Machine Learning
ITCS 4156

The Perceptron Algorithm
The Kernel Trick

Razvan C. Bunescu
Department of Computer Science @ CCI
rubunescu@uncc.edu
Supervised Learning

Training

Training Examples \((x_k, t_k)\) → Learning Algorithm → Model \(h\)

Testing

Test Examples \((x, t)\) → Model \(h\) → Generalization Performance
Supervised Learning

- **Task** = learn an (unknown) function $t : X \rightarrow T$ that maps input instances $x \in X$ to output targets $t(x) \in T$:
 - **Classification**:
 - The output $t(x) \in T$ is one of a finite set of discrete categories.
 - **Regression**:
 - The output $t(x) \in T$ is continuous, or has a continuous component.

- Target function $t(x)$ is known (only) through (noisy) set of training examples:
 $$(x_1,t_1), (x_2,t_2), \ldots (x_n,t_n)$$
Three Parametric Approaches to Classification

1) **Discriminant Functions**: construct $f : X \rightarrow T$ that directly assigns a vector x to a specific class C_k.

 - Inference and decision combined into a single learning problem.
 - *Linear Discriminant*: the decision surface is a hyperplane in X:
 - Perceptron
 - Support Vector Machines
 - Fisher ‘s Linear Discriminant
Three Parametric Approaches to Classification

2) Probabilistic Discriminative Models: directly model the posterior class probabilities $p(C_k | x)$.
 - Inference and decision are separate.
 - Less data needed to estimate $p(C_k | x)$ than $p(x | C_k)$.
 - Can accommodate many overlapping features.
 - Logistic Regression
 - Conditional Random Fields
Three Parametric Approaches to Classification

3) **Probabilistic Generative Models:**
 - Model class-conditional $p(x \mid C_k)$ as well as the priors $p(C_k)$, then use Bayes’s theorem to find $p(C_k \mid x)$.
 - or model $p(x, C_k)$ directly, then marginalize to obtain the posterior probabilities $p(C_k \mid x)$.
 - Inference and decision are separate.
 - Can use $p(x)$ for *outlier* or *novelty detection*.
 - Need to model dependencies between features.
 - Naïve Bayes.
 - Hidden Markov Models.
Suppose we're distinguishing cat from dog images
Generative Classifier:

- Build a model of what's in a cat image
 - Knows about whiskers, ears, eyes
 - Assigns a probability to any image:
 - how cat-y is this image?

Also build a model for dog images

Given a new image:

Run both models and see which one fits better.
Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!

Let's ignore everything else.
Finding the correct class \(c \) from a document \(d \) in Generative vs Discriminative Classifiers

- Naive Bayes

\[
\hat{c} = \arg\max_{c \in C} \underbrace{P(d|c)}_{\text{likelihood}} \cdot \underbrace{P(c)}_{\text{prior}}
\]

- Logistic Regression

\[
\hat{c} = \arg\max_{c \in C} \underbrace{P(c|d)}_{\text{posterior}}
\]
Generative vs. Discriminative

Left-hand mode has no effect on posterior class probabilities.
Three Parametric Approaches to Classification

1) **Discriminant Functions**: construct $h: X \rightarrow T$ that directly assigns a vector x to a specific class C_k.
 - Inference and decision combined into a single learning problem.
 - **Linear Discriminant**: the decision surface is a hyperplane in X:
 - Perceptron
 - Support Vector Machines
 - Fisher ‘s Linear Discriminant
Discriminant Function Approach to Classification

- **Task** = build a function $h(x)$ such that:
 - h matches t well on the training data:
 => h is able to fit data that it has seen.
 - h also matches t well on test data:
 => h is able to **generalize to unseen data**.

