Machine Learning ITCS 6156/8156

Gradient Descent

Razvan C. Bunescu
Department of Computer Science @ CCI
razvan.bunescu@uncc.edu

ML is Optimization

- Try to find the value for w that minimizes:

$$
\begin{aligned}
& J(w)=\frac{1}{2} w^{2}-4 w+9 \\
& J(w)=\frac{1}{2}(w-4)^{2}+1
\end{aligned}
$$

- $\operatorname{Set} \nabla J(w)=0$

$$
\begin{aligned}
& \Rightarrow w-4=0 \\
& \Rightarrow w=4
\end{aligned}
$$

Machine Learning is Optimization

- Parametric ML involves minimizing an objective function $J(\mathbf{w})$:
- Also called cost function or error function.
- Want to find $\widehat{\mathbf{w}}=\underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$
- Numerical optimization procedure:

1. Start with some guess for \mathbf{w}^{0}, set $\tau=0$.
2. Update \mathbf{w}^{τ} to $\mathbf{w}^{\tau+1}$ such that $J\left(\mathbf{w}^{\tau+1}\right) \leq J\left(\mathbf{w}^{\tau}\right)$.
3. Increment $\tau=\tau+1$.
4. Repeat from 2 until J cannot be improved anymore.

Gradient-based Optimization

- How to update \mathbf{w}^{τ} to $\mathbf{w}^{\tau+1}$ such that $J\left(\mathbf{w}^{\tau+1}\right) \leq J\left(\mathbf{w}^{\tau}\right)$?
- Move \mathbf{w} in the direction of steepest descent:

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}+\eta \boldsymbol{\Delta}
$$

- Δ is the direction of steepest descent, i.e. direction along which J decreases the most.
- η is the learning rate and controls the magnitude of the change.

Gradient-based Optimization

- Move \mathbf{w} in the direction of steepest descent:

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}+\eta \boldsymbol{\Delta}
$$

- What is the direction of steepest descent of $J(\mathbf{w})$ at \mathbf{w}^{τ} ?
- The gradient $\nabla J(\mathbf{w})$ is in the direction of steepest ascent.
- Set $\boldsymbol{\Delta}=-\nabla J(\mathbf{w})=>$ the gradient descent update:

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta \nabla J\left(\mathbf{w}^{\tau}\right)
$$

Gradient Descent Algorithm

- Want to minimize a function $J: R^{\mathrm{n}} \rightarrow R$.
- J is differentiable and convex.
- compute gradient of J i.e. direction of steepest increase:

$$
\nabla J(\mathbf{w})=\left[\frac{\partial J}{\partial w_{1}}, \frac{\partial J}{\partial w_{2}}, \ldots, \frac{\partial J}{\partial w_{n}}\right]
$$

1. Set learning rate $\eta=0.001$ (or other small value).
2. Start with some guess for \mathbf{w}^{0}, set $\tau=0$.
3. Repeat for epochs E or until J does not improve:
4. $\quad \tau=\tau+1$.
5. $\quad \mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta \nabla J\left(\mathbf{w}^{\tau}\right)$

What if objective is not differentiable?

- Subgradient methods.
- Minimize convex functions that are not necessarily differentiable.
- Gradient free methods:
- Evolutionary Programming.
- Bayesian Optimization.
- https://arxiv.org/abs/1807.02811
- Particle swarm optimization.
- Surrogate optimization
- Simmulated annealing.

