Machine Learning ITCS 6156/8156

Introduction

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

How to Automate Solutions to Computational Problems?

- Spam email:
 - Binary classification of emails into Spam vs. Ham.
- Expert Systems approach (also called rule-based):
 - 1. A group of experts write rules determining whether an email is spam or not.
 - 2. A programmer implement the rules into computer code.
- Example rules:
 - "MONEY" appears in the text?
 - What if email sent by grandmother?

How to Automate Solutions to Computational Problems?

- Expert Systems approach (also called rule-based):
 - Cognitively demanding:
 - Difficult for humans to reason with many useful but imprecise features that are indicative (signals) of spam or not spam:
 - Words, phrases, images, meta-data, time series, ...
 - Need to combine a large number of signals, figure out their relative importance in determining spam vs. ham label.
 - Brittle: Always going to miss some useful features or patterns.
 - "All grammars leak." (Edward Sapir).
 - Spam filtering is adversarial, new features need to be added over time.

Why Machine Learning?

- Machine Learning (ML) approach:
 - Because ML is hot? No!
 - Rule-based (knowledge-based) may work very well.

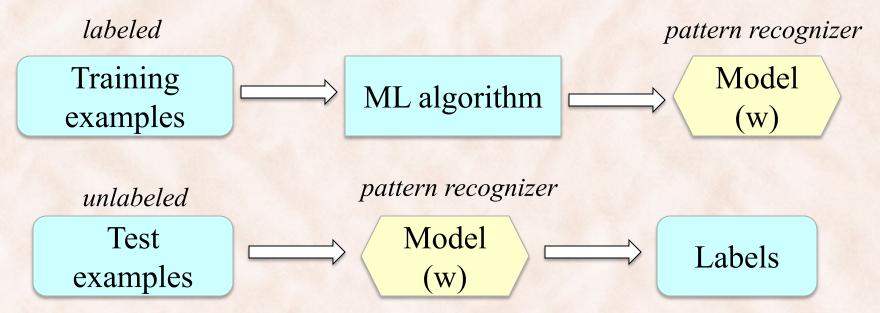
Input		=>	Output	
30.2	2.1	=>	63.3	
65.4	3.5	=>	229.1	
46.2	0.5	=>	22.9	
•••		=>	•••	
25.3	4.0	=>	?	

Why Machine Learning?

- Machine Learning (ML) approach:
 - 1. Acquire a large enough dataset of *labeled examples*:
 - Email is the *instance*, the *label* is spam (+1) vs. not spam (-1).
 - 2. Represent emails as feature vectors:
 - Each feature has a *weight*, the sign of the weighted sum of features should match the label.
 - A. Traditional ML: engineer the features.
 - B. Deep ML: learn the features.
 - 3. Learn the weights s.t. the model (weighted combination of features) does well on labeled examples.

What is Machine Learning?

- **Machine Learning** = constructing computer programs that *learn* from *experience* to perform well on a given task.
 - Supervised Learning i.e. discover patterns from labeled examples that enable predictions on (previously unseen) unlabeled examples.

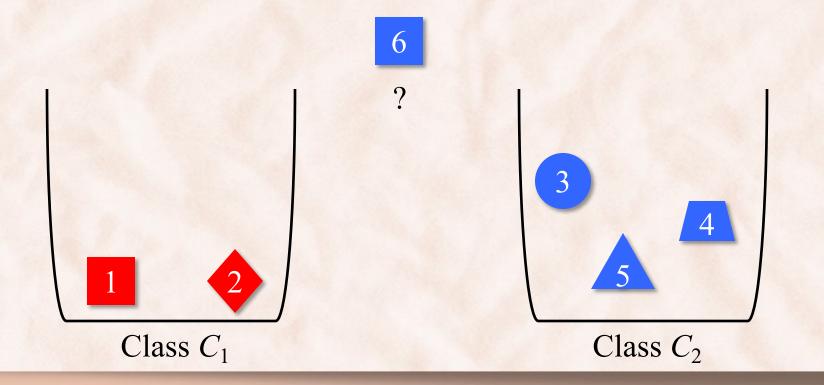


Example

 M_1 : x is Red => $x \in C_1$

 M_2 : x is a Square or x is a Diamond \Rightarrow $x \in C_1$

 M_3 : x is Red and x is a Quadrilateral => $x \in C_1$



Occam's Razor

William of Occam (1288 – 1348) English Franciscan friar, theologian and philosopher.

"Entia non sunt multiplicanda praeter necessitatem"

- Entities must not be multiplied beyond necessity.
- i.e. Do not make things needlessly complicated.
- i.e. Prefer the simplest hypothesis that fits the data.

ML Objective

• Find a model M that is *simple* + that *fits the training data*.

$$\hat{\mathbf{M}} = \underset{\mathbf{M}}{\operatorname{argmin}} \quad Complexity(\mathbf{M}) + Error(\mathbf{M}, Data)$$

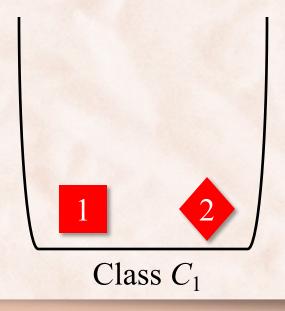
- Inductive hypothesis: Models that perform well on training examples are expected to do well on test (unseen) examples.
- Occam's Razor: Simpler models are expected to do better than complex models on test examples (assuming similar training performance).

