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Probabilistic Graphical Models

• PGMs use a graph for compactly:
1. Encoding a complex distribution over a multi-dimensional space.
2. Representing a set of independencies that hold in the distribution.
– Properties 1 and 2 are, in a “deep sense”, equivalent.

• Probabilistic Graphical Models:
– Directed:

• i.e. Bayesian Networks i.e. Belief Networks.
– Undirected:

• i.e. Markov Random Fields
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Probabilistic Graphical Models

• Directed PGMs:
– Bayesian Networks:

• Dynamic Bayesian Networks:
– State Observation Models:

» Hidden Markov Models.
» Linear Dynamical Systems (Kalman filters).

• Undirected PGMs:
– Markov Random Fields (MRF).

• Conditional Random Fields (CRF).
– Sequential CRFs.
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Markov Random Fields (MRF)

• V – a set of (discrete) random variables
• G = (V, E) an undirected graph

Definition:
V is said to be a Markov Random Field with respect to G if:

E} ),V|(V{VVNVNVPVVVP jijiiiii Î==- )( where,    ))(|()|(

i.e. N(Vi) is the neighborhood of Vi
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Gibbs Random Fields (GRF)

• G = (V, E) – an undirected graph
– V is a set of (discrete) random variables
– C(G) is the set of all cliques of G
– Vc is the set of vertices in a clique cÎ C(G)

Definition:
V is said to be a Gibbs Random Field with respect to G if:
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Z is the normalization constant
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Gibbs Random Fields – Example

D2.LabelD1.Label

D1.w1 D1.wk D2.w1 D2.wk……

Ø D1, D2 are linked webpages
Ø D.Label Î {0,1}
Ø D.w is true if word w ÎD, otherwise false
Ø k is the size of the vocabulary

jLL

j11 j1k j21 j2k

jLL D1.Label D2.Label

jLL(0,0) 0 0

jLL(0,1) 0 1

jLL(1,0) 1 0

jLL(1,1) 1 1

j1j D1.Label D1.wj

j1j(0,false) 0 false

j1j(0,true) 0 true
j1j(1,false) 1 false
j1j(1,true) 1 true
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Markov-Gibbs Equivalence

Ø A GRF is characterized by its global property 
=> the Gibbs distribution

Ø An MRF is characterized by its local property
=> the Markov assumption

Theorem [Hammersley & Clifford, 1971]

V is an MRF w.r.t. G ó V is a GRF w.r.t. G
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Discriminative MRF (CRF)

• V = X È Y is a set of discrete random variables:
– X are observed variables
– Y are hidden variables (labels)

• G = (V, E) is an undirected graph.

Definition:
V is said to be a Conditional Random Field (CRF) w.r.t. G if:

E} ),Y|(Y{YYNVNXYPYYXYP jijiiiii Î==- )( where,    ))(,|(),|(
i.e. N(Yi) is the neighborhood of Yi

[Lafferty, McCallum & Pereira 2000]
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Discriminative GRF (CMN)

• V = X È Y is a set of discrete random variables
– X are observed variables
– Y are hidden variables (labels)

• G = (V, E) is an undirected graph:
– C(G) are the cliques of G
– Vc = Xc È Yc is the set of vertices in a clique cÎ C(G)

Definition:
V is said to be a Conditional Markov Network w.r.t. G if:
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Markov-Gibbs Equivalence

Theorem [Hammersley & Clifford, 1971] :
V is a Conditional Random Field w.r.t. G 

ó V is a Conditional Markov Network w.r.t. G
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From HMMs to CRFs
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“Discriminative HMMs”

T1.tag T2.tag T3.tag Tn.tag

T1.w T2.w T3.w Tn.w

…
jtags

jw

jtags and jw play a similar role to the (logarithms of the) usual HMM 
parameters P(Tj+1.tag|Tj.tag) and P(T.w|T.tag).