- **Task** = choose h from a “nice” *class of functions* that depend on a vector of parameters w:
 - $h(x) \equiv h_w(x) \equiv h(w,x)$
 - what classes of functions are “nice”?
Neurons

Soma is the central part of the neuron:
- *where the input signals are combined.*

Dendrites are cellular extensions:
- *where majority of the input occurs.*

Axon is a fine, long projection:
- *carries nerve signals to other neurons.*

Synapses are molecular structures between axon terminals and other neurons:
- *where the communication takes place.*
Neuron Models

<table>
<thead>
<tr>
<th>Year</th>
<th>Model Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1907</td>
<td>Integrate and fire</td>
<td>[13]</td>
</tr>
<tr>
<td>1943</td>
<td>McCulloch and Pitts</td>
<td>[11]</td>
</tr>
<tr>
<td>1952</td>
<td>Hodgkin-Huxley</td>
<td>[12]</td>
</tr>
<tr>
<td>1958</td>
<td>Perceptron</td>
<td>[14]</td>
</tr>
<tr>
<td>1961</td>
<td>Fitzhugh-Nagumo</td>
<td>[15]</td>
</tr>
<tr>
<td>1965</td>
<td>Leaky integrate-and-fire</td>
<td>[16]</td>
</tr>
<tr>
<td>1981</td>
<td>Morris-Lecar</td>
<td>[17]</td>
</tr>
<tr>
<td>1986</td>
<td>Quadratic integrate-and-fire</td>
<td>[18]</td>
</tr>
<tr>
<td>1989</td>
<td>Hindmarsh-Rose</td>
<td>[19]</td>
</tr>
<tr>
<td>1999</td>
<td>Wilson Polynomial</td>
<td>[21]</td>
</tr>
<tr>
<td>2000</td>
<td>Integrate-and-fire or burst</td>
<td>[22]</td>
</tr>
<tr>
<td>2001</td>
<td>Resonate-and-fire</td>
<td>[23]</td>
</tr>
<tr>
<td>2003</td>
<td>Izhikevich</td>
<td>[24]</td>
</tr>
<tr>
<td>2003</td>
<td>Exponential integrate-and-fire</td>
<td>[25]</td>
</tr>
<tr>
<td>2004</td>
<td>Generalized integrate-and-fire</td>
<td>[26]</td>
</tr>
<tr>
<td>2005</td>
<td>Adaptive exponential integrate-and-fire</td>
<td>[27]</td>
</tr>
<tr>
<td>2009</td>
<td>Mihalas-Neibur</td>
<td>[28]</td>
</tr>
</tbody>
</table>
Spiking/LIF Neuron Function

Fig. 2. (a) Illustration and (b) functional description of a leaky integrate-and-fire neuron. Weighted and delayed input signals are summed into the input current $I_{app}(t)$, which travel to the soma and perturb the internal state variable, the voltage V. Since V is hysteric, the soma performs integration and then applies a threshold to make a spike or no-spike decision. After a spike is released, the voltage V is reset to a value V_{reset}. The resulting spike is sent to other neurons in the network.
Neuron Models

<table>
<thead>
<tr>
<th>Year</th>
<th>Model Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1907</td>
<td>Integrate and fire</td>
<td>[13]</td>
</tr>
<tr>
<td>1943</td>
<td>McCulloch and Pitts</td>
<td>[11]</td>
</tr>
<tr>
<td>1952</td>
<td>Hodgkin-Huxley</td>
<td>[12]</td>
</tr>
<tr>
<td>1958</td>
<td>Perceptron</td>
<td>[14]</td>
</tr>
<tr>
<td>1961</td>
<td>FitzHugh-Nagumo</td>
<td>[15]</td>
</tr>
<tr>
<td>1965</td>
<td>Leaky integrate-and-fire</td>
<td>[16]</td>
</tr>
<tr>
<td>1981</td>
<td>Morris-Lecar</td>
<td>[17]</td>
</tr>
<tr>
<td>1986</td>
<td>Quadratic integrate-and-fire</td>
<td>[18]</td>
</tr>
<tr>
<td>1989</td>
<td>Hindmarsh-Rose</td>
<td>[19]</td>
</tr>
<tr>
<td>1999</td>
<td>Wilson Polynomial</td>
<td>[21]</td>
</tr>
<tr>
<td>2000</td>
<td>Integrate-and-fire or burst</td>
<td>[22]</td>
</tr>
<tr>
<td>2001</td>
<td>Resonate-and-fire</td>
<td>[23]</td>
</tr>
<tr>
<td>2003</td>
<td>Izhikevich</td>
<td>[24]</td>
</tr>
<tr>
<td>2003</td>
<td>Exponential integrate-and-fire</td>
<td>[25]</td>
</tr>
<tr>
<td>2004</td>
<td>Generalized integrate-and-fire</td>
<td>[26]</td>
</tr>
<tr>
<td>2005</td>
<td>Adaptive exponential integrate-and-fire</td>
<td>[27]</td>
</tr>
<tr>
<td>2009</td>
<td>Mihalas-Neibur</td>
<td>[28]</td>
</tr>
</tbody>
</table>
McCulloch-Pitts Neuron Function