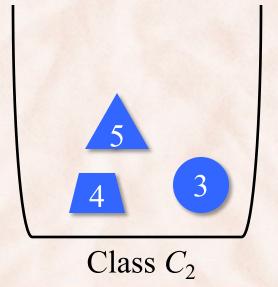
Example

 M_1 : x is Red => $x \in C_1$

 M_2 : x is a Square or x is a Diamond \Rightarrow $x \in C_1$

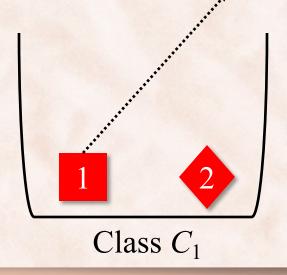
 M_3 : x is Red and x is a Quadrilateral => $x \in C_1$

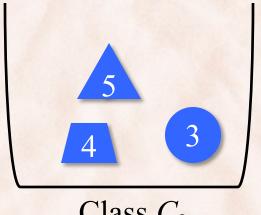




Feature Vectors

Features	$\varphi(\mathbf{x}_1)$	$\varphi(\mathbf{x}_2)$	$\varphi(x_3)$	$\varphi(\mathbf{x}_4)$	$\varphi(\mathbf{x}_5)$
(φ ₁) Red?	1	1	0	0	0
(φ ₂) Quad?	1	1	0	1	0
(φ ₃) Square?	1	0	0	0	0
(φ ₄) Diamond?	0	1	0	0	0
(y) Label	$y_1 = +1$	y ₂ =+1	y ₃ =-1	y ₄ =-1	y ₅ =-1





Learning with Labeled Feature Vectors

Features	$\varphi(\mathbf{x}_1)$	$\varphi(\mathbf{x}_2)$	$\varphi(x_3)$	$\varphi(\mathbf{x}_4)$	$\varphi(\mathbf{x}_5)$
(φ ₁) Red?	1	1	0	0	0
(φ ₂) Quad?	1	1	0	1	0
(φ ₃) Square?	1	0	0	0	0
(φ ₄) Diamond?	0	1	0	0	0
(y) Label	$y_1 = +1$	y ₂ =+1	y ₃ =-1	y ₄ =-1	y ₅ =-1

$$\phi(x_1) = [1, 1, 1, 0]^T$$
 $\phi(x_2) = [1, 1, 0, 1]^T$ $\phi(x_3) = [0, 0, 0, 0]^T \dots$
 $y_1 = +1$ $y_2 = +1$ $y_3 = -1$ \dots

Learning = finding parameters $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4]^T$ and τ such that:

- $\mathbf{w}^{\mathrm{T}} \varphi(\mathbf{x}_{\mathrm{i}}) \geq \tau$, if $\mathbf{y}_{\mathrm{i}} = +1$
- $\mathbf{w}^{\mathrm{T}} \mathbf{\phi}(\mathbf{x}_{\mathrm{i}}) < \tau$, if $\mathbf{y}_{\mathrm{i}} = -1$

where $\mathbf{w}^{T} \varphi(\mathbf{x}) = \mathbf{w}_{1} \varphi_{1}(\mathbf{x}) + \mathbf{w}_{2} \varphi_{2}(\mathbf{x}) + \mathbf{w}_{3} \varphi_{3}(\mathbf{x}) + \mathbf{w}_{4} \varphi_{4}(\mathbf{x})$

Model M_1 : x_i is Red => y_i = +1

Red? Quad? Diamond?
$$\phi(x_1) = [1, 1, 1, 0]^T \quad \text{label } y_1 = +1 \quad \implies \mathbf{w}^T \phi(x_1) = 1 \ge 1$$

$$\phi(x_2) = [1, 1, 0, 1]^T \quad \text{label } y_2 = +1 \quad \implies \mathbf{w}^T \phi(x_2) = 1 \ge 1$$

$$\phi(x_3) = [0, 0, 0, 0]^T \quad \text{label } y_3 = -1 \quad \implies \mathbf{w}^T \phi(x_3) = 0 < 1$$

$$\phi(x_4) = [0, 1, 0, 0]^T \quad \text{label } y_3 = -1 \quad \implies \mathbf{w}^T \phi(x_4) = 0 < 1$$

$$\phi(x_5) = [0, 0, 0, 0]^T \quad \text{label } y_3 = -1 \quad \implies \mathbf{w}^T \phi(x_5) = 0 < 1$$

$$\mathbf{w} = [1, 0, 0, 0]^T \quad \text{label } y_3 = -1 \quad \implies \mathbf{w}^T \phi(x_5) = 0 < 1$$

$$\mathbf{w} = [1, 0, 0, 0]^T \quad \text{label } y_3 = -1 \quad \implies \mathbf{w}^T \phi(x_5) = 0 < 1$$

 $=>M_1$ error is 0%

Learning = finding parameters $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4]^T$ such that:

 $\tau = 1$

•
$$\mathbf{w}^{T} \varphi(\mathbf{x}_{i}) \ge 1$$
, if $y_{i} = +1$
• $\mathbf{w}^{T} \varphi(\mathbf{x}_{i}) < 1$, if $y_{i} = -1$

where
$$\mathbf{w}^{T} \varphi(\mathbf{x}) = \mathbf{w}_{1} \varphi_{1}(\mathbf{x}) + \mathbf{w}_{2} \varphi_{2}(\mathbf{x}) + \mathbf{w}_{3} \varphi_{3}(\mathbf{x}) + \mathbf{w}_{4} \varphi_{4}(\mathbf{x})$$

M_2 : x_i is Square or Diamond => y_i = +1

Red? Quad? Diamond?
$$\phi(x_1) = \begin{bmatrix} 1, 1, 1, 0 \end{bmatrix}^T \quad \text{label } y_1 = +1 \qquad \Longrightarrow \mathbf{w}^T \phi(x_1) = 1 \ge 1$$

$$\phi(x_2) = \begin{bmatrix} 1, 1, 0, 1 \end{bmatrix}^T \quad \text{label } y_2 = +1 \qquad \Longrightarrow \mathbf{w}^T \phi(x_2) = 1 \ge 1$$

$$\phi(x_3) = \begin{bmatrix} 0, 0, 0, 0 \end{bmatrix}^T \quad \text{label } y_3 = -1 \qquad \Longrightarrow \mathbf{w}^T \phi(x_3) = 0 < 1$$

$$\phi(x_4) = \begin{bmatrix} 0, 1, 0, 0 \end{bmatrix}^T \quad \text{label } y_3 = -1 \qquad \Longrightarrow \mathbf{w}^T \phi(x_4) = 0 < 1$$

$$\phi(x_5) = \begin{bmatrix} 0, 0, 0, 0 \end{bmatrix}^T \quad \text{label } y_3 = -1 \qquad \Longrightarrow \mathbf{w}^T \phi(x_5) = 0 < 1$$

$$\mathbf{w} = [0, 0, 1, 1]^{\mathrm{T}}$$

=> M_2 error is 0%

Learning = finding parameters $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4]^T$ such that $(\tau = 1)$:

- $\mathbf{w}^{\mathrm{T}} \mathbf{\phi}(\mathbf{x}_{i}) \geq 1$, if $y_{i} = +1$
- $\mathbf{w}^{\mathrm{T}} \varphi(\mathbf{x}_{i}) < 1$, if $y_{i} = -1$

where $\mathbf{w}^{T} \varphi(\mathbf{x}) = \mathbf{w}_{1} \varphi_{1}(\mathbf{x}) + \mathbf{w}_{2} \varphi_{2}(\mathbf{x}) + \mathbf{w}_{3} \varphi_{3}(\mathbf{x}) + \mathbf{w}_{4} \varphi_{4}(\mathbf{x})$

M_1 or M_2 ?

- Model M_1 : x_i is Red => y_i = +1
 - $-\mathbf{w}^{(1)} = [1, 0, 0, 0]^{\mathrm{T}}$
 - Error = 0%
- Model M₂: x_i is Square or Diamond => y_i = +1
 - $-\mathbf{w}^{(2)} = [0, 0, 1, 1]^{\mathrm{T}}$
 - Error = 0%
- Which one should we choose?
 - Which one is expected to perform better on unseen (new) examples?

ML Objective

• Find a model w that is simple and that fits the training data.

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \operatorname{Complexity}(\mathbf{w}) + \operatorname{Error}(\mathbf{w}, Data)$$

M_1 or M_2 ?

- Model M_1 : x_i is Red => y_i = +1
 - $-\mathbf{w}^{(1)} = [1, 0, 0, 0]^{\mathrm{T}}$
 - Error = 0%
- Model M₂: x_i is Square or Diamond => y_i = +1
 - $-\mathbf{w}^{(2)} = [0, 0, 1, 1]^{\mathrm{T}}$
 - Error = 0%

 $\hat{\mathbf{w}} = \operatorname{arg\,min} \ \operatorname{Complexity}(\mathbf{w}) + \operatorname{Error}(\mathbf{w}, Data)$

W

 $\|\mathbf{w}\|_0$ i.e. # non-zero values

Complexity(\mathbf{w}) = ?

 $\|\mathbf{w}\|_1$ i.e. sum of absolute values

 $||\mathbf{w}||_2^2$ i.e sum of squared values

ML Objectives

• Find a model w that is *simple* and that *fits the training data*.

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \operatorname{Complexity}(\mathbf{w}) + \operatorname{Error}(\mathbf{w}, Data)$$

Ridge Regression: argmin
$$\frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Logistic Regression:
$$\arg\min \frac{\alpha}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} \ln p(t_n | x_n)$$

ML Objectives

Support Vector Machines:

Upper bound on the number of misclassified training examples

$$\underset{\mathbf{w}}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{n=1}^{N} \xi_{n}$$

subject to:

$$t_n(\mathbf{w}^T \boldsymbol{\varphi}(\mathbf{x}_n) + b) \ge 1 - \xi_n, \quad \forall n \in \{1, ..., N\}$$

 $\xi_n \ge 0$

Definition: Bias $w_0 = -$ Threshold τ

$$w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x) + w_4\phi_4(x) \ge \tau$$

$$w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x) + w_4\phi_4(x) - \tau \ge 0$$

Define the **intercept** or **bias** $w_0 = -\tau$.

$$w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x) + w_4\phi_4(x) + w_0 \ge 0$$

$$h(\mathbf{x}) = \mathbf{w}^T \varphi(\mathbf{x}) + w_0 \ge 0$$

where:
 $\mathbf{w} = [w_1, w_2, w_3, w_4]$
 $\varphi(\mathbf{x}) = [\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \varphi_3(\mathbf{x}), \varphi_4(\mathbf{x})]$

$$h(\mathbf{x}) = \mathbf{w}^T \varphi(\mathbf{x}) \ge 0$$

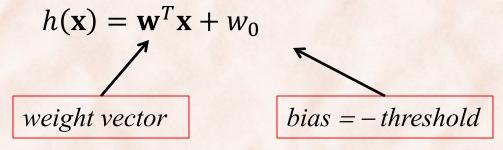
where:
 $\mathbf{w} = [w_0, w_1, w_2, w_3, w_4]$
 $\varphi(\mathbf{x}) = [1, \varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), \varphi_3(\mathbf{x}), \varphi_4(\mathbf{x})]$

Geometric Interpretation

- Often we drop the φ and use bolded \mathbf{x} itself to denote the feature vector $\mathbf{x} = [x_1, x_2, ..., x_K]$.
- Example x is a point in a K-dimensional feature space.
- Parameters w form a vector.
- What does it mean that $\mathbf{w}^T \mathbf{x} + w_0 > 0$?

Linear Discriminant Functions: Two classes (K = 2)

• Use a linear function of the input vector:



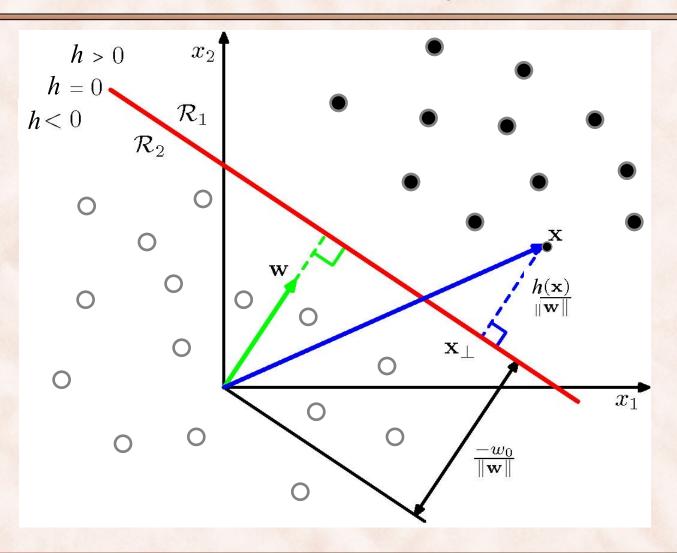
• Decision:

$$\mathbf{x} \in C_1$$
 if $h(\mathbf{x}) \ge 0$, otherwise $\mathbf{x} \in C_2$.
 \Rightarrow decision boundary is hyperplane $h(\mathbf{x}) = 0$.