[Lafferty, McCallum & Pereira 2000]
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From HMMs to CRFs
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where



From HMMs to CRFs
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Define feature functions:



From HMMs to CRFs
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where

But



Linear-Chain Conditional Random Fields

• A linear-chain CRF is a distribution p(y|x) over sequences of labels y
and conditioned on observations x that takes the form:

• The state transition features fs and observation emission features fo can 
be any real-valued functions.
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where



Inference (Decoding) with CRFs: Viterbi

• Define transition scores:

• Define emission scores:

• Then the CRF probability distribution can be written as:
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• Now the emission features / scores at a position t can use the 
entire observation vector x.

• Features can be overlapping i.e. no need to model conditional 
(in)dependencies:
o Conditioning on x => discriminative model.



From HMMs to CRFs

• HMMs: 

• CRFs:

18

y1 y2 yT

x1 x2 xT

…

…

y1 y2 yT

x1 x2 xT

…

…

𝜙i

𝜙o

𝜙s 𝜙s 𝜙s

𝜙o 𝜙o

y1 y2 yT…

x

𝜙i

𝜙o

𝜙s 𝜙s

𝜙o



Linear-Chain CRFs
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Inference (Decoding) with CRFs: Viterbi

• Define transition scores:

• Define emission scores:

• Then the CRF probability distribution can be written as:

• Inference = finding most likely sequence of states:
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The Viterbi Algorithm

1. Initialization

2. Recursion

3. Termination

4. State sequence backtracking
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Time complexity?

▷ represents state before first position. 
Could also add a state ◁ after the last 
position => run recursion until T + 1



Training CRFs: Gradient

• If y* is the true tag sequence for x, then minimize the negative log-
likelihood 𝐽 𝐰, 𝐮 = − log 𝑝(𝐲∗ 𝐱 .

• Gradient formula resembles logistic regression:
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expected counts true counts 



Training CRFs: Forward-Backward

• For computing the emission parameters u, the expected counts are:

• To compute 𝑝(𝑦1 = 𝑗|𝐱) we use the same forward-backward 
procedure as for HMMs (𝛾j(t) on slide 97).
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(because fo depends only on the state at position t, we marginalized over 
all possible states at all other positions)



The Forward Procedure for CRFs

Define forward score 𝛼7(𝑡) = the sum of the (unnormalized) scores of all 
paths leading to state j at position t.

1. Initialization

2. Recursion:

3. Termination:
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The Backward Procedure for CRFs

Define backward score 𝛽:(𝑡) = the sum of the (unnormalized) scores of 
all paths leading backwards to state i at position t.

1. Initialization

2. Recursion:

3. Termination:
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Homework Exercise

• Rewrite Viterbi, forward-backward for CRFs:
– For when we also use a special end of sequence symbol ◁.
– For when we do not use either start or end of sequence symbols.

• This is how the homework skeleton code is implemented.
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Conditional Random Fields (CRFs)

• Inference with Viterbi: 

• Learning:
– use forward-backward to compute marginals
– then compute gradient with respect to observation features:
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Conditional Random Fields (CRFs)

• For training the transition parameters w, the expected counts are:

• To compute 𝑝(𝑦1;< = 𝑖, 𝑦1 = 𝑗|𝐱) we can use a similar forward-
backward procedure as for HMMs (𝜉ij(t) on slide 97).
– We will not use them for the homework exercise, observation features are 

often sufficient for good performance.
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CRF Training

for each epoch
for each example

extract features on each emission and transition (use cache)
compute marginal probabilities with forward-backward
compute potentials 𝜙s and 𝜙o based on features + weights
accumulate gradient over all emissions and transitions
do gradient update
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Implementation & Debugging

• Cache feature vectors.
• Compute both the gradient and the objective value at the same time.

– Same is done in neural networks.
• Exploit sparsity in feature vectors where possible, e.g. in feature 

vectors and gradients.
• Do all dynamic program computation in log space to avoid underflow / 

overflow.
• Inference:

– Forward-Backward should be the same at all positions.
– Check probabilities look reasonable for features correlated with the tag.

• Learning:
– Train on a small subset, check that the loss is going down.,
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Notes on CRFs

• Observation features can depend on tag bigrams
– Still linear time complexity for inference.

