Deep Learning
Feed-Forward Neural Networks
Backpropagation

Razvan C. Bunescu
Department of Computer Science @ CCI
rbunescu@uncc.edu
Neuron Function

- **Algebraic interpretation:**
 - The output of the neuron is a **linear combination** of inputs from other neurons, rescaled by the synaptic weights.
 - weights w_i correspond to the synaptic weights (activating or inhibiting).
 - summation corresponds to combination of signals in the soma.
 - It is often transformed through a monotonic **activation function**.
Activation Functions

unit step \(f(z) = \begin{cases}
0 & \text{if } z < 0 \\
1 & \text{if } z \geq 0
\end{cases} \)

Perceptron

logistic \(f(z) = \frac{1}{1 + e^{-z}} \)

Logistic Neuron

ReLU \(f(z) = \begin{cases}
0 & \text{if } z < 0 \\
z & \text{if } z \geq 0
\end{cases} \)

Rectified Linear Unit

\(f(z) = \text{ramp}(z) = \max(0, z) \)
Perceptron vs. Logistic Neuron

- **Logistic neuron = Logistic regression:**
 - At inference time, same decision function as perceptron, for binary classification with equal misclassification costs (prove it):
 \[
 \hat{y}(x) = \begin{cases}
 1 & \text{if } w^T x > 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - **Perceptron** cannot represent the XOR function:
 - **Logistic neuron, ReLU, Tanh** have the same limitation.

- How can we use (logistic) neurons to achieve better representational power?
Universal Approximation Theorem

- Let σ be a nonconstant, bounded, and monotonically-increasing continuous function;
- Let I_m denote the m-dimensional unit hypercube $[0, 1]^m$;
- Let $C(I_m)$ denote the space of continuous functions on I_m;

Theorem: Given any function $f \in C(I_m)$ and $\varepsilon > 0$, there exist an integer N and real constants $\alpha_i, b_i \in \mathbb{R}, \mathbf{w}_i \in \mathbb{R}^m$, where $i = 1, ..., N$, such that:

$$\left| F(x) - f(x) \right| < \varepsilon, \quad \forall x \in I_m$$

where

$$F(x) = \sum_{i=1}^{N} \alpha_i \sigma(\mathbf{w}_i^T x + b_i)$$

Universal Approximation Theorem

\[F(x) = \sum_{i=1}^{N} \alpha_i \sigma(w_i^T x + b_i) \]

\[|F(x) - f(x)| < \varepsilon, \forall x \in I_m \]

\(m = 3, \ N = 3 \)

\(x = [x_1, x_2, x_3] \)

\(w_i = [w_{i1}, w_{i2}, w_{i3}] \)
Neural Network Model

- Put together many neurons in layers, such that the output of a neuron on layer l can be the input of another neuron on layer $l + 1$:
Feed-Forward Neural Networks
The Importance of Representation

http://www.deeplearningbook.org
From Cartesian to Polar Coordinates

- **Manually engineered:**
 \[
 r = \sqrt{x^2 + y^2} \\
 \theta = \tan^{-1} \left| \frac{y}{x} \right| \text{ (first quadrant)}
 \]

- **Learned from data:**

 Fully connected layers: linear transformation $W + \text{element-wise nonlinearity } f \rightarrow f(Wx)$
Representation Learning: Images

https://www.datarobot.com/blog/a-primer-on-deep-learning/
Representation Learning: Images

https://www.datarobot.com/blog/a-primer-on-deep-learning/
A Rapidly Evolving Field

• Used to think that training deep networks requires **greedy layer-wise pretraining**:
 - Unsupervised learning of representations with **auto-encoders** (2012).

• Better random **weight initialization** schemes now allow training deep networks from scratch.

• **Batch normalization** allows for training even deeper models (2014).
 - Replaced by the simpler **Layer Normalization** (2016).

• **Residual learning** allows training arbitrarily deep networks (2015).

• Attention-based **Transformers** replace RNNs and CNNs in NLP (2018):
Neural Network Model

- Put together many neurons in layers, such that the output of a neuron can be the input of another:
$n_l=3$ is the number of layers.

- L_1 is the input layer, L_3 is the output layer.

- $(W, b) = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)})$ are the parameters:
 - $W^{(l)}_{ij}$ is the weight of the connection between unit j in layer l and unit i in layer $l+1$.
 - $b^{(l)}_i$ is the bias associated unit unit i in layer $l+1$.