- Properties:
 - w is orthogonal to vectors lying within the decision surface.
 - w_0 controls the location of the decision hyperplane.

Geometric Interpretation

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$



Outline

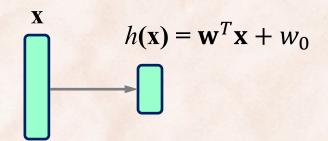
• We want to use a linear function of the feature vector:

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

- How to find w automatically? Use ML!
 - Perceptron.
 - Logistic Regression.
 - SVMs.
- What if the data is not linearly separable? Make it!
 - Engineer new features or use kernels (Perceptron, SVMs).
 - Learn new features (Neural Networks).

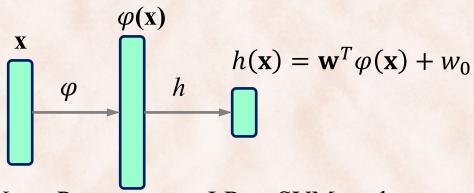
Machine Learning (most of ML pre-2006)

Hope raw data x is linearly separable.



Use a Perceptron or LR or SVMs to learn w.

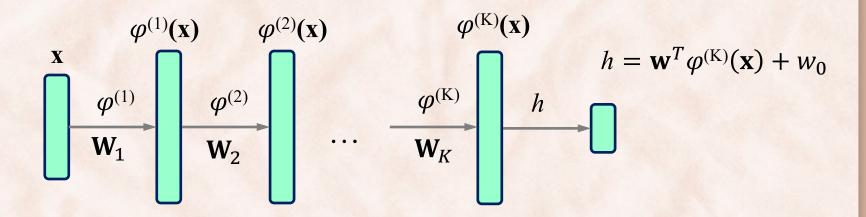
• Engineer features $\varphi(\mathbf{x})$, aim to make data linearly separable.



Use a Perceptron or LR or SVMs to learn w.

Deep Learning

• A raw observation vector \mathbf{x} is pre-processed and further transformed into a sequence of higher-level <u>feature vectors</u> $\phi(\mathbf{x}) = [\phi^{(1)}(\mathbf{x}), \phi^{(2)}(\mathbf{x}), ..., \phi^{(K)}(\mathbf{x})]^T$ that are **learned**.



Linear Models: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

- Given N training examples $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_N, t_N)$ where:
 - Labels $t_i \in \{-1, +1\}$.
 - Each example \mathbf{x}_j is assumed to also contain a bias feature set to 1, corresponding to parameter w_0 .
- Find parameter vector w such the linear model $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ fits the training examples.

1. **initialize** parameters
$$\mathbf{w} = 0$$

2. **for**
$$n = 1 ... N$$

3.
$$h_n = sgn(\mathbf{w}^T \mathbf{x}_n)$$

4. **if** $h_n \neq t_n$ **then**

4. If
$$h_n \neq t_n$$
 then

$$\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$$

$$sgn(z) = +1 \text{ if } z > 0,$$

 $0 \text{ if } z = 0,$
 $-1 \text{ if } z < 0$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:

If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.

see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

1. **initialize** parameters
$$\mathbf{w} = 0$$

2. **for**
$$n = 1 ... N$$

3.
$$h_n = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n$$

3.
$$h_n = \mathbf{w}^T \mathbf{x}_n$$

4. **if** $h_n t_n \le 0$ **then**

$$\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$$

$$sgn(z) = +1 \text{ if } z > 0,$$

 $0 \text{ if } z = 0,$
 $-1 \text{ if } z < 0$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:

If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.

see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

1. **initialize** parameters
$$\mathbf{w} = 0$$

2. **for**
$$n = 1 ... N$$

3.
$$h_n = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n$$

4. **if**
$$h_n \ge 0$$
 and $t_n = -1$

5.
$$\mathbf{w} = \mathbf{w} - \mathbf{x}_n$$

6. **if**
$$h_n \le 0$$
 and $t_n = +1$

7.
$$\mathbf{w} = \mathbf{w} + \mathbf{x}_n$$

$$sgn(z) = +1 \text{ if } z > 0,$$

 $0 \text{ if } z = 0,$
 $-1 \text{ if } z < 0$

Repeat:

- a) until convergence.
- b) for a number of epochs E.

What is the impact of the perceptron update on the score $\mathbf{w}^{T}\mathbf{x}_{n}$ of the misclassified example \mathbf{x}_{n} ?

```
initialize parameters \mathbf{w} = 0
for epoch e = 1 \dots E
    mistakes = 0
    for example n = 1 \dots N
         h_n = sgn(\mathbf{w}^T\mathbf{x}_n)
         if h_n \neq t_n then
             \mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n
             mistakes = mistakes + 1
    if mistakes = 0
         break
                    Converged!
```

1 epoch = one pass over all training examples.

- initialize parameters $\mathbf{w} = 0$
- **for** n = 1 ... N

3.
$$h_n = sgn(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n)$$

4. if
$$h_n \neq t_n$$
 then

$$\mathbf{w} = \mathbf{w} + t_n \mathbf{x}_n$$

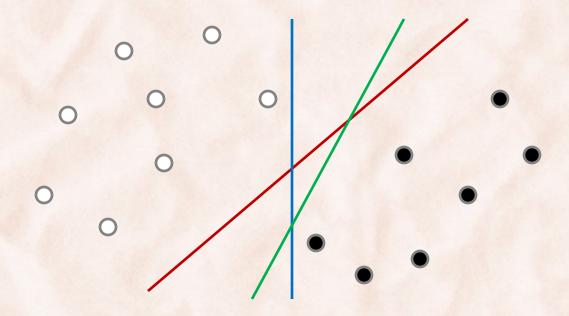
Repeat:

- a) until convergence.b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:

$$\mathbf{w} = \sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n} \quad \Rightarrow \quad \mathbf{w}^{T} \mathbf{x} = \sum_{n} \alpha_{n} t_{n} \mathbf{x}_{n}^{T} \mathbf{x}$$

Classifiers & Margin



- Which classifier has the smallest generalization error?
 - The one that maximizes the margin [Computational Learning Theory]
 - margin = the distance between the decision boundary and the closest sample.