- Algebraic interpretation:
 - The output of the neuron is a **linear combination** of inputs from other neurons, **rescaled by** the synaptic **weights**.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
 - It is often transformed through a monotonic **activation function**.
Activation/Output Functions

unit step \(f(z) = \begin{cases}
0 & \text{if } z < 0 \\
1 & \text{if } z \geq 0
\end{cases} \)

logistic \(f(z) = \frac{1}{1 + e^{-z}} \)

identity \(f(z) = z \)

Perceptron

Logistic Regression

Linear Regression
• Assume classes $T = \{c_1, c_2\} = \{1, -1\}$.
• Training set is $(x_1, t_1), (x_2, t_2), \ldots (x_n, t_n)$.

 $x = [1, x_1, x_2, \ldots, x_k]^T$

 $h(x) = \text{sgn}(w^T x) = \text{sgn}(w_0 + w_1 x_1 + \ldots + w_k x_k)$
Linear Discriminant Functions

• Use a linear function of the input vector:
 \[h(x) = \mathbf{w}^T \varphi(x) + w_0 \]

• Decision:
 \[x \in C_1 \text{ if } h(x) \geq 0, \text{ otherwise } x \in C_2. \]
 \[\Rightarrow \text{decision boundary is hyperplane } h(x) = 0. \]

• Properties:
 – \(\mathbf{w} \) is orthogonal to vectors lying within the decision surface.
 – \(w_0 \) controls the location of the decision hyperplane.
Geometric Interpretation

\[h > 0 \]
\[h = 0 \]
\[h < 0 \]
Linear Discriminant Functions: Two Classes (K = 2)

- What algorithms can be used to learn $y(x) = w^T \varphi(x) + w_0$?
 Assume a training dataset of $N = N_1 + N_2$ examples in C_1 and C_2.

 - Perceptron:
 - Voted/Averaged Perceptron
 - Kernel Perceptron
 - Support Vector Machines:
 - Linear
 - Kernel
 - Fisher’s Linear Discriminant
• Assume classes $T = \{c_1, c_2\} = \{1, -1\}$.
• Training set is $(x_1, t_1), (x_2, t_2), \ldots (x_n, t_n)$.

$x = [1, x_1, x_2, \ldots, x_k]^T$

$h(x) = \text{sgn}(w^T x) = \text{sgn}(w_0 + w_1 x_1 + \ldots + w_k x_k)$

A linear discriminant function
Perceptron Learning

• Learning = finding the “right” parameters \(\mathbf{w}^T = [w_0, w_1, \ldots, w_k] \)
 – Find \(\mathbf{w} \) that minimizes an error function \(E(\mathbf{w}) \) which measures the misfit between \(h(x_n, \mathbf{w}) \) and \(t_n \).
 – Expect that \(h(x, \mathbf{w}) \) performing well on training examples \(x_n \Rightarrow h(x, \mathbf{w}) \)
 will perform well on arbitrary test examples \(x \in X \).

