Introduction

Razvan C. Bunescu
Department of Computer Science @ CCI
rbunescu@uncc.edu
What is (Human) Learning?

• Merriam-Webster:
 – *learn* = to acquire knowledge, understanding, or skill … by study, instruction, or *experience*.

• Why do we learn?
 – to *improve performance* on a given *task*.

• What (tasks) do we learn:
 1. categorize email, recognize faces, diagnose diseases, translate, …
 2. clustering (fish, insects, birds, mice, humans), summarization, sound source separation, …
 3. walk, play backgammon, ride bikes, drive cars, fly helicopters, …
What is Machine Learning?

- **Machine Learning** = constructing computer programs that learn from experience to perform well on a given task.
 - Supervised Learning i.e. discover patterns from labeled examples that enable predictions on (previously unseen) unlabeled examples.

```
Training examples -> ML algorithm -> Model
labeled

Test examples -> Model -> Labels
unlabeled
```
ML is Meta-Programming

• An ML model (e.g. a neural network) is a computer program:
 – We do not want to explicitly program (model) the computer for each particular task.
 – Use a general ML algorithm and task-specific data to automatically create the Program, i.e. the Model, that solves the task.

⇒ An ML algorithm (e.g. gradient descent) is a meta-program.
Example

\[M_1: x \text{ is Red } \Rightarrow x \in C_1 \]
\[M_2: x \text{ is a Square or } x \text{ is a Diamond } \Rightarrow x \in C_1 \]
\[M_3: x \text{ is Red and } x \text{ is a Quadrilateral } \Rightarrow x \in C_1 \]

?

\[\begin{array}{cc}
1 & 2 \\
3 & 4 \\
5 & 6 \\
\end{array} \]
Occam’s Razor

William of Occam (1288 – 1348)
- English Franciscan friar, theologian and philosopher.

- “Entia non sunt multiplicanda praeter necessitatem”
 - Entities must not be multiplied beyond necessity.

i.e. Do not make things needlessly complicated.
i.e. Prefer the simplest hypothesis that fits the data.
ML Objective

• Find a model M that is *simple* + that *fits the training data*.

\[\hat{M} = \arg\min_M \text{Complexity}(M) + \text{Error}(M, \text{Data}) \]

• **Inductive hypothesis:** Models that perform well on training examples are expected to do well on test (unseen) examples.

• **Occam’s Razor:** Simpler models are expected to do better than complex models on test examples (assuming similar training performance).
Example

$M_1: x$ is Red $\Rightarrow x \in C_1$

$M_2: x$ is a Square or x is a Diamond $\Rightarrow x \in C_1$

$M_3: x$ is Red and x is a Quadrilateral $\Rightarrow x \in C_1$
Feature Vectors

<table>
<thead>
<tr>
<th>Features</th>
<th>$\phi(x_1)$</th>
<th>$\phi(x_2)$</th>
<th>$\phi(x_3)$</th>
<th>$\phi(x_4)$</th>
<th>$\phi(x_5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(φ₁) Red?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(φ₂) Quad?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(φ₃) Square?</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(φ₄) Diamond?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y) Label</td>
<td>$y_1=+1$</td>
<td>$y_2=+1$</td>
<td>$y_3=-1$</td>
<td>$y_4=-1$</td>
<td>$y_5=-1$</td>
</tr>
</tbody>
</table>

Class C_1

- 1
- 2

Class C_2

- 3
- 4
- 5
Learning with Labeled Feature Vectors

<table>
<thead>
<tr>
<th>Features</th>
<th>$\phi(x_1)$</th>
<th>$\phi(x_2)$</th>
<th>$\phi(x_3)$</th>
<th>$\phi(x_4)$</th>
<th>$\phi(x_5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_1 Red?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>φ_2 Quad?</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>φ_3 Square?</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>φ_4 Diamond?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y) Label</td>
<td>$y_1=+1$</td>
<td>$y_2=+1$</td>
<td>$y_3=-1$</td>
<td>$y_4=-1$</td>
<td>$y_5=-1$</td>
</tr>
</tbody>
</table>

$\phi(x_1) = [1, 1, 1, 0]^T$ $\phi(x_2) = [1, 1, 0, 1]^T$ $\phi(x_3) = [0, 0, 0, 0]^T$...
$y_1=+1$ $y_2=+1$ $y_3=-1$...