ML Concepts & Notation

- A (labeled) example (x, t) consists of:
 - Instance / observation / raw feature vector x.
 - Label t.
- Examples:
 - 1. Digit recognition:

2

instance
$$\mathbf{x} = ?$$

label
$$t = ?$$

- 2. Language modeling:
 - "machine is a hot topic in AI"

instance
$$\mathbf{x} = ?$$

label
$$t = ?$$

ML Concepts & Notation

- A <u>training dataset</u> is a set of (training) examples $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots$ (\mathbf{x}_N, t_N) :
 - The <u>data matrix</u> X contains all instance vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$ rowwise.
 - The label vector $\mathbf{t} = [t_1, t_2, ..., t_N]^T$.
- A <u>test dataset</u> is a set of (test) examples $(\mathbf{x}_{N+1}, t_{N+1}), \dots, (\mathbf{x}_{N+M}, t_{N+M})$:
 - Must be unseen, i.e. new, i.e. different from the training examples!

ML Concepts & Notation

- There is a function f that maps an instance x to its label t = f(x).
 - − f is unknown / not given.
 - But we observe samples from $f: (\mathbf{x}_1, t_1 = f(\mathbf{x}_1)), (\mathbf{x}_2, t_2), \dots (\mathbf{x}_N, t_N)$.
- Learning means finding a model h that maps an instance \mathbf{x} to a label $h(\mathbf{x}) \approx f(\mathbf{x})$, i.e. close to the true label of \mathbf{x} .
 - Machine learning = finding a model h that approximates well the unknown function f.
 - Machine learning = <u>function approximation</u>.

ML Concepts & Notation

- Machine learning is <u>inductive</u>:
 - Inductive hypothesis: if a model performs well on training examples,
 it is expected to also perform well on unseen (test) examples.
 - Assume within-distribution test examples.
- The $\underline{\text{model}}\ h$ is often specified through a set of parameters w:
 - \mathbf{x} is mapped by the model to $h(\mathbf{x}, \mathbf{w})$.
- The <u>objective function</u> $J(\mathbf{w})$ captures how poorly the model does on the training dataset:
 - Want to find $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$
 - Machine learning = optimization.

Fitting vs. Generalization

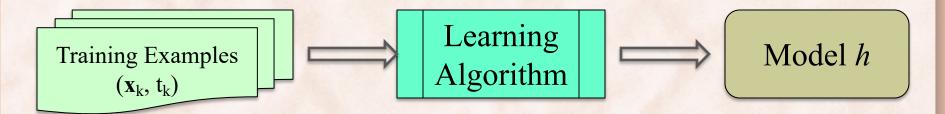
- <u>Fitting</u> performance = how well the model performs on training examples.
- <u>Generalization</u> performance = how well the model performs on unseen (test) examples.
- We are interested in **Generalization**:
 - Prefer finding patterns to memorizing examples!
 - Overfitting:
 - Underfitting:
 - Regularization:

Regularization = Any Method that Alleviates Overfitting

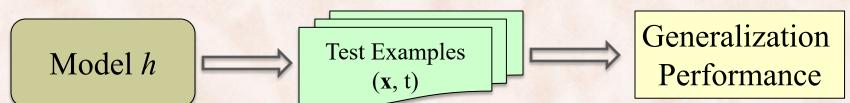
- Parameter norm penalties (term in the objective).
- Limit parameter norm (constraint).
- Dataset augmentation.
- Dropout.
- Ensembles.
- Semi-supervised learning.
- Early stopping.
- Noise robustness.
- Sparse representations.
- Adversarial training.

Supervised Learning

Training



Testing



Features

• Learning = finding parameters $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4]$ and τ such that:

$$\mathbf{w}^{T}\varphi(\mathbf{x}_{i}) \geq \tau, \text{ if } y_{i} = +1$$

$$\mathbf{w}^{T}\varphi(\mathbf{x}_{i}) < \tau, \text{ if } y_{i} = -1$$

$$\text{where } \mathbf{w}^{T}\varphi(\mathbf{x}) = \mathbf{w}_{1} \times \varphi_{1}(\mathbf{x}) + \mathbf{w}_{2} \times \varphi_{2}(\mathbf{x}) + \mathbf{w}_{3} \times \varphi_{3}(\mathbf{x}) + \mathbf{w}_{4} \times \varphi_{4}(\mathbf{x})$$

$$\mathbb{R}^{Red} = \mathbb{Q}^{Red} = \mathbb{Q}$$

Where do these features come from?

Object Recognition: Cats

Pixels as Features?

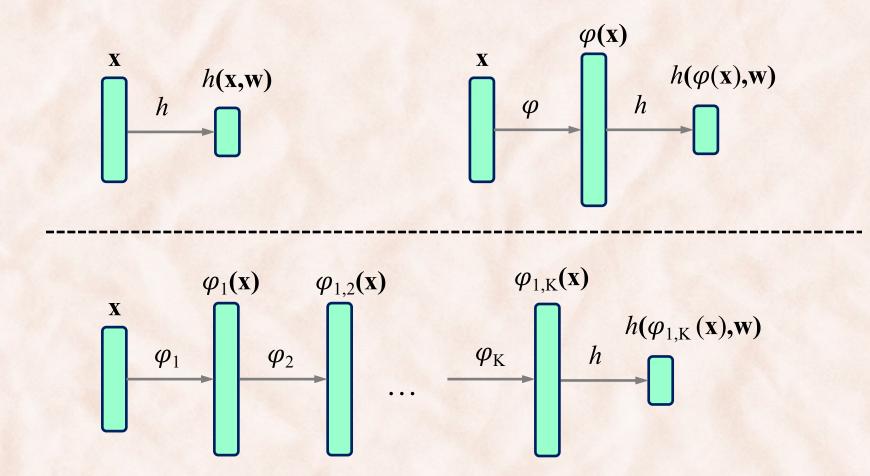
$$\phi(\mathbf{x}) = [25, 63, 125, 32, 84, 257, ..., 13, 27, 39, 8, 213, 107, 54, 73, ..., 91, 27, 50, 72, 22, 112, 54, 25, ..., 9, 28, 93, 44, 69, 85, 68, 54, 87, ..., 11, 117, 59, 117, 210, 177, 54, 72, ...]^T$$