• **Least Squares** error function?

\[
E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ h(x_n, \mathbf{w}) - t_n \}^2
\]

2 x # of mistakes
Least Squares vs. Perceptron Criterion

- **Least Squares** => cost is # of misclassified patterns:
 - Piecewise constant function of w with discontinuities.
 - Cannot find closed form solution for w that minimizes cost.
 - Cannot use gradient methods (gradient zero almost everywhere).

- **Perceptron Criterion**:
 - Set labels to be $+1$ and -1. Want $w^T x_n > 0$ for $t_n = 1$, and $w^T x_n < 0$ for $t_n = -1$.

 \Rightarrow would like to have $w^T x_n t_n > 0$ for all patterns.
 \Rightarrow want to minimize $-w^T x_n t_n$ for all misclassified patterns M.

\[\Rightarrow \text{minimize } E_p(w) = -\sum_{n \in M} w^T x_n t_n \]
Stochastic Gradient Descent

• **Perceptron Criterion:**

\[
\text{minimize } E_p(w) = -\sum_{n\in M} w^T x_n t_n
\]

• Update parameters \(w \) sequentially after each mistake:

\[
\begin{align*}
 w^{(\tau+1)} &= w^{(\tau)} - \eta \nabla E_p(w^{(\tau)}, x_n) \\
 &= w^{(\tau)} + \eta x_n t_n
\end{align*}
\]

• The magnitude of \(w \) is inconsequential \(\Rightarrow \) set \(\eta = 1 \).

\[
 w^{(\tau+1)} = w^{(\tau)} + x_n t_n
\]
The Perceptron Algorithm: Two Classes

1. **initialize** parameters \(w = 0 \)
2. **for** \(n = 1 \ldots N \)
3. \(h_n = sgn(w^T x_n) \)
4. **if** \(h_n \neq t_n \) **then**
5. \(w = w + t_n x_n \)

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.
- see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].
The Perceptron Algorithm: Two Classes

1. **initialize** parameters $w = 0$
2. **for** $n = 1 \ldots N$
3. $h_n = w^T x_n$
4. **if** $h_n t_n \leq 0$ **then**
5. $w = w + t_n x_n$

Repeat:
 a) until convergence.
 b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.
- see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

$\sgn(z) = +1$ if $z > 0,$
$\qquad 0$ if $z = 0,$
$\qquad -1$ if $z < 0$
1. **initialize** parameters $w = 0$
2. **for** $n = 1 \ldots N$
 3. $h_n = w^T x_n$
 4. **if** $h_n \geq 0$ and $t_n = -1$
 5. $w = w - x_n$
 6. **if** $h_n \leq 0$ and $t_n = +1$
 7. $w = w + x_n$

Repeat:
 a) until convergence.
 b) for a number of epochs E.

What is the impact of the perceptron update on the score $w^T x_n$ of the misclassified example x_n?
Linear vs. Non-linear Decision Boundaries

And

Or

Xor

$$\varphi(\mathbf{x}) = [1, x_1, x_2]^T$$

$$\mathbf{w} = [w_0, w_1, w_2]^T$$

$$\Rightarrow \mathbf{w}^T \varphi(\mathbf{x}) = [w_1, w_2]^T [x_1, x_2] + w_0$$
Deep Learning class

How to Find Non-linear Decision Boundaries

1) Perceptron with manually engineered features:
 – Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:
 – Quadratic kernels, Gaussian kernels.

3) Unsupervised feature learning (e.g. auto-encoders):
 – Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:
 – Automatically learned features.
Non-Linear Classification: XOR Dataset

\[\mathbf{x} = [x_1, x_2] \]
1) Manually Engineered Features: Add x_1x_2

$$
\mathbf{x} = [x_1, x_2, x_1x_2]
$$
Logistic Regression with Manually Engineered Features

\[\mathbf{x} = [x_1, x_2, x_1x_2] \]
Perceptron with Manually Engineered Features

Project $\mathbf{x} = [x_1, x_2, x_1 x_2]$ and decision hyperplane back to $\mathbf{x} = [x_1, x_2]$