- $a^{(l)}_i$ is the activation of unit i in layer l, e.g. $a^{(1)}_i = x_i$ and $a^{(3)}_1 = h_{W,b}(x)$.
Inference: Forward Propagation

- The activations in the hidden layer are:

\[
\begin{align*}
a_1^{(2)} &= f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)}) \\
a_2^{(2)} &= f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)}) \\
a_3^{(2)} &= f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)})
\end{align*}
\]

- The activations in the output layer are:

\[
h_{W,b}(x) = a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)})
\]

- Compressed notation:

\[
a_i^{(l)} = f(z_i^{(l)}) \quad \text{where} \quad z_i^{(2)} = \sum_{j=1}^{n} W_{ij}^{(1)} x_j + b_i^{(1)}
\]
Forward Propagation

- Forward propagation (unrolled):

\[
\begin{align*}
 a_1^{(2)} &= f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)}) \\
 a_2^{(2)} &= f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)}) \\
 a_3^{(2)} &= f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)}) \\
 h_{W,b}(x) &= a_1^{(3)} = f(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)})
\end{align*}
\]

- Forward propagation (compressed):

- Element-wise application:

\[f(z) = [f(z_1), f(z_2), f(z_3)]\]
Forward Propagation

• Forward propagation (compressed):

\[
\begin{align*}
 z^{(2)} &= W^{(1)}x + b^{(1)} \\
 a^{(2)} &= f(z^{(2)}) \\
 z^{(3)} &= W^{(2)}a^{(2)} + b^{(2)} \\
 h_{W,b}(x) &= a^{(3)} = f(z^{(3)})
\end{align*}
\]

• Composed of two \textit{forward propagation steps}:

\[
\begin{align*}
 z^{(l+1)} &= W^{(l)}a^{(l)} + b^{(l)} \\
 a^{(l+1)} &= f(z^{(l+1)})
\end{align*}
\]
Multiple Hidden Units, Multiple Outputs

• Write down the forward propagation steps for:

\[h_{w,b}(x) \]
ReLU and Generalizations

• It has become more common to use piecewise linear activation functions for hidden units:
 – **ReLU**: the rectifier activation $g(z) = \max\{0, z\}$.
 – **Absolute value ReLU**: $g(z) = |z|$.
 – **Maxout**: $g(a_1, \ldots, a_k) = \max\{a_1, \ldots, a_k\}$.
 • needs k weight vectors instead of 1.
 – **Leaky ReLU**: $g(a) = \max\{0, a\} + \alpha \min(0, a)$.

\Rightarrow the network computes a *piecewise linear function* (up to the output activation function).
ReLU vs. Sigmoid and Tanh

- Sigmoid and Tanh saturate for values not close to 0:
 - “kill” gradients, bad behavior for gradient-based learning.
- ReLU does not saturate for values > 0:
 - greatly accelerates learning, fast implementation.
 - fragile during training and can “die”, due to 0 gradient:
 - initialize all b’s to a small, positive value, e.g. 0.1.
ReLU vs. Softplus

- Softplus $g(z) = \ln(1+e^z)$ is a smooth version of the rectifier.
 - Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].
Learning: Backpropagation for Regression

- Regularized sum of squares error:

 \[J(W, b, x, y) = \frac{1}{2} \| h_{W,b}(x) - y \|^2 \]

 \[J(W, b) = \frac{1}{m} \sum_{k=1}^{m} J(W, b, x^{(k)}, y^{(k)}) + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_{l+1}} \sum_{j=1}^{s_l} (W_{ij}^{(l)})^2 \]

- Gradient:

 \[
 \frac{\partial J(W, b)}{\partial W_{ij}^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial W_{ij}^{(l)}} + \lambda W_{ij}^{(l)}
 \]

 \[
 \frac{\partial J(W, b)}{\partial b_{i}^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial b_{i}^{(l)}}
 \]
Backpropagation for Regression

- Need to compute the gradient of the squared error with respect to a single training example \((x, y)\):

\[
J(W, b, x, y) = \frac{1}{2} \|h_{W,b}(x) - y\|^2 = \frac{1}{2} \|a^{(n_l)} - y\|^2
\]

\[
\frac{\partial J}{\partial W^{(l)}_{ij}} = ? \quad \frac{\partial J}{\partial b^{(l)}_i} = ?
\]
Learning: Regression vs. Classification