Learning = finding parameters $\mathbf{w} = [w_1, w_2, w_3, w_4]^T$ and τ such that:
- $\mathbf{w}^T\phi(x_i) \geq \tau$, if $y_i = +1$
- $\mathbf{w}^T\phi(x_i) < \tau$, if $y_i = -1$

where $\mathbf{w}^T\phi(x) = w_1\varphi_1(x) + w_2\varphi_2(x) + w_3\varphi_3(x) + w_4\varphi_4(x)$
Model M_1: x_i is Red $\Rightarrow y_i = +1$

Red? Quad? Square? Diamond?

$\varphi(x_1) = [1, 1, 1, 0]^T$ label $y_1 = +1$ $\Rightarrow w^T\varphi(x_1) = 1 \geq 1$

$\varphi(x_2) = [1, 1, 0, 1]^T$ label $y_2 = +1$ $\Rightarrow w^T\varphi(x_2) = 1 \geq 1$

$\varphi(x_3) = [0, 0, 0, 0]^T$ label $y_3 = -1$ $\Rightarrow w^T\varphi(x_3) = 0 < 1$

$\varphi(x_4) = [0, 1, 0, 0]^T$ label $y_3 = -1$ $\Rightarrow w^T\varphi(x_4) = 0 < 1$

$\varphi(x_5) = [0, 0, 0, 0]^T$ label $y_3 = -1$ $\Rightarrow w^T\varphi(x_5) = 0 < 1$

$w = [1, 0, 0, 0]^T$ $\Rightarrow M_1$ error is 0%

Learning = finding parameters $w = [w_1, w_2, w_3, w_4]^T$ such that ($\tau = 1$):

- $w^T\varphi(x_i) \geq 1$, if $y_i = +1$
- $w^T\varphi(x_i) < 1$, if $y_i = -1$

where $w^T\varphi(x) = w_1\varphi_1(x) + w_2\varphi_2(x) + w_3\varphi_3(x) + w_4\varphi_4(x)$
\(M_2: \ x_i \text{ is Square or Diamond } \Rightarrow y_i = +1 \)

Red? \quad Quad? \quad Square? \quad Diamond?

\[
\begin{align*}
\varphi(x_1) &= [1, 1, 1, 0]^T \quad \text{label } y_1 = +1 \quad \Rightarrow w^T \varphi(x_1) = 1 \geq 1 \\
\varphi(x_2) &= [1, 1, 0, 1]^T \quad \text{label } y_2 = +1 \quad \Rightarrow w^T \varphi(x_2) = 1 \geq 1 \\
\varphi(x_3) &= [0, 0, 0, 0]^T \quad \text{label } y_3 = -1 \quad \Rightarrow w^T \varphi(x_3) = 0 < 1 \\
\varphi(x_4) &= [0, 1, 0, 0]^T \quad \text{label } y_3 = -1 \quad \Rightarrow w^T \varphi(x_4) = 0 < 1 \\
\varphi(x_5) &= [0, 0, 0, 0]^T \quad \text{label } y_3 = -1 \quad \Rightarrow w^T \varphi(x_5) = 0 < 1 \\
\end{align*}
\]

\[\mathbf{w} = [0, 0, 1, 1]^T \]

\[\Rightarrow \ M_2 \text{ error is 0%} \]

Learning = finding parameters \(\mathbf{w} = [w_1, w_2, w_3, w_4]^T \) such that (\(\tau = 1 \)):

- \(w^T \varphi(x_i) \geq 1 \), if \(y_i = +1 \)
- \(w^T \varphi(x_i) < 1 \), if \(y_i = -1 \)

where \(w^T \varphi(x) = w_1 \varphi_1(x) + w_2 \varphi_2(x) + w_3 \varphi_3(x) + w_4 \varphi_4(x) \)
Definition: *Bias* $w_0 = -\text{Threshold } \tau$

$$w_1 \varphi_1(x) + w_2 \varphi_2(x) + w_3 \varphi_3(x) + w_4 \varphi_4(x) \geq \tau$$

$$w_1 \varphi_1(x) + w_2 \varphi_2(x) + w_3 \varphi_3(x) + w_4 \varphi_4(x) - \tau \geq 0$$

Define the bias $w_0 = -\tau$.

