ICTS 4156: Introduction to ML

Razvan Bunescu

Lecture notes, April 7, 2021

1 Notes on Quiz

1.1 Kernel notes

K_{1} is a valid kernel. By definition, $\exists \phi_{1}$ such that $K_{1}(x, y)=\phi_{1}(x)^{T} \phi_{1}(y)$.
Let $K(x, y)=c K_{1}(x, y)=c \phi_{1}(x)^{T} \phi_{1}(y)=\left(\sqrt{c} \phi_{1}(x)\right)^{T}\left(\sqrt{c} \phi_{1}(y)\right)=\phi(x)^{T} \phi(y)$, where $\phi(x)=\sqrt{c} \phi_{1}(x)$. Therefore, because $K(x, y)=\phi(x)^{T} \phi(y)$, this means K is a valid kernel.

2 Notes on Homework

2.1 Relative error reduction on Spam classification

Relative error reduction $\frac{a_{2}-a_{1}}{1-a_{1}}=\frac{0.981-0.978}{1-0.978}=\frac{0.003}{0.022}=13.6 \%$ relative error reduction.

3 Notes on Lecture Material

3.1 Binary Logistic Regression

$p\left(C_{1} \mid x\right)=\sigma\left(w^{T} x\right)=\frac{1}{1+e^{-w^{T} x}}$
At test time, we predict positive class C_{1} if and only if $p\left(C_{1} \mid x\right)>P\left(C_{2} \mid x\right)$. We know that $p\left(C_{1} \mid x\right)+P\left(C_{2} \mid x\right)=1$, which means that $p\left(C_{1} \mid x\right)>P\left(C_{2} \mid x\right)=>P\left(C_{1} \mid x\right)>0.5$.

This means that $\frac{1}{1+e^{-w^{T} x}}>0.5=\frac{1}{2}$, which means that $e^{-w^{T} x}<1$, therefore $-w^{T} x<0$, which means $z=w^{T} x>0$.

Training Logistic Regression parameters w will be done by using the Maximum Likelihood Estimation principle, which says that we want to select the parameters that maximize the probability of the true labels:

$$
\begin{equation*}
\hat{w}=\underset{w}{\arg \max } P\left(t_{1}, t_{2}, \ldots, t_{N} \mid w\right) \tag{1}
\end{equation*}
$$

The probability $P\left(t_{n} \mid w\right)$ is equal with:

- $P\left(t_{n} \mid w\right)=\sigma\left(w^{T} x_{n}\right)=h_{n}$, if $t_{n}=1$.
- $P\left(t_{n} \mid w\right)=1-\sigma\left(w^{T} x_{n}\right)=1-h_{n}$, if $t_{n}=0$.

Can we show that $P\left(t_{n} \mid w\right)=h_{n}^{t_{n}}\left(1-h_{n}\right)^{\left(1-t_{n}\right)}$?

- If $t_{n}=1$, we get $P\left(t_{n} \mid w\right)=h_{n}^{t_{n}}\left(1-h_{n}\right)^{\left(1-t_{n}\right)}=h_{n}^{1}\left(1-h_{n}\right)^{0}=h_{n}$. Verified!
- If $t_{n}=0$, we get $P\left(t_{n} \mid w\right)=h_{n}^{t_{n}}\left(1-h_{n}\right)^{\left(1-t_{n}\right)}=h_{n}^{0}\left(1-h_{n}\right)^{1}=1-h_{n}$. Verified!

Assume the training examples are independent identically distributed (i.i.d). The likelihood function:

$$
\begin{align*}
& P\left(t_{1}, t_{2}, \ldots, t_{N} \mid w\right)=\prod_{n=1}^{N} \tag{2}\\
& P\left(t_{1}, t_{2}, \ldots, t_{N} \mid w\right)=\prod_{n=1}^{N} h_{n}^{t_{n}}\left(1-h_{n}\right)^{\left(1-t_{n}\right)} \tag{3}\\
& P\left(t_{1}, t_{2}, \ldots, t_{N} \mid w\right)=\prod_{n=1}^{N} \sigma\left(w^{T} x_{n}\right)^{t_{n}}\left(1-\sigma\left(w^{T} x_{n}\right)\right)^{\left(1-t_{n}\right)} \tag{4}
\end{align*}
$$

Mathematically, the weight vector w that maximizes the likelihood is going to be the same as the weight vector that maximizes the log likelihood. But this is equivalent with finding the weight vector w that minimizes the negative log-likelihood:

$$
\begin{align*}
& -\ln P\left(t_{1}, t_{2}, \ldots, t_{N} \mid w\right)=-\sum_{n=1}^{N} t_{n} \ln h_{n}+\left(1-t_{n}\right) \ln \left(1-h_{n}\right) \tag{6}\\
& -\ln P\left(t_{1}, t_{2}, \ldots, t_{N} \mid w\right)=-\sum_{n=1}^{N} t_{n} \ln \sigma\left(w^{T} x_{n}\right)+\left(1-t_{n}\right) \ln \left(1-\sigma\left(w^{T} x_{n}\right)\right) \tag{7}
\end{align*}
$$