Gradient Descent Algorithm

- Want to minimize a function $J: R^{\mathrm{n}} \rightarrow R$.
- J is differentiable and convex.
- compute gradient of J i.e. direction of steepest increase:

$$
\nabla J(\mathbf{w})=\left[\frac{\partial J}{\partial w_{1}}, \frac{\partial J}{\partial w_{2}}, \ldots, \frac{\partial J}{\partial w_{n}}\right]
$$

1. Set learning rate $\eta=0.001$ (or other small value).
2. Start with some guess for \mathbf{w}^{0}, set $\tau=0$.
3. Repeat for epochs E or until J does not improve:
4. $\quad \tau=\tau+1$.
5. $\quad \mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta \nabla J\left(\mathbf{w}^{\tau}\right)$

Gradient Descent: Large Updates

Gradient Descent: Small Updates

Cost

The Learning Rate

1. Set learning rate $\eta=0.001$ (or other small value).
2. Start with some guess for \mathbf{w}^{0}, set $\tau=0$.
3. Repeat for epochs E or until J does not improve:
4. $\tau=\tau+1$.
5. $\quad \mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta \nabla J\left(\mathbf{w}^{\tau}\right)$

- How big should the learning rate be?
- If learning rate too small $=>$ slow convergence.
- If learning rate too big $=>$ oscillating behavior $=>$ may not even converge.

Learning Rate too Small

Cost

Learning Rate too Large

Cost

Learning Rates vs. GD Behavior

http://scs.ryerson.ca/~aharley/neural-networks/

The Learning Rate

- How big should the learning rate be?
- If learning rate too big $=>$ oscillating behavior.
- If learning rate too small $=>$ hinders convergence.
- Use line search (backtracking line search, conjugate gradient, ...).
- Use second order methods (Newton's method, L-BFGS, ...).
- Requires computing or estimating the Hessian.
- Use a simple learning rate annealing schedule:
- Start with a relatively large value for the learning rate.
- Decrease the learning rate as a function of the number of epochs or as a function of the improvement in the objective.
- Use adaptive learning rates:
- Adagrad, Adadelta, RMSProp, Adam.

Gradient Descent: Nonconvex Objective

Convex Multivariate Objective

Gradient Step and Contour Lines

Gradient Descent: Nonconvex Objectives

Gradient Descent \& Plateaus

Gradient Descent \& Saddle Points

Gradient Descent \& Ravines

Gradient Descent \& Ravines

- Ravines are areas where the surface curves much more steeply in one dimension than another.
- Common around local optima.
- GD oscillates across the slopes of the ravines, making slow progress towards the local optimum along the bottom.
- Use momentum to help accelerate GD in the relevant directions and dampen oscillations:
- Add a fraction of the past update vector to the current update vector.
- The momentum term increases for dimensions whose previous gradients point in the same direction.
- It reduces updates for dimensions whose gradients change sign.
- Also reduces the risk of getting stuck in local minima.

Gradient Descent \& Momentum

Vanilla Gradient Descent:

$$
\begin{aligned}
\mathbf{v}^{\tau+1} & =\eta \nabla J\left(\mathbf{w}^{\tau}\right) \\
\mathbf{w}^{\tau+1} & =\mathbf{w}^{\tau}-\mathbf{v}^{\tau+1}
\end{aligned}
$$

Gradient Descent w/ Momentum:

$$
\begin{aligned}
\mathbf{v}^{\tau+1} & =\gamma \mathbf{v}^{\tau}+\eta \nabla J\left(\mathbf{w}^{\tau}\right) \\
\mathbf{w}^{\tau+1} & =\mathbf{w}^{\tau}-\mathbf{v}^{\tau+1}
\end{aligned}
$$

γ is usually set to 0.9 or similar.

The momentum term increases for dimensions whose gradients point in the same directions and reduces updates for dimensions whose gradients change directions.

Momentum \& Nesterov Accelerated Gradient

GD with Momentum:

$$
\mathbf{v}^{\tau+1}=\gamma \mathbf{v}^{\tau}+\eta \nabla J\left(\mathbf{w}^{\tau}\right)
$$

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\mathbf{v}^{\tau+1}
$$

Nesterov Accelerated Gradient:

$$
\begin{aligned}
\mathbf{v}^{\tau+1} & =\gamma \mathbf{v}^{\tau}+\eta \nabla J\left(\mathbf{w}^{\tau}-\gamma \mathbf{v}^{\tau}\right) \\
\mathbf{w}^{\tau+1} & =\mathbf{w}^{\tau}-\mathbf{v}^{\tau+1}
\end{aligned}
$$

Nesterov update (Source: G. Hinton's lecture 6c)
By making an anticipatory update, NAGs prevents GD from going too fast => significant improvements when training RNNs.