$$w_1 \varphi_1(x) + w_2 \varphi_2(x) + w_3 \varphi_3(x) + w_4 \varphi_4(x) + w_0 \geq 0$$

$$h(x) = w^T \varphi(x) + w_0 \geq 0$$

where:

$$w = [w_1, w_2, w_3, w_4]$$

$$\varphi(x) = [\varphi_1(x), \varphi_2(x), \varphi_3(x), \varphi_4(x)]$$
Linear Discriminant Functions: Two classes \((K = 2)\)

- Use a linear function of the input vector:
 \[h(x) = w^T \varphi(x) + w_0 \]
 - **weight vector**
 - **bias = –threshold**

- Decision:
 \(x \in C_1 \text{ if } h(x) \geq 0, \text{ otherwise } x \in C_2. \)
 \(\Rightarrow \text{ decision boundary is hyperplane } h(x) = 0. \)

- Properties:
 - \(w \) is orthogonal to vectors lying within the decision surface.
 - \(w_0 \) controls the location of the decision hyperplane.
Geometric Interpretation

\[h > 0 \]
\[h = 0 \]
\[h < 0 \]
The Perceptron Algorithm: Two Classes
\[t_n \in \{+1, -1\} \]

1. **initialize** parameters \(w = 0 \)
2. **for** \(n = 1 \ldots N \)
3. \(h_n = \text{sgn}(w^T x_n) \)
4. **if** \(h_n \neq t_n \) **then**
5. \(w = w + t_n x_n \)

Repeat:
- a) until convergence.
- b) for a number of epochs \(E \).

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.
- see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].
Classifiers & Margin
The Perceptron Algorithm: Two Classes

1. **initialize** parameters $w = 0$

2. **for** $n = 1 \ldots N$

3. $h_n = \text{sgn}(w^T x_n)$

4. **if** $h_n \neq t_n$ **then**

5. $w = w + t_n x_n$

Repeat:

a) until convergence.

b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:

$$w = \sum_n \alpha_n t_n x_n \quad \Rightarrow \quad w^T x = \sum_n \alpha_n t_n x_n x^T x$$
• Which classifier has the smallest generalization error?
 – The one that maximizes the margin [Computational Learning Theory]

• **margin** = the distance between the decision boundary and the closest sample.
M$_1$ or M$_2$?

- Model M$_1$: x_i is Red \Rightarrow $y_i = +1$
 - $w^{(1)} = [1, 0, 0, 0]^T$
 - Error = 0%

- Model M$_2$: x_i is Square or Diamond \Rightarrow $y_i = +1$
 - $w^{(2)} = [0, 0, 1, 1]^T$
 - Error = 0%

- Which one should we choose?
 - Which one is expected to perform better on unseen (new) examples?
ML Objective

• Find a model w that is simple and that fits the training data.

$$\hat{w} = \arg\min_w \text{Complexity}(w) + \text{Error}(w, Data)$$
M₁ or M₂?

- **Model M₁**: \(x_i \) is Red \(\Rightarrow \) \(y_i = +1 \)
 - \(w^{(1)} = [1, 0, 0, 0]^T \)
 - Error = 0%

- **Model M₂**: \(x_i \) is Square or Diamond \(\Rightarrow \) \(y_i = +1 \)
 - \(w^{(2)} = [0, 0, 1, 1]^T \)
 - Error = 0%

\[
\hat{w} = \arg\min_w \text{ Complexity}(w) + \text{Error}(w, Data)
\]

Complexity

- \(||w||_0 \) i.e. # non-zero values
- \(||w||_1 \) i.e. sum of absolute values
- \(||w||_2 \) i.e sum of squared values
ML Objectives

• Find a model \mathbf{w} that is *simple* and that *fits the training data*.

\[
\hat{\mathbf{w}} = \operatorname{arg\ min}_w \text{ Complexity}(\mathbf{w}) + \text{ Error}(\mathbf{w}, \text{Data})
\]

Ridge Regression:
\[
\operatorname{arg\ min}_w \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2
\]

Logistic Regression:
\[
\operatorname{arg\ min} \frac{\alpha}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} \ln p(t_n|x_n)
\]
ML Objectives

Support Vector Machines:

\[
\text{argmin}_w \frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \xi_n
\]

subject to:

\[
t_n (w^T \varphi(x_n) + b) \geq 1 - \xi_n, \quad \forall n \in \{1, \ldots, N\}
\]

\[
\xi_n \geq 0
\]

Upper bound on the number of misclassified training examples
ML Concepts & Notation

• A (labeled) example \((x, t)\) consists of:
 – Instance / observation / raw feature vector \(x\).
 – Label \(t\).