• **Regression** => *loss* = squared error:

\[
J(W, b, x, y) = \frac{1}{2} \| h_{w,b}(x) - y \|^2
\]

• **Classification** => *loss* = negative log-likelihood:

\[
J(W, b, x, y) = -\ln p(y|W, b, x)
\]

• Need to compute the gradient of the loss with respect to parameters *W*, *b*:

\[
\frac{\partial J}{\partial W_{ij}} = ? \quad \frac{\partial J}{\partial b_i} = ?
\]
NN Learning: Softmax Regression

- Consider layer n_l to be the input to the softmax layer i.e. softmax output layer is n_l+1.

- Softmax weights stored in matrix $W^{(n_l)}$.

- K classes $\Rightarrow W^{(n_l)} = \begin{bmatrix} -w_1^T & - \\ -w_2^T & - \\ \vdots & \vdots \\ -w_K^T & - \end{bmatrix}$
NN Learning: Softmax Regression

- Softmax output is \(a^{(n_l+1)} = a^{(2+1)} = \text{softmax}(z^{(n_l+1)}) = \text{softmax}(z^{(2+1)}) \)

For homework: \(n_l = 2 \)

\(a^{(1)} = x \) \(a^{(2)} \)

Softmax input

Softmax logits

Softmax weights \(W^{(n_l)} \)

Cross-entropy

\[J(a^{(n_l+1)}, y) \]
Optional Material
Learning: Backpropagation

- Regularized sum of squares error:

\[
J(W, b, x, y) = \frac{1}{2} \| h_{W,b}(x) - y \|^2
\]

\[
J(W, b) = \frac{1}{m} \sum_{k=1}^{m} J(W, b, x^{(k)}, y^{(k)}) + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_{l+1}} \sum_{j=1}^{s_l} (W_{ij}^{(l)})^2
\]

- Gradient:

\[
\frac{\partial J(W, b)}{\partial W_{ij}^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial W_{ij}^{(l)}} + \lambda W_{ij}^{(l)}
\]

\[
\frac{\partial J(W, b)}{\partial b_i^{(l)}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial J(W, b, x^{(k)}, y^{(k)})}{\partial b_i^{(l)}}
\]
Univariate Chain Rule for Differentiation

• Univariate Chain Rule:

\[f = f \circ g \circ h = f(g(h(x))) \]

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial h} \frac{\partial h}{\partial x} \]

• Example:

\[f(g(x)) = 2g(x)^2 - 3g(x) + 1 \]

\[g(x) = x^3 + 2x \]
Multivariate Chain Rule for Differentiation

- Multivariate Chain Rule:

 \[f = f(g_1(x), g_2(x), ..., g_n(x)) \]

 \[\frac{\partial f}{\partial x} = \sum_{i=1}^{n} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial x} \]

- Example:

 \[f(g_1(x), g_2(x)) = 2g_1(x)^2 - 3g_1(x)g_2(x) + 1 \]

 \[g_1(x) = 3x \]

 \[g_2(x) = x^2 + 2x \]
Backpropagation: $W_{ij}^{(l)}$

- J depends on $W_{ij}^{(l)}$ only through $a_i^{(l+1)}$, which depends on $W_{ij}^{(l)}$ only through $z_i^{(l+1)}$.

$$J(W, b, x, y) = \frac{1}{2} \left\| a^{(n_f)} - y \right\|^2$$

$$a_i^{(l+1)} = f(z_i^{(l+1)})$$

$$z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}$$
Backpropagation: $b_i^{(l)}$

- J depends on $b_i^{(l)}$ only through $a_i^{(l+1)}$, which depends on $b_i^{(l)}$ only through $z_i^{(l+1)}$.

\[
J(W, b, x, y) = \frac{1}{2} \| a^{(n_l)} - y \|^2
\]

\[
a_i^{(l+1)} = f(z_i^{(l+1)})
\]

\[
z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}
\]
Backpropagation: $W_{ij}^{(l)}$ and $b_i^{(l)}$

\[
\frac{\partial J}{\partial W_{ij}^{(l)}} = \frac{\partial J}{\partial a_i^{(l+1)}} \times \frac{\partial a_i^{(l+1)}}{\partial z_i^{(l+1)}} \times \frac{\partial z_i^{(l+1)}}{\partial W_{ij}^{(l)}} = a_j^{(l)} \delta_i^{(l+1)}
\]