• Learning = finding parameters $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, ... \mathbf{w}_k]^T$ such that: $\mathbf{w}^T \varphi(\mathbf{x}_i) \ge \tau$, if $y_i = +1$ (cat) $\mathbf{w}^T \varphi(\mathbf{x}_i) < \tau$, if $y_i = -1$ (other) where $\mathbf{w}^T \varphi(\mathbf{x}) = \mathbf{w}_1 \times \varphi_1(\mathbf{x}) + \mathbf{w}_2 \times \varphi_2(\mathbf{x}) + \mathbf{w}_3 \times \varphi_3(\mathbf{x}) + ... \mathbf{w}_k \times \varphi_k(\mathbf{x})$

ML Concepts & Notation

- Often, a raw observation \mathbf{x} is pre-processed and further transformed into a <u>feature vector</u> $\mathbf{\phi}(\mathbf{x}) = [\phi_1(\mathbf{x}), \phi_1(\mathbf{x}), ..., \phi_K(\mathbf{x})]^T$.
 - Where do the features φ_k come from?
 - Feature engineering, e.g. in polynomial curve fitting:
 - manual, can be time consuming (e.g. SIFT).
 - (Unsupervised) feature learning, e.g. in modern computer vision
 - automatic, used in deep learning models.

Machine Learning vs. Deep Learning



What is Machine Learning?

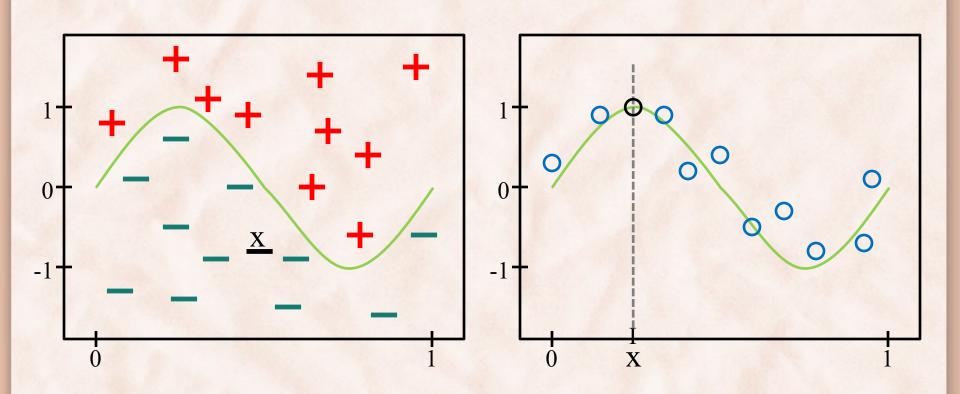
- **Machine Learning** = constructing computer programs that *automatically improve with experience*:
 - Supervised Learning i.e. learning from labeled examples:
 - Classification
 - Regression
 - Unsupervised Learning i.e. learning from unlabeled examples:
 - Clustering.
 - Dimensionality reduction (visualization).
 - Density estimation.
 - Reinforcement Learning i.e. learning with delayed feedback.

Supervised Learning

- Task = learn a function $f: X \to T$ that maps input instances $x \in X$ to output targets $t \in T$:
 - Classification:
 - The output $t \in T$ is one of a finite set of discrete categories.
 - Regression:
 - The output $t \in T$ is continuous, or has a continuous component.
- Supervision = set of training examples:

$$(\mathbf{x}_1,t_1), (\mathbf{x}_2,t_2), \dots (\mathbf{x}_n,t_n)$$

Classification vs. Regression



Classification: Junk Email Filtering

[Sahami, Dumais & Heckerman, AAAI'98]

From: Tammy Jordan

jordant@oak.cats.ohiou.edu

Subject: Spring 2015 Course

CS690: Machine Learning

Instructor: Razvan Bunescu Email: bunescu@ohio.edu

Time and Location: Tue, Thu 9:00 AM, ARC 101

Website: http://ace.cs.ohio.edu/~razvan/courses/m16830

Course description:

Machine Learning is concerned with the design and analysis of algorithms that enable computers to automatically find patterns in the data. This introductory course will give an overview ...

From: UK National Lottery

edreyes@uknational.co.uk

Subject: Award Winning Notice

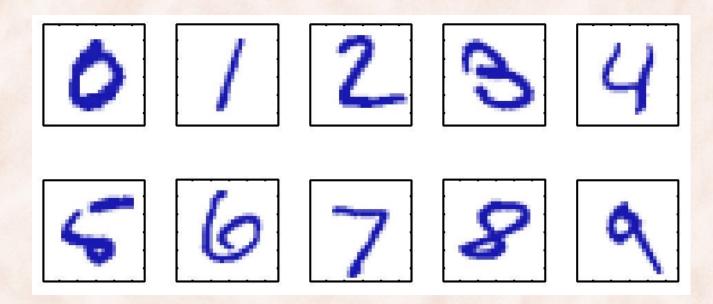
UK NATIONAL LOTTERY. GOVERNMENT ACCREDITED LICENSED LOTTERY. REGISTERED UNDER THE UNITED KINGDOM DATA PROTECTION ACT;

We happily announce to you the draws of (UK NATIONAL LOTTERY PROMOTION) International programs held in London, England Your email address attached to ticket number:3456 with serial number:7576/06 drew the lucky number 4-2-274, which subsequently won you the lottery in the first category ...

