3483 3573 3897

The cost listed for each method is the corresponding total flight time of all tours, without the setup cost. The MEM solutions are within 2–5% of the optimal
MILP solutions, and the EPS solutions are within 8–12% of the optimal MILP solutions. *: The number of edges in the simplified graphs are in parentheses.
†: MILP with warm start using MEM solution. The dataset is available at: https://github.com/AgarwalSaurav/LineCoverage-dataset.

B. Graph Partitioning and Depot Location

The MILP formulation and heuristic algorithms assume
a single depot. In large networks, the demand required to
service an edge may be greater than the robot capacity
because of the potentially large distances to the depot.
Hence we use k-medoids clustering to cluster the edges,
with a distance function that computes the minimum of
all eight possible pair-wise travel costs between the ver-
tices of two edges. As we are clustering the edges, the
medoids are themselves edges and one can choose either
of the two vertices of the medoid edge as a depot location.
Edge clustering partitions the graph into smaller subgraphs,
which enables generation of feasible tours. Furthermore,
having multiple depots decreases the deadheading travel of
the robots. Additionally, tours in multiple clusters can be
executed simultaneously. Each robot starts and ends its tours
at its corresponding depot, and services only the required
edges in the corresponding subgraph.

VI. LINE COVERAGE RESULTS

A. Small Scale Examples and Experimental Results

We selected five representative small road networks using
OpenStreetMap [27], and compared the performance of the
MILP and heuristic algorithms on them (Table II). We also
used the solutions generated by the MEM heuristic algorithm
to determine (an upper bound on) the number of tours in the
MILP formulation, and also to warm start the MILP. Warm
starts significantly reduce the time taken for the MILP.

The heuristic algorithms were implemented in C++, and
the MILP was solved using Gurobi [28]. They were executed
on a 2.60 GHz Intel i9 desktop. The MEM and EPS heuristic
algorithms generate solutions within 2–5% and 8–12% of the
optimal solution. The MEM heuristic took less than 0.1 s for
each map, and consistently outperformed the EPS heuristic
both in computation time and the quality of the solutions.

The service and deadheading costs were calculated assum-
ing a UAV deadheading speed of 10 m s−1 and a servicing
speed of 5 m s−1. The service and deadheading demands
were set proportional to the service and deadheading costs,
respectively. The maximum tour capacity (i.e., battery limit)
was set to a conservative flight time of 900 s. A simulated
wind of speed 2 m s−1 at an angle of π

4 rad to the X-axis
from the southwest was assumed.

For the UNC Charlotte campus map, covering an area
of 2.29 km2, we experimentally validated the generated

routes using two DJI Phantom 4 UAVs flown autonomously.
Graph simplification reduced the map to 263 vertices and
282 required edges from the original 749 vertices and 768
required edges. Fig. 1 shows the map, the generated clusters
and tours, and the orthomosaic computed from the tours.

B. Large Scale Example

We performed road coverage, in simulation, of a region
around UNC Charlotte approximately 16 km2 in area. The
input graph representing the road network consists of 4,504
vertices and 4,658 required edges. Graph simplification re-
duces the graph size to 1,872 vertices and 2,018 required
edges. There are about 4 million non-required edges repre-
senting a complete graph as the UAVs can travel from any
vertex to any other. The number of non-required edges do not
directly affect the running time of the heuristic algorithms
since the shortest path (by direct flight) from one vertex
to another is precomputed. With 10 clusters, the MILP
formulation did not converge after 5 days of computation.
The EPS heuristic took 3.8 s, while MEM was able to obtain
the solutions in 0.6 s for all the clusters.

VII. CONCLUSION

We have presented an approach for the coverage of lin-
ear environment features by a set of robots, given energy
constraints, and costs and demands that are asymmetric
for both service and deadheading. We developed an MILP
formulation and two efficient heuristic algorithms for the
line coverage problem. To handle line coverage over large
regions, we performed simplification of the network graph,
partitioned it into subgraphs, and generated tours for each
subgraph by solving the corresponding line coverage prob-
lem. We presented our algorithms on six different real-world
road networks, and demonstrated that the MEM algorithm
is efficient and fast for robotics applications. We also used
tours generated by the algorithms to autonomously fly UAVs
and generate an orthomosaic of the UNC Charlotte campus
road network.

An alternative approach we are now exploring is to
initially generate a single tour assuming infinite robot ca-
pacity, and then apply a tour-splitting algorithm to generate
smaller tours that respect the robot capacity. Future work
includes extending this approach to develop polynomial-
time algorithms with approximation guarantees. We also
plan to extend our work to incorporate turning costs and
nonholonomic constraints into these algorithms.
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