• Examples:
 1. Digit recognition:
 - “machine is a hot topic in AI”
 - instance \(x = \) ?
 - label \(t = \) ?
 2. Language modelling:
 - instance \(x = \) ?
 - label \(t = \) ?
Often, a raw observation \mathbf{x} is pre-processed and further transformed into a feature vector $\varphi(\mathbf{x}) = [\varphi_1(\mathbf{x}), \varphi_1(\mathbf{x}), \ldots, \varphi_K(\mathbf{x})]^T$.

- Where do the features φ_k come from?
 - Feature engineering, e.g. in polynomial curve fitting:
 - manual, can be time consuming (e.g. SIFT).
 - Feature learning, e.g. in modern computer vision:
 - automatic, used in deep learning models.
 » Unsupervised (e.g. auto-encoders), or
 » Implicit (e.g. in deep CNNs).
ML Concepts & Notation

• A training dataset is a set of (training) examples \((x_1, t_1), (x_2, t_2), \ldots \) \((x_N, t_N)\):
 – The data matrix \(X\) contains all instance vectors \(x_1, x_2, \ldots, x_N\) row-wise.
 – The label vector \(t = [t_1, t_2, \ldots, t_N]^T\).

• A test dataset is a set of (test) examples \((x_{N+1}, t_{N+1}), \ldots, (x_{N+M}, t_{N+M})\):
 – Must be new/unseen, i.e. not from the training examples!
There is a function f that maps an instance x to its label $t = f(x)$.
- f is unknown / not given.
- But we observe samples from f: $(x_1,t_1), (x_2,t_2), \ldots (x_N,t_N)$.

Learning means finding a model h that maps an instance x to a label $h(x) \approx f(x)$, i.e. close to the true label of x.
- Machine learning = finding a model h that approximates well the unknown function f.
- Machine learning = function approximation!
ML Concepts & Notation

- Machine learning is **inductive**:
 - **Inductive hypothesis**: if a model performs well on training examples, it is expected to also perform well on unseen (test) examples.

- The **model** y is often specified through a set of parameters w:
 - x is mapped by the model to $h(x, w)$.

- The **objective function** $J(w)$ captures how poorly the model does on the training dataset:
 - Want to find $\hat{w} = \text{argmin}_w J(w)$
 - Machine learning = **optimization**!
Fitting vs. Generalization

• **Fitting** performance = how well the model performs on training examples.

• **Generalization** performance = how well the model performs on unseen (test) examples.

• We are interested in **Generalization**:
 – Prefer finding patterns to memorizing examples!
 • **Overfitting**: Model performs much better on training than test examples.
 • **Underfitting**: Model is not trained enough, not achieving good performance on either training or testing.
 • **Regularization:**
Regularization = Any Method that Alleviates Overfitting

- **Parameter norm penalties** (term in the objective).
- Limit parameter norm (constraint).
- **Dataset augmentation**.
- **Dropout**.
- **Ensembles**.
- Semi-supervised learning.
- **Early stopping**.
- Noise robustness.
- Sparse representations.
- Adversarial training.
Supervised Learning

Training

Training Examples
\((x_k, t_k)\)

Learning Algorithm

Model \(h\)

Testing

Model \(h\)

Test Examples
\((x, t)\)

Generalization Performance
Features

- Learning = finding parameters $w = [w_1, w_2, w_3, w_4]$ and τ such that:
 - $w^T \varphi(x_i) \geq \tau$, if $y_i = +1$
 - $w^T \varphi(x_i) < \tau$, if $y_i = -1$

where $w^T \varphi(x) = w_1 \times \varphi_1(x) + w_2 \times \varphi_2(x) + w_3 \times \varphi_3(x) + w_4 \times \varphi_4(x)$

Where do these features come from?
Object Recognition: Cats
Pixels as Features?