• Email filtering:

- Provide emails labeled as {Spam, Ham}.
- Train Naïve Bayes model to discriminate between the two.

Classification: Handwritten Zip Code Recognition [Le Cun et al., Neural Computation '89]



- Handwritten digit recognition:
 - Provide images of handwritten digits, labeled as {0, 1, ..., 9}.
 - Train *Convolutional Neural Network* model to recognize digits.

Classification: Medical Diagnosis

[Krishnapuram et al., GENSIPS'02]

- Cancer diagnosis from gene expression signatures:
 - Create database of gene expression profiles (X) from tissues of known cancer status (Y):
 - Human accute leukemia dataset:
 - http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
 - Colon cancer microarray data:
 - http://microarray.princeton.edu/oncology
 - Train Logistic Regression / SVM / RVM model to classify the gene expression of a tissue of unknown cancer status.

Classification: Other Examples

- Named Entity Recognition
- Named Entity Disambiguation
- Relation Extraction
- Word Sense Disambiguation
- Coreference Resolution
- Sentiment Analysis
- Chord Recognition
- Voice Separation
- Tone recognition
- Gesture Recognition

- Galaxy Morphology Recognition
- Dysarthria Prediction
- Tone Classification in Mandarin Chinese

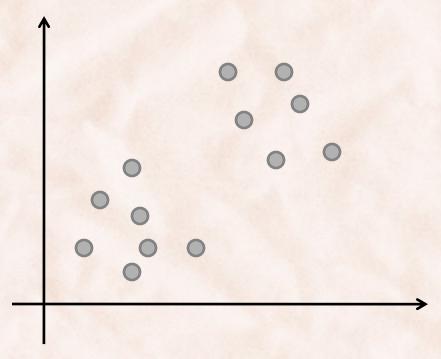
•

Regression: Examples

- 1. Stock market, oil price, GDP, income prediction:
 - Use the current stock market conditions $(x \in X)$ to predict tomorrow's value of a particular stock $(t \in T)$.
- 2. Blood glucose level prediction.
- 3. Chemical processes:
 - Predict the yield in a chemical process based on the concentrations of reactants, temperature and pressure.
- Algorithms:
 - Linear Regression, Neural Networks, Support Vector Machines, ...

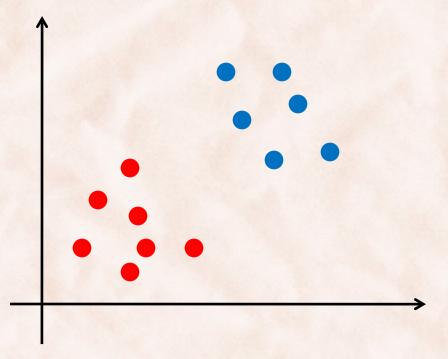
Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are similar.
 - Examples in different clusters are different.



Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are similar.
 - Examples in different clusters are different.

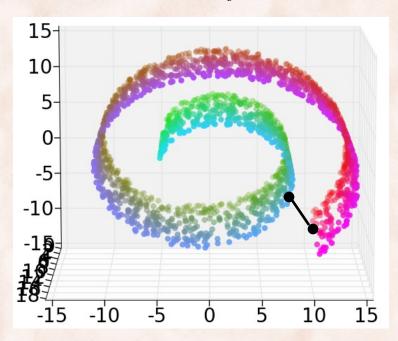


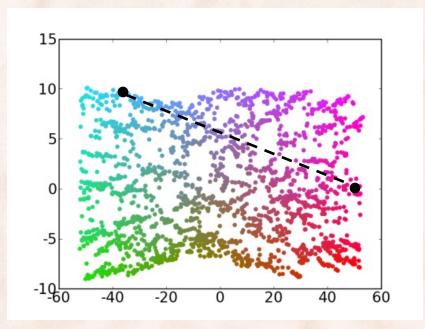
- k-Means, need to provide:
 - number of clusters (k = 2)
 - similarity measure (Euclidean)

Unsupervised Learning: Dimensionality Reduction

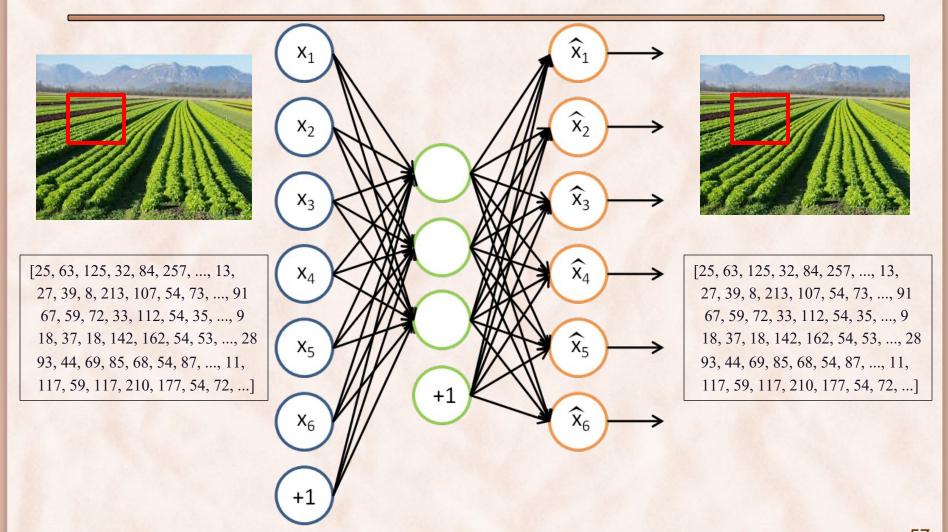
Manifold Learning:

- Data lies on a low-dimensional manifold embedded in a high-dimensional space.
- Useful for feature extraction and visualization.