Batch vs. Stochastic Gradient Descent

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta \nabla J\left(\mathbf{w}^{\tau}\right)
$$

- Depending on how much data is used to compute the gradient at each step:
- Batch gradient descent:
- Use all the training examples.
- Stochastic gradient descent (SGD).
- Use one training example, update after each.
- Minibatch gradient descent.
- Use a constant number of training examples (minibatch).

Batch Gradient Descent: Linear Regression

- Sum-of-squares error:

$$
h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)=\mathbf{w}^{T} \mathbf{x}^{(n)}
$$

$$
\begin{aligned}
& J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right)^{2} \\
& \mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta \nabla J\left(\mathbf{w}^{\tau}\right) \\
& \mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta \frac{1}{N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right) \mathbf{x}^{(n)}
\end{aligned}
$$

Stochastic Gradient Descent: Linear Regression

- Sum-of-squares error:

$$
h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)=\mathbf{w}^{T} \mathbf{x}^{(n)}
$$

$$
J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right)^{2}=\frac{1}{N} \sum_{n=1}^{N} J\left(\mathbf{w}^{\tau}, \mathbf{x}^{(n)}\right)
$$

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta \nabla J\left(\mathbf{w}^{\tau}, \mathbf{x}^{(n)}\right)
$$

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right) \mathbf{x}^{(n)}
$$

- Update parameters \mathbf{w} after each example, sequentially:
$=>$ the least-mean-square (LMS) algorithm.

Batch GD vs. Stochastic GD

- Accuracy:
- Time complexity:
- Memory complexity:
- Online learning:

Batch GD vs. Stochastic GD

Pre-processing Features

- Features may have very different scales, e.g. $x_{1}=$ rooms vs. $x_{2}=$ size in sq ft.
- Right (different scales): GD goes first towards the bottom of the bowl, then slowly along an almost flat valley.
- Left (scaled features): GD goes straight towards the minimum.

Feature Scaling

- Scaling between $[0,1]$ or $[-1,+1]$:
- For each feature x_{j}, compute $\min _{j}$ and $\max _{j}$ over the training examples.
- Scale x_{j} as follows: $\hat{x}_{j}=\frac{x_{j}-\min _{j}}{\max _{j}-\text { min }_{j}}$
- Scaling to standard normal distribution:
- For each feature x_{j}, compute sample μ_{j} and sample σ_{j} over the training examples.
- Scale x_{j} as follows: $\hat{x}_{j}=\frac{x_{j}-\mu_{j}}{\sigma_{j}}$
- Use the same scaling factors at test time:
- Clip to $\min _{j}$ and $\max _{j}$.

Gradient Descent vs. Normal Equations

- Gradient Descent:

- Need to select learning rate η.
- May need many iterations:
- Can do Early Stopping on validation data for regularization.
- Scalable when number of training examples N is large.
- Normal Equations:
- No iterations $=>$ easy to code.
- Computing $\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1}$ has cubic time complexity $=>$ slow for large N .
- $\mathrm{X}^{\mathrm{T}} \mathrm{X}$ may be singular:

1. Redundant (linearly dependent) features.
2. \#features $>$ \#examples $=>$ do feature selection or regularization.

Implementation: Vectorization

- Version 1: Compute gradient component-wise.

$$
\nabla J(\mathbf{w})=\frac{1}{N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right) \mathbf{x}^{(n)} \quad h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)=\mathbf{w}^{T} \mathbf{x}^{(n)}
$$