How to compute $\delta_i^{(l+1)}$ for all layers l?

\[
\frac{\partial J}{\partial b_i^{(l)}} = \frac{\partial J}{\partial a_i^{(l+1)}} \times \frac{\partial a_i^{(l+1)}}{\partial z_i^{(l+1)}} \times \frac{\partial z_i^{(l+1)}}{\partial b_i^{(l)}} = \delta_i^{(l+1)}
\]

\[
\delta_i^{(l+1)} = \delta_i^{(l+1)} + 1
\]
Backpropagation: $\delta_i^{(l)}$

$$
\delta_i^{(l)} = \frac{\partial J}{\partial a_i^{(l)}} \times \frac{\partial a_i^{(l)}}{\partial z_i^{(l)}} = \frac{\partial J}{\partial a_i^{(l)}} \times f'(z_i^{(l)})
$$

- J depends on $a_i^{(l)}$ only through $a_1^{(l+1)}$, $a_2^{(l+1)}$, ...

![Diagram of neural network](image)
Backpropagation: $\delta_i^{(l)}$

- J depends on $a_i^{(l)}$ only through $a_1^{(l+1)}$, $a_2^{(l+1)}$, ...

\[
\frac{\partial J}{\partial a_i^{(l)}} = \sum_{j=1}^{s_{l+1}} \left(\frac{\partial J}{\partial a_j^{(l+1)}} \times \frac{\partial a_j^{(l+1)}}{\partial a_i^{(l)}} \right) = \sum_{j=1}^{s_{l+1}} \frac{\partial J}{\partial a_j^{(l+1)}} \times \frac{\partial a_j^{(l+1)}}{\partial z_j^{(l+1)}} \times \frac{\partial z_j^{(l+1)}}{\partial a_i^{(l)}} \times \delta_j^{(l+1)} \times W_{ji}^{(l)}
\]

- Therefore, $\delta_i^{(l)}$ can be computed as:

\[
\delta_i^{(l)} = \frac{\partial J}{\partial a_i^{(l)}} \times f'(z_i^{(l)}) = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)} \right) \times f'(z_i^{(l)})
\]
Backpropagation: $\delta_i^{(l)}$

- Start computing δ’s for the output layer:

\[
\delta_i^{(n_l)} = \frac{\partial J}{\partial a_i^{(n_l)}} \times \frac{\partial a_i^{(n_l)}}{\partial z_i^{(n_l)}} = \frac{\partial J}{\partial a_i^{(n_l)}} \times f'(z_i^{(n_l)})
\]

\[
J = \frac{1}{2} \|a^{(n_l)} - y\|^2 \Rightarrow \frac{\partial J}{\partial a_i^{(n_l)}} = (a_i^{(n_l)} - y_i)
\]

\[
\delta_i^{(n_l)} = (a_i^{(n_l)} - y_i) \times f'(z_i^{(n_l)})
\]
Backpropagation Algorithm

1. Feedforward pass on \(x \) to compute activations \(a_i^{(l)} \)

2. For each output unit \(i \) compute:
 \[
 \delta_i^{(n_l)} = (a_i^{(n_l)} - y_i) \times f'(z_i^{(n_l)})
 \]

3. For \(l = n_{l-1}, n_{l-2}, n_{l-3}, \ldots, 2 \) compute:
 \[
 \delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)} \right) \times f'(z_i^{(l)})
 \]

4. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
 \[
 \frac{\partial J}{\partial W_{ij}^{(l)}} = a_j^{(l)} \delta_i^{(l+1)} \quad \frac{\partial J}{\partial b_i^{(l)}} = \delta_i^{(l+1)}
 \]
Backpropagation Algorithm: Vectorization for 1 Example

1. Feedforward pass on x to compute activations $a_i^{(l)}$
2. For last layer compute:
 \[\delta^{(n_l)} = (a^{(n_l)} - y) \cdot f'(z^{(n_l)}) \]
3. For $l = n_l-1, n_l-2, n_l-3, \ldots, 2$ compute:
 \[\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)}) \]
4. Compute the partial derivatives of the cost $J(W, b, x, y)$
 \[\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T \quad \nabla_{b^{(l)}} J = \delta^{(l+1)} \]
Backpropagation Algorithm: Vectorization for Dataset of m Examples