• The max-product algorithm on factor graphs is a 
generalization of Viterbi to tree-structured CRFs:
– Sum-product is generalization of forward-backward.

• Inference in general CRFs (arbitray graphs) is NP-hard:
– Exact inference (but potential exponential) with junction-tree alg.
– Approximate inference with loopy belief propagation.
– Still an active area of research. Beware the Deep Learning atractor!
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Named Entity Recognition (NER)
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Judson Brewer , a researcher at Yale , noticed that his scans and Robin ’s 

looked remarkably alike .

Person PersonOrganization

Judson Brewer , a researcher at Yale , noticed that his scans and Robin ’s …
B-Per    I-Per  O O      O        O B-Org O O       O   O     O     O  B-Per  O … 

Word features:
• Word identity.
• Prefix/suffix.
• Capitalization.
• Word ‘shape’.
• Word clusters.

Context features:
• Words before / after.
• Tags before / after.
• …

Gazeteeers:
• An entry.
• First token in an entry.



Named Entity Recognition (NER)
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”The key figure in the marriage of Al Hubbard and Silicon Valley was Myron 

Stolaroff. Born in Roswell, New Mexico, in 1920, Stolaroff studied 

engineering at Stanford and was one of Ampex’s very first employees.”

Pollan, Michael. How to Change Your Mind (p. 176). Penguin Publishing 

Group. Kindle Edition. 

Feature engineering for



Collective NER

• If a name appears multiple times in a document, it is likely 
to have the same entity type:

– The Charlotte area includes a diverse range of businesses
– In December 2002, Charlotte was hit by an ice storm.

• Use more complex PGMs with approximate inference to 
model these dependences:
– Relational Markov Networks [Bunescu & Mooney, ACL 2004].
– Skip CRFs [Sutton & McCallum, SRL workshop 2004].
– Gibbs sampling with annealing [Finkel et al., ACL 2005].
– Integer linear programming [Roth & Yih, ICML 2005].
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Segmental vs. Linear-Chain CRFs

• Linear-chain CRFs map tokens to labels:

• Segmental CRFs jointly segment the sequence and map 
segments to lables:
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O       O      O   Per       Per       O    Loc     Loc    O      Per         Per
the marriage of  Al   Hubbard and Silicon Valley was Myron Stolaroff

O            O         O           Per                O           Loc            O                Per
[the] [marriage] [of]  [Al   Hubbard] [and] [Silicon Valley] was [Myron Stolaroff]



Semi-Markov CRFs
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[Sarawagi & Cohen, ICML 2004]

Segmentation 𝐬 = [𝑠<, 𝑠B, … , 𝑠D], where each 𝑠F = [𝑏F, 𝑒F), 𝑏FI< = 𝑒F

Labeling 𝐲 = [𝑦<, 𝑦B, … , 𝑦D]

Segmentation and labeling
distribution: Factor graph representation:



Semi-Markov CRFs
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[Sarawagi & Cohen, ICML 2004]

Viterbi algorithm used here too …



Semi-Markov CRFs
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[Sarawagi & Cohen, ICML 2004]

score 𝑉( 𝐱 , 𝑦D)

𝑉 𝑖, 𝑦 = the largest score of a partial segmentation whose last segment ends at 
position i and has label y, where i = 1 … |x|.

𝑉 𝑖, 𝑦 can be computed using a Viterbi-like procedure:



Part-of-speech Tagging

Sentence S = a sequence of tokens T1, …, Tn (tokens as entities)

T1.tag T2.tag T3.tag EndStart Tn.tag

T1.w T2.w T3.w Tn.w

…

…

T1.cap T2.cap T3.cap Tn.cap

Ø Tj.tag – the POS tag at position j
Ø Tj.w – true if word w occurs at position j
Ø Tj.cap – true if word at position j begins with capital letter
Ø …

…

[Lafferty, McCallum & Pereira 2001]

jcap

jtw

jtags
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Supplemental Reading

• Section 7.5 from Eisenstein (after reading previous ones).
– Section 7.5.3 on CRFs.
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