φ(x) = [25, 63, 125, 32, 84, 257, ..., 13, 27, 39, 8, 213, 107, 54, 73, ..., 91, 67, 59, 72, 33, 112, 54, 35, ..., 9, 18, 37, 18, 142, 162, 54, 53, ..., 28, 93, 44, 69, 85, 68, 54, 87, ..., 11, 117, 59, 117, 210, 177, 54, 72, ...]T

- Learning = finding parameters w = [w₁, w₂, w₃, ... wₖ]T such that:
 - wTφ(xi) ≥ τ, if yi = +1 (cat)
 - wTφ(xi) < τ, if yi = −1 (other)

where wTφ(x) = w₁×φ₁(x) + w₂×φ₂(x) + w₃×φ₃(x) + ... wₖ×φₖ(x)

Poor recognition accuracy!
Often, a raw observation \mathbf{x} is pre-processed and further transformed into a feature vector $\varphi(\mathbf{x}) = [\varphi_1(\mathbf{x}), \varphi_1(\mathbf{x}), \ldots, \varphi_K(\mathbf{x})]^{\top}$.

Where do the features φ_k come from?

- **Feature engineering**, e.g. in polynomial curve fitting:
 - manual, can be time consuming (e.g. SIFT).
- **Feature learning**, e.g. in modern computer vision:
 - automatic, used in deep learning models.
 - Unsupervised (e.g. auto-encoders), or
 - Implicit (e.g. in deep CNNs).
Machine Learning vs. Deep Learning

\[\phi(x) \]

\[h(\phi(x), w) \]

\[\phi_1(x) \quad \phi_1,2(x) \quad \ldots \quad \phi_{1,K}(x) \]

\[h(\phi_{1,K}(x), w) \]
What is Machine Learning?

- **Machine Learning** = constructing computer programs that *automatically improve with experience*:
 - **Supervised Learning** i.e. learning from labeled examples:
 - Classification
 - Regression
 - **Unsupervised Learning** i.e. learning from unlabeled examples:
 - Clustering.
 - Dimensionality reduction (visualization).
 - Density estimation.
 - **Reinforcement Learning** i.e. learning with delayed feedback.
 - Association rule learning, Sequential pattern mining, …
Supervised Learning

• Task = learn a function $f : X \rightarrow T$ that maps input instances $x \in X$ to output targets $t \in T$:
 - Classification:
 • The output $t \in T$ is one of a finite set of discrete categories.
 - Regression:
 • The output $t \in T$ is continuous, or has a continuous component.

• Supervision = set of training examples:
 $(x_1, t_1), (x_2, t_2), \ldots, (x_n, t_n)$
Classification vs. Regression
Classification: Junk Email Filtering

[Sahami, Dumais & Heckerman, AAAI’98]

Email filtering:

– Provide emails labeled as \(\{\text{Spam}, \text{Ham}\}\).
– Train \textit{Naïve Bayes} model to discriminate between the two.

From: Tammy Jordan
jordant@oak.cats.ohiou.edu
Subject: Spring 2015 Course

CS690: Machine Learning
Instructor: Razvan Bunescu
Email: bunescu@ohio.edu
Time and Location: Tue, Thu 9:00 AM, ARC 101
Website: http://ace.cs.ohio.edu/~razvan/courses/ml6830

Course description:
Machine Learning is concerned with the design and analysis of algorithms that enable computers to automatically find patterns in the data. This introductory course will give an overview …

From: UK National Lottery
edreyes@uknational.co.uk
Subject: Award Winning Notice

UK NATIONAL LOTTERY. GOVERNMENT ACCREDITED LICENSED LOTTERY. REGISTERED UNDER THE UNITED KINGDOM DATA PROTECTION ACT;

We happily announce to you the draws of (UK NATIONAL LOTTERY PROMOTION) International programs held in London, England. Your email address attached to ticket number :3456 with serial number :7576/06 drew the lucky number 4-2-274, which subsequently won you the lottery in the first category …

Lecture 01
Classification: Routing in Wireless Sensor Networks

- Link quality prediction:
 - Provide a set of training links:
 - received signal strength, send/forward buffer sizes
 - node depth from base station, forward/backward probability
 - LQI = Link Quality Indication, binarized as {Good, Bad}
 - Train *Decision Trees* model to predict LQ using runtime features.
• Handwritten digit recognition:
 – Provide images of handwritten digits, labeled as \{0, 1, \ldots, 9\}.
 – Train *Neural Network* model to recognize digits from input images.
Classification: Medical Diagnosis