$\operatorname{grad}=n \mathrm{n} . z e r o s(\mathrm{~K})$
for n in range(N):
$\mathrm{h}=\mathbf{w} \cdot \operatorname{dot}(\mathrm{X}[:, \mathrm{n}]) / /$ This NumPy code assumes examples stored in columns of X.
temp $=\mathrm{h}-\mathrm{t}[\mathrm{n}]$
for k in range(K):

$$
\operatorname{grad}(\mathrm{k})=\operatorname{grad}(\mathrm{k})+\operatorname{temp} * \mathrm{X}[\mathrm{n}, \mathrm{k}]
$$

for k in range(K):

$$
\operatorname{grad}(\mathrm{k})=\operatorname{grad}(\mathrm{k}) / \mathrm{N}
$$

Implementation: Vectorization

- Version 2: Compute gradient, partially vectorized.

$$
\begin{aligned}
& \nabla J(\mathbf{w})=\frac{1}{N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right) \mathbf{x}^{(n)} \quad h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)=\mathbf{w}^{T} \mathbf{x}^{(n)} \\
& \operatorname{grad}=\operatorname{np} . \operatorname{zeros}(\mathrm{K}) \quad \\
& \text { for } \mathrm{n} \text { in range(} \mathrm{N}): \quad \operatorname{grad}=\operatorname{grad}+(\mathbf{w} \cdot \operatorname{dot}(\mathrm{X}[:, \mathrm{n}]))-\mathrm{t}[\mathrm{n}]) * \mathrm{X}[:, \mathrm{n}] \\
& \operatorname{grad}=\operatorname{grad} / \mathrm{N}
\end{aligned}
$$

Implementation: Vectorization

- Version 3: Compute gradient, vectorized.

$$
\begin{aligned}
& \nabla J(\mathbf{w})=\frac{1}{N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right) \mathbf{x}^{(n)} \\
& \operatorname{grad}=\mathrm{X} \cdot \operatorname{dot}(\mathbf{w} \cdot \operatorname{dot}(\mathrm{X})-\mathbf{t}) / \mathrm{N}
\end{aligned}
$$

NumPy code above assumes examples stored in columns of X.
Homework: Rewrite to work with examples stored on rows.

Batch Gradient Descent: Ridge Regression

- Sum-of-squares error + regularizer

$$
h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)=\mathbf{w}^{T} \mathbf{x}^{(n)}
$$

$$
J(\mathbf{w})=\frac{1}{2 N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right)^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta \nabla J\left(\mathbf{w}^{\tau}\right)
$$

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\eta\left(\lambda \mathbf{w}+\frac{1}{N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right) \mathbf{x}^{(n)}\right)
$$

Implementation: Vectorization

- Version 3: Compute gradient, vectorized.

$$
\begin{aligned}
& \nabla J(\mathbf{w})=\lambda \mathbf{w}+\frac{1}{N} \sum_{n=1}^{N}\left(h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)-t_{n}\right) \mathbf{x}^{(n)} \quad h_{\mathbf{w}}\left(\mathbf{x}^{(n)}\right)=\mathbf{w}^{T} \mathbf{x}^{(n)} \\
& \operatorname{grad}=\lambda * \mathbf{w}+\mathrm{X} \cdot \operatorname{dot}(\mathbf{w} \cdot \operatorname{dot}(\mathrm{X})-\mathbf{t}) / \mathrm{N}
\end{aligned}
$$

NumPy code above assumes examples stored in columns of X.
Homework: Rewrite to work with examples stored on rows.