1. Feedforward pass on X to compute activations $a_i^{(l)}$

2. For last layer compute:
 \[\delta^{(n_l)} = (a^{(n_l)} - y) \cdot f'(z^{(n_l)}) \]

3. For $l = n_l - 1, n_l - 2, n_l - 3, \ldots, 2$ compute:
 \[\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)}) \]

4. Compute the partial derivatives of the cost $J(W, b, x, y)$
 \[\nabla_{w^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T / m \
 \nabla_{b^{(l)}} J = \delta^{(l+1)}.\text{col_avg()} \]
Backpropagation: Softmax Regression

• Consider layer n_l to be the input to the softmax layer i.e. softmax output layer is n_l+1.

• Softmax weights stored in matrix $W^{(n_l)}$.

• K classes $\Rightarrow \ W^{(n_l)} = \begin{bmatrix} -w_1^T & - \\ -w_2^T & - \\ \vdots & \vdots \\ -w_K^T & - \end{bmatrix}$
Backpropagation: Softmax Regression

- Softmax output is $a^{(n_l+1)} = \text{softmax}(z^{(n_l+1)})$

$$x \rightarrow a^{(1)} \leftarrow \text{Softmax input}$$

$$\text{Softmax weights } W^{(n_l)}$$

$$a^{(n_l)} \rightarrow z^{(n_l+1)} \leftarrow \text{Softmax logits}$$

$$\vdots$$

$$a^{(n_l)} \rightarrow z^{(n_l+1)}$$

$$J(a^{(n_l+1)}, y)$$

$$x$$

$$a^{(1)}$$

$$\text{Cross-entropy}$$
Backpropagation Algorithm: Softmax (1)

1. Feedforward pass on \(x \) to compute activations \(a^{(l)} \) for layers \(l = 1, 2, \ldots, n_l \).

2. Compute softmax outputs \(a^{(n_l+1)} \) and objective \(J(a^{(n_l+1)}, y) \).

3. Let \(y = [\delta_1(y), \delta_2(y), \ldots, \delta_K(y)]^T \) be the one-hot vector representation for label \(y \).

4. Compute gradient with respect to softmax weights:

\[
\frac{\partial J}{\partial W^{(n_l)}} = (a^{(n_l+1)} - y)a^{(n_l)T}
\]
Backpropagation Algorithm: Softmax (2)

5. Compute gradient with respect to softmax inputs:

\[\delta^{(n_l)} = (W^{(n_l)})^T (a^{(n_{l+1})} - y) \odot f'(z^{(n_l)}) \]

\[\frac{\partial J}{\partial a^{(n_l)}} \]

6. For \(l = n_l-1, n_l-2, n_l-3, \ldots, 2 \) compute:

\[\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)}) \]

7. Compute the partial derivatives of the cost \(J(W, b, x, y) \)

\[\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T \]

\[\nabla_{b^{(l)}} J = \delta^{(l+1)} \]
Backpropagation Algorithm: Softmax for 1 Example

1. For softmax layer, compute:
 \[\delta^{(n_l+1)} = (\mathbf{a}^{(n_l+1)} - \mathbf{y}) \]

2. For \(l = n_l, n_l-2, n_l-3, \ldots, 2 \) compute:
 \[\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) \cdot f'(z^{(l)}) \]

3. Compute the partial derivatives of the cost \(J(W, b, x, y) \)
 \[\nabla_{W^{(l)}} J = \delta^{(l+1)} (a^{(l)})^T \quad \nabla_{b^{(l)}} J = \delta^{(l+1)} \]
Backpropagation Algorithm: Softmax for Dataset of m Examples

1. For softmax layer, compute:
$$\delta^{(n_l+1)} = (a^{(n_l+1)} - y)$$

2. For $l = n_l, n_l-1, n_l-2, \ldots, 2$ compute:
$$\delta^{(l)} = \left(\left(W^{(l)} \right)^T \delta^{(l+1)} \right) \cdot f'(z^{(l)})$$

3. Compute the partial derivatives of the cost $J(W, b, x, y)$
$$\nabla_{W^{(l)}} J = \delta^{(l+1)} \left(a^{(l)} \right)^T / m \quad \nabla_{b^{(l)}} J = \delta^{(l+1)} . \text{col_avg}()$$
Backpropagation: Logistic Regression