[C Krishnapuram et al., GENSIPS’02]

• Cancer diagnosis from gene expression signatures:
 – Create database of gene expression profiles (X) from tissues of known cancer status (Y):
 • Human acute leukemia dataset:
 – http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
 • Colon cancer microarray data:
 – http://microarray.princeton.edu/oncology
 – Train Logistic Regression / SVM / RVM model to classify the gene expression of a tissue of unknown cancer status.
ML for Software Verification / ATP

- Software verification requires theorem proving.
- Proving a mathematical theorem requires finding and using relevant previous theorems and definitions:
 - The space of existing theorems and definitions is huge.
 - Use machine learning to narrow the search space to relevant theorems and definitions:
Classification: Other Examples

- Named Entity Recognition
- Named Entity Disambiguation
- Relation Extraction
- Word Sense Disambiguation
- Coreference Resolution
- Sentiment Analysis
- Semantic Parsing
- Chord Recognition
- Voice Separation
- Tone recognition
- Hand Gesture Recognition
- Blood Glucose Level Prediction
- Galaxy Morphology Recognition
- Dysarthria Prediction
- Tone Classification in Mandarin Chinese
- Thread Migration
- Dynamic Voltage and Frequency Scaling
Regression: Examples

1. **Stock market prediction:**
 - Use the current stock market conditions ($x \in X$) to predict tomorrow’s value of a particular stock ($t \in T$).

2. **Oil price, GDP, income prediction.**

3. **Chemical processes:**
 - Predict the yield in a chemical process based on the concentrations of reactants, temperature and pressure.

 • **Algorithms:**
 - *Linear Regression, Neural Networks, Support Vector Machines,* …
Unsupervised Learning: Hierarchical Clustering

- *Pan Troglodytes*
- *Homo Sapiens*
Unsupervised Learning: Clustering

• Partition unlabeled examples into disjoint clusters such that:
 – Examples in the same cluster are very similar.
 – Examples in different clusters are very different.
Unsupervised Learning: Clustering

• Partition unlabeled examples into disjoint clusters such that:
 – Examples in the same cluster are very similar.
 – Examples in different clusters are very different.

• Need to provide:
 – number of clusters ($k = 2$)
 – similarity measure (Euclidean)
Unsupervised Learning: Dimensionality Reduction

- **Manifold Learning:**
 - Data lies on a low-dimensional manifold embedded in a high-dimensional space.
 - Useful for *feature extraction* and *visualization*.

![Diagram showing examples of manifold learning](image)
Unsupervised Feature Learning: Auto-encoders

[25, 63, 125, 32, 84, 257, ..., 13, 27, 39, 8, 213, 107, 54, 73, ..., 91 67, 59, 72, 33, 112, 54, 35, ..., 9 18, 37, 18, 142, 162, 54, 53, ..., 28 93, 44, 69, 85, 68, 54, 87, ..., 11, 117, 59, 117, 210, 177, 54, 72, ...]
Learned Features (Representations)
Learned Features (Representations)
Reinforcement Learning
Reinforcement Learning: TD-Gammon

• Learn to play Backgammon:
 – Immediate reward:
 • +100 if win
 • −100 if lose
 • 0 for all other states
 – Temporal Difference Learning with a Multilayer Perceptron.
 – Trained by playing 1.5 million games against itself.
 – Played competitively against top-ranked players in international tournaments.
Reinforcement Learning

- Interaction between agent and environment modeled as a sequence of actions & states:
 - Learn policy for mapping states to actions in order to maximize a reward.
 - Reward may be given only at the end state => delayed reward.
 - States may be only partially observable.
 - Trade-off between exploration and exploitation.

- Examples:
 - Backgammon [Tesauro, CACM‘95], helicopter flight [Abbeel, NIPS’07].
 - 49 Atari games, using deep RL [Mnih et al., Nature’15].
 - AlphaGo [Silver et al., 2016], AlphaZero [Silver et al., 2017], MuZero [DeepMind, 2019]
Relevant Disciplines

- Mathematics:
 - Probability & Statistics
 - Information Theory
 - Linear Algebra
 - Optimization

- Algorithms:
 - Computational Complexity
 - Dynamic Programming

- Artificial Intelligence
 - Search

- (Computational) Neuroscience