Implementation: Gradient Checking

- Want to minimize $J(\theta)$, where θ is a scalar.
- Mathematical definition of derivative:

$$
\frac{d}{d \theta} J(\theta)=\lim _{\varepsilon \rightarrow \infty} \frac{J(\theta+\varepsilon)-J(\theta-\varepsilon)}{2 \varepsilon}
$$

- Numerical approximation of derivative:

$$
\frac{d}{d \theta} J(\theta) \approx \frac{J(\theta+\varepsilon)-J(\theta-\varepsilon)}{2 \varepsilon} \quad \text { where } \varepsilon=0.0001
$$

Implementation: Gradient Checking

- If $\boldsymbol{\theta}$ is a vector of parameters $\boldsymbol{\theta}_{i}$,
- Compute numerical derivative with respect to each $\boldsymbol{\theta}_{i}$.
- Aggregate all derivatives into numerical gradient $G_{\text {num }}(\boldsymbol{\theta})$.
- Compare numerical gradient $G_{\text {num }}(\boldsymbol{\theta})$ with implementation of gradient $G_{\text {imp }}(\boldsymbol{\theta})$:

$$
\frac{\left\|G_{\text {num }}(\theta)-G_{i m p}(\theta)\right\|}{\left\|G_{n u m}(\theta)+G_{i m p}(\theta)\right\|} \leq 10^{-6}
$$

Gradient Descent Optimization Algorithms

- Momentum.
- Nesterov Accelerated Gradient (NAG).
- Adaptive learning rates methods:
- Idea is to perform larger updates for infrequent params and smaller updates for frequent params, by accumulating previous gradient values for each parameter.
- Adagrad:
- Divide update by sqrt of sum of squares of past gradients.
- Adadelta.
- RMSProp.
- Adaptive Moment Estimation (Adam)

Gradient Descent \& Saddle Points

Gradient Descent \& Ravines

Gradient Descent \& Ravines

- Ravines are areas where the surface curves much more steeply in one dimension than another.
- Common around local optima.
- GD oscillates across the slopes of the ravines, making slow progress towards the local optimum along the bottom.
- Use momentum to help accelerate GD in the relevant directions and dampen oscillations:
- Add a fraction of the past update vector to the current update vector.
- The momentum term increases for dimensions whose previous gradients point in the same direction.
- It reduces updates for dimensions whose gradients change sign.
- Also reduces the risk of getting stuck in local minima.

Gradient Descent \& Momentum

Vanilla Gradient Descent:

$$
\begin{aligned}
\mathbf{v}^{\tau+1} & =\eta \nabla J\left(\mathbf{w}^{\tau}\right) \\
\mathbf{w}^{\tau+1} & =\mathbf{w}^{\tau}-\mathbf{v}^{\tau+1}
\end{aligned}
$$

Gradient Descent w/ Momentum:

$$
\begin{aligned}
\mathbf{v}^{\tau+1} & =\gamma \mathbf{v}^{\tau}+\eta \nabla J\left(\mathbf{w}^{\tau}\right) \\
\mathbf{w}^{\tau+1} & =\mathbf{w}^{\tau}-\mathbf{v}^{\tau+1}
\end{aligned}
$$

γ is usually set to 0.9 or similar.

The momentum term increases for dimensions whose gradients point in the same directions and reduces updates for dimensions whose gradients change directions.

Momentum \& Nesterov Accelerated Gradient

GD with Momentum:

$$
\mathbf{v}^{\tau+1}=\gamma \mathbf{v}^{\tau}+\eta \nabla J\left(\mathbf{w}^{\tau}\right)
$$

$$
\mathbf{w}^{\tau+1}=\mathbf{w}^{\tau}-\mathbf{v}^{\tau+1}
$$

Nesterov Accelerated Gradient:

$$
\begin{aligned}
\mathbf{v}^{\tau+1} & =\gamma \mathbf{v}^{\tau}+\eta \nabla J\left(\mathbf{w}^{\tau}-\gamma \mathbf{v}^{\tau}\right) \\
\mathbf{w}^{\tau+1} & =\mathbf{w}^{\tau}-\mathbf{v}^{\tau+1}
\end{aligned}
$$

$$
\eta \nabla J\left(\mathbf{w}^{\tau}-\gamma \mathbf{v}^{\tau}\right)
$$

Nesterov update (Source: G. Hinton's lecture 6c)
By making an anticipatory update, NAGs prevents GD from going too fast
=> significant improvements when training RNNs.

