Greedy Algorithms

- At each step in the algorithm, one of several choices can be made.
- Greedy Strategy: make the choice that is the best at the moment.
- After making a choice, we are left with **one subproblem** to solve.
- The solution is created by making a sequence of **locally optimal** choices.

A greedy algorithm does not always achieve a globally optimal solution. But even when the final solution is not optimal:

"Greedy, for lack of a better solution, is good."

Greedy Algorithms: Optimality Conditions

Greedy Choice property:

A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

Optimal Substructure:

An optimal solution to the problem contains within it optimal solutions to subproblems.

CS404/504

Greedy Example: Minimum Spanning Trees

- A TV cable company wants to connect a set of N buildings such that the total amount of cable is minimized.
- Interconnect N pins in an electronic circuit using the least amount of wire.
- Create a highway infrastructure among N cities that minimizes the total length, such that every city is reachable from any other city.
- and many others ...

CS404/504

Problem:

Given: a connected, undirected graph G = (V, E), where each edge (u, v) has a weight w(u, v).

Find: a tree $T \subseteq E$ that connects all the vertices in V such that it has a minimum total weight $w(T) = \sum_{(u,v)\in T} w(u,v)$.

CS404/504

Trees and Forests

Tree: A tree is a connected, acyclic, undirected graph.

Forest: If an undirected graph is acyclic, but possibly disconnected, is it a forest.

Properties of Trees (Appendix B.5)

If G = (V, E) be an undirected graph, the following statements are equivalent:

- 1 G is a tree;
- 2 Any two vertices in G are connected by a unique simple path;
- 3 G is connected, but if any edge is removed from E, the resulting graph is disconnected;
- 4 G is connected, and |E| = |V| 1;
- 5 G is acyclic, and |E| = |V| 1;
- 6 G is acyclic, but if any edge is added to E, the resulting graph contains a cycle.

CS404/504

Minimum Spanning Trees

- Definition: Let G(V, E) be any undirected graph, T(V, E') is said to be a **spanning tree** of G(V, E) if $E' \subseteq E$ and T(V, E') is a tree.
- **Problem**: given a connected, undirected weighted graph, find a *spanning tree* using edges that minimize the total weight.
- The weight of a spanning tree is the sum of the edge weights.
- **Input**: An undirected graph G(V, E) where each edge has a weight associated.
- **Output**: A minimum weight spanning tree of G.

CS404/504

An Example

Which edges form the minimum spanning tree (MST) of the graph below?

CS404/504

Design and Analysis of Algorithms: Lecture 13

An Answer

Is the MST of a graph unique?

No, a graph can have more than one MSTs!

Optimal Substructure

MSTs satisfy the **optimal substructure** property: **an optimal** (minimum spanning) tree is composed of optimal (MS) subtrees.

- Let T be an MST of G, and an edge $(u, v) \in T$.
- Removing (u, v) partitions T into two trees T_1 and T_2 .
- Claim: T_1 is an MST of $G_1 = (V_1, E_1)$ and T_2 is an MST of $G_2 = (V_2, E_2)$. (Do V_1 and V_2 share vertices? why?)
- Proof (*cut and paste*): $w(T) = w(u, v) + w(T_1) + w(T_2)$ (there cannot be a better tree than T_1 or T_2 , otherwise, using *cut and paste*, we would get a spanning tree T' with smaller total weight than T)

CS404/504

Idea of solving the MST problem: grow a MST

General Idea: Grow a minimum spanning tree – prior to each iteration, keep A as a subset of edges from a minimum spanning tree.

```
Generic-MST (G, w)

A := \emptyset

while A does not form a spanning tree

find an edge (u, v) that is <u>safe</u> for A;

A := A \cup (u, v);

return A;
```

<u>safe</u> means $A \cup \{(u, v)\}$ is also a subset of certain MST

CS404/504

What kind of edges are safe?

Definitions:

- A cut (S, V S) of an undirected graph G = (V, E) is a partition of V.
- An edge $(u, v) \in E$ crosses the cut (S, V S) if $u \in S$ and $v \in V S$, or vice versa.
- A cut **respects** a set A of edges if no edge in A crosses the cut.
- An edge is a **light edge** crossing a cut if its weight is the minimum of any edge crossing the cut.

CS404/504

What kind of edges are safe?

Theorem 23.1

- Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E.
- Let T be a MST of G, and let A be a subset of edges s.t. $A \subseteq T$.
- Let (S, V S) be a cut of G that respects A.
- Let (u, v) be a light edge crossing the cut (S, V S).
- Then (u, v) is safe for A (i.e., A ∪ (u, v) will be a subset of a MST).

CS404/504

Theorem 23.1

Proof: Let T be a MST that includes A, and assume that T does not contain the min-weight edge (u, v), since if it does, we are done.

1. Construct another MST T' that includes $A \cup \{(u, v)\}$. $T' = T - \{(x, y)\} \cup \{u, v\}$ (Figure 23.3)

2. $w(T') = w(T) - w(x, y) + w(u, v) \le w(T)$. But T is a MST, so $w(T) \le w(T')$; thus, T' must be a MST also.

3. Since $A \subseteq T$ and $(x, y) \notin A \Rightarrow A \subseteq T'$; thus $A \cup \{(u, v)\} \subset T'$

Since T' is a MST, (u, v) is safe for A.

CS404/504

Corollary 23.2

- Let A be a subset of an MST.
- Let $G_A = (V, A)$ be the forest induced by A.
- Let $C = (V_C, E_C)$ be a tree in the forest G_A .
- If (u, v) is a light edge connecting C to some other tree in
 A, then (u, v) is safe for A (i.e, A ∪ (u, v) will be a subset of
 a MST).