Unsupervised Feature Learning: Auto-encoders



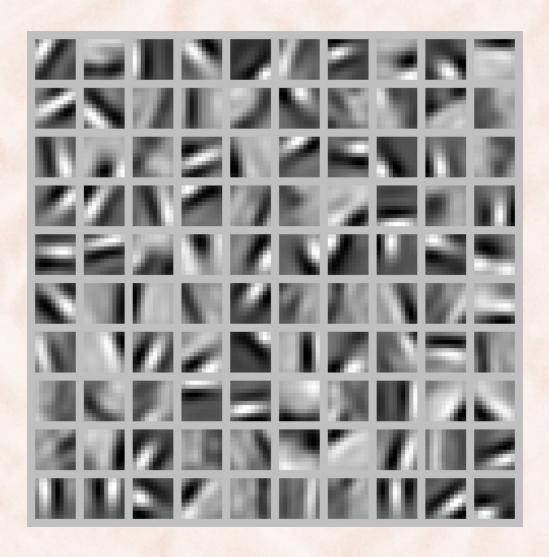
Features

Output

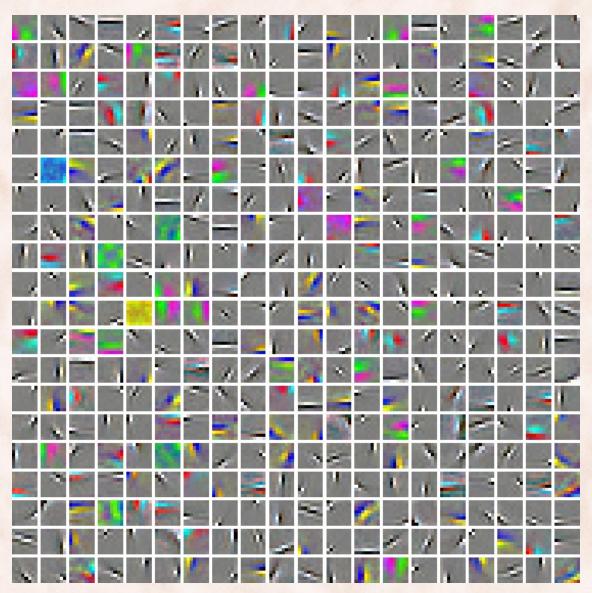
Input

57

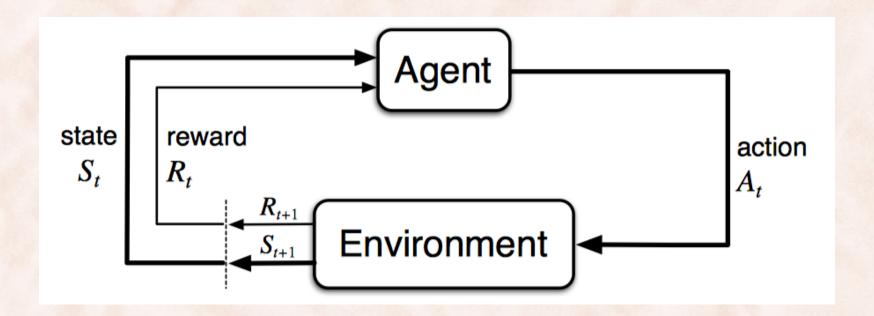
Learned Features (Representations)

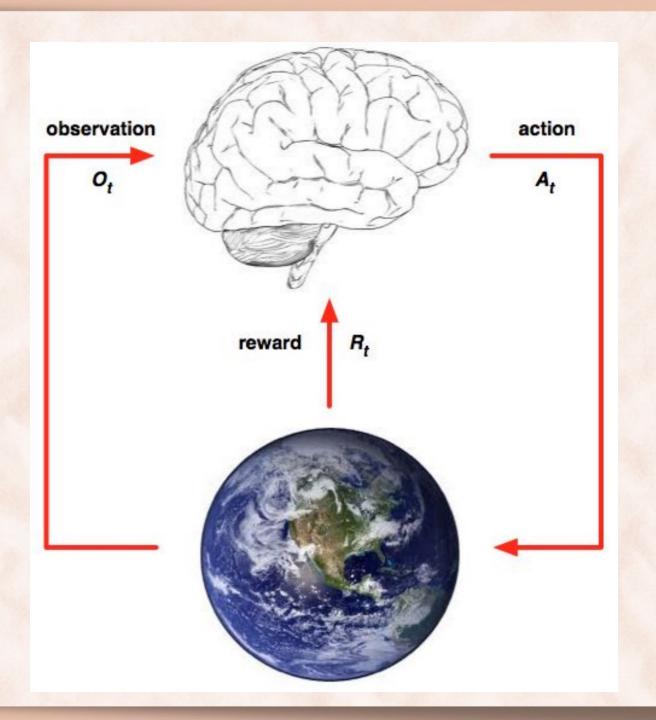


Learned Features (Representations)



Reinforcement Learning





Reinforcement Learning: TD-Gammon

[Tesauro, CACM'95]

- Learn to play Backgammon:
 - Immediate reward:
 - +100 if win
 - -100 if lose
 - 0 for all other states
 - Temporal Difference Learning with a Multilayer Perceptron.
 - Trained by playing 1.5 million games against itself.
 - Played competitively against top-ranked players in international tournaments.

Reinforcement Learning

- Interaction between agent and environment modeled as a sequence of *actions & states*:
 - Learn policy for mapping states to actions in order to maximize a reward.
 - Reward may be given only at the end state => delayed reward.
 - States may be only partially observable.
 - Trade-off between exploration and exploitation.

• Examples:

- Backgammon [Tesauro, CACM'95], helicopter flight [Abbeel, NIPS'07].
- 49 Atari games, using deep RL [Mnih et al., Nature'15].
- AlphaGo [Silver et al., 2016], AlphaZero [Silver et al., 2017], ...

Background readings

• Python:

Introductory <u>Python lecture</u>.

Probability theory:

- Basic probability theory (pp. 12-19) in <u>Pattern Recognition and Machine Learning</u>.
- Chapter 3 in DL textbook on <u>Probability and Information Theory</u>.

• Linear algebra:

- Chapter 2 in DL textbook on <u>Linear Algebra</u>.
- Chapter 2 on Linear Algebra in <u>Mathematics for Machine Learning</u>.

Calculus:

- Basic properties for <u>derivatives</u>, <u>exponentials</u>, and <u>logarithms</u>.
- Chapter 4.3 in DT textbook on <u>Numerical Computation</u>.