AdaGrad

- Optimized for problems with sparse features.
- Per-parameter learning rate: make smaller updates for params that are updated more frequently:

$$
\begin{aligned}
w_{i}=w_{i}-\eta \frac{g_{t, i}}{\sqrt{\epsilon+G_{t, i}}} \quad \text { where } G_{t, i} & =\sum_{\tau=1}^{t} g_{\tau, i}^{2} \\
g_{t, i} & =\frac{\partial J(\mathbf{w})}{\partial w_{i}}
\end{aligned}
$$

- Require less tuning of the learning rate compared with SGD.

RMSProp

- Element-wise gradient: $g_{i}^{t}=\nabla_{w_{i}} J\left(\mathbf{w}_{t}\right)$
- Gradient is $\mathbf{g}_{t}=\left[g_{1}^{t}, g_{2}^{t}, \ldots, g_{K}^{t}\right]$
- Element-wise square gradient: $\mathbf{g}_{t}^{2}=\mathbf{g}_{t} \circ \mathbf{g}_{t}$

RMSProp:

$$
\begin{aligned}
& \mathrm{E}_{t}\left[\mathbf{g}^{2}\right]=\gamma \mathrm{E}_{t-1}\left[\mathbf{g}^{2}\right]+(1-\gamma) \mathbf{g}_{t}^{2} \\
& \mathbf{w}_{t+1}=\mathbf{w}_{t}-\frac{\eta}{\sqrt{\mathrm{E}_{t}\left[\mathbf{g}^{2}\right]+\epsilon}} \mathbf{g}_{t}
\end{aligned}
$$

γ is usually set to $0.9, \eta$ is set to 0.001

Adam: Adaptive Moment Estimation

- Maintain an exponentially decaying average of past gradients ($1^{\text {st }} \mathrm{m}$.) and past squared gradients ($2^{\text {nd }} \mathrm{m}$.):

1) $\mathbf{m}_{t}=\beta_{1} \mathbf{m}_{t-1}+\left(1-\beta_{1}\right) \mathbf{g}_{t}$
2) $\mathbf{v}_{t}=\beta_{1} \mathbf{v}_{t-1}+\left(1-\beta_{1}\right) \mathbf{g}_{t}^{2}$

- Biased towards 0 during initial steps, use bias-corrected first and second order estimates:

1) $\widehat{\mathbf{m}}_{t}=\frac{\mathbf{m}_{t}}{1-\beta_{1}^{t}}$
2) $\hat{\mathbf{v}}_{t}=\frac{\mathbf{v}_{t}}{1-\beta_{2}^{t}}$

Adam: Adaptive Moment Estimation

- First and second moment:

$$
\begin{aligned}
& \mathbf{m}_{t}=\beta_{1} \mathbf{m}_{t-1}+\left(1-\beta_{1}\right) \mathbf{g}_{t} \\
& \mathbf{v}_{t}=\beta_{1} \mathbf{v}_{t-1}+\left(1-\beta_{1}\right) \mathbf{g}_{t}^{2}
\end{aligned}
$$

- Bias-correction:

$$
\widehat{\mathbf{m}}_{t}=\frac{\mathbf{m}_{t}}{1-\beta_{1}^{t}} \text { and } \hat{\mathbf{v}}_{t}=\frac{\mathbf{v}_{t}}{1-\beta_{2}^{t}}
$$

Adam:

$$
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\frac{\eta}{\sqrt{\hat{v}_{t}}+\epsilon} \widehat{\mathbf{m}}_{t}
$$

Visualization

- Adagrad, RMSprop, Adadelta, and Adam are very similar algorithms that do well in similar circumstances.
- Insofar, Adam might be the best overall choice.