Two algorithms for MST: Two different schemes of maintaining A

Based on different approaches of maintaining A, we have two algorithms: **Kruskal's algorithm** and **Prim's algorithm**:

- Kruskal's algorithm keeps the set A as a forest (a set of disjoint sets).
- Prim's algorithm grows a single tree A.

CS404/504

Kruskal's Algorithm

Basic idea: To grow a sparse forest A into a tree.

- At the beginning, each vertex is considered to be a different tree. *A* is the forest containing those trees.
- Grow this forest into a tree
 - Sort the edges in nondecreasing order by weight and put them in a list L.
 - For each edge in L, in order:
 - Remove the first edge (u, v) from L (i.e. the cheapest edge);
 - If (u, v) connects two trees (i.e., T_i and T_j) without introducing any cycle, then grow T_i and T_j into a bigger tree; otherwise discard (u, v).
 - > (u, v) is safe for A by Corollary 23.2.

CS404/504

Kruskal's algorithm: Implement a Forest

Q: How to implement a forest?

A: use a disjoint-set data structure to maintain several disjoint sets of elements. Each set represents a tree.

Q: How to check if a cycle is formed?

A: Each set/tree has a set/tree ID (unique representative). When you try to connect two vertices in the same tree (with the same tree ID), a cycle will be formed.

CS404/504

A simple data structure for Forests (Disjoint sets)

The operations we need to support:

- Find-Set (return the set/tree ID).
- Union (combine two sets/trees into one larger set/tree).
- Make-Set (construct set/tree).
- A simple solution: linked lists:
 - Maintain elements in same set as a linked list with each element having a pointer to the first element of the list (unique representative).
 - Each list maintains pointers *head* to the representative, and *tail* to the last object in the list.

CS404/504

Disjoint Sets: Time complexity

- Make-Set(v): make a list with one element $\Rightarrow O(1)$ time.
- Find-Set(u): follow pointer and return the unique representative
 ⇒ O(1) time.
- Union(u, v): point all the pointers of v's elements to u's unique representative
 - $\Rightarrow O(|v|)$ time.
 - \Rightarrow |V| Union operations can take $\Theta(|V|^2)$ time.
 - Can do better, using the weighted union heuristic.

CS404/504

Disjoint Sets: Weighted union heuristic

Augment the representation:

- Store the length of the list with each list.
- Always append the smaller list onto the longer list.

Theorem 21.1

Using the linked-list representation of disjoint sets and the weighted-union heuristic, a sequence of m Make-Set, Union, and Find-Set operations, n of which are Make-Set operations, takes $O(m + n \lg n)$ time.

CS404/504

Kruskal's Algorithm

```
MST-Kruskal (G, w)
  A := \emptyset;
  for each vertex v \in V
     Make-Set(v);
                                     /* construct trees */
  Sort the edges of E by weight ;
  for each edge (u, v) \in E, in oder
     if Find-Set(u) \neq Find-Set(v) /* Not in the same tree */
         A := A \cup \{(u, v)\}
         Union-Set(u, v); /* combine two trees into one */
 CS404/504
                                                    Computer Science
```

Running time for Kruskal's algorithm

- 1. Sort: O(|E|lg|E|).
- 2. |V| Make-Set calls.
- 3. 2|E| Find-Set() calls.
- 4. |V| 1 Union-Set calls.

Total: 2|E| + 2|V| - 1 operations on the disjoint sets, |V| of each are Make-Set operations $\Rightarrow O(2|E| + 2|V| - 1 + |V| \lg |V|)$ time complexity, by Theorem 21.1.

Overall, the complexity for Kruskal's algorithm is: O(|E|lg|E|) = O(|E|lg|V|).

CS404/504

Basic idea: To grow a single tree A (from a one-node tree to a MST).

- Select an arbitrary vertex to start the tree A; Let V_A be the vertices covered by A.
- growing the tree A:
 - each time select an edge (u, v) of minimum weight connecting a vertex in V_A and a vertex outside of V_A .
 - include (u, v) into A.

CS404/504

Prim's algorithm: Implementation

We need to keep a list for the vertices not covered by A, and we hope that each time we can efficiently pick the closest one to include. Thus we need a Priority Queue.

Extra variables:

- Q: a min-priority queue to store the vertices which are not in V_A yet.
- key: for each element v (a vertex) in Q, there is a field key to record the minimum weight of any edge connecting v to a vertex in the tree; i.e., key[v] tells the distance from v to the tree A. If no such edge, key[v] = ∞.

CS404/504

Prim's algorithm MST-PRIM (G(V, E), w, r) /* r is the arbitrarily selected starting point */ for each $u \in V$ 1 $key[u] := \infty;$ 2 /* the first to be picked into V_A * key[r] := 0;3 /* put all vertices into a PQ */ Q := V;4 5 while Q is not empty u := Extract-Min(Q); /* get the vertex which is 6 closest to the tree A, and remove it from the queue *, for each $v \in Adj[u]$ /* update the dist. to A */7 if $(v \in Q)$ and w(u, v) < key[v]8 key[v] := w(u, v)9 CS404/504 **Computer Science**

Using Binary Heaps

If we use a Heap to implement the min-priority queue:

- Build-Min-Heap (line 4) takes O(|V|).
- while loop (line 5) will execute |V| times.
- Extract-Min (line 6) takes O(lg|V|).
- The **for** loop in lines 7 9 is executed O(|E|) times altogether, because the sum of the lengths of all adjacency lists is 2|E|
- line 8: O(1)
- line 9: It's actually an operation of **Decrease-Key**. With Heap: O(lg|V|).

```
Overall the complexity for Prim's algorithm:

O(|V| + |V|lg|V| + |E|lg|V|) = O(|E|lg|V|).
```

CS404/504