ITCS 4111/5111: Intro to Natural Language Processing

Coreference Resolution

Razvan C. Bunescu
Department of Computer Science @ CCI

Coreference Resolution: Wikipedia text

- Determine which noun phrases (mentions) refer to the same discourse entity.

Originally from Hawaii, Obama is a graduate of Columbia University and Harvard Law School, where he was the president of the Harvard Law Review. He was a community organizer in Chicago before earning his law degree.

Originally from Hawaii, Obama is a graduate of Columbia University and Harvard Law School, where he was the president of the Harvard Law Review. He was a community organizer in Chicago before earning his law degree.

CoreferenceResolution: Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $\mathrm{b} \sqrt{ } 2=\mathrm{a}$. Squaring both sides yields $2 \mathrm{~b}^{2}=\mathrm{a}^{2}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $2 \mathrm{~b}^{2}=(2 \mathrm{c})^{2}=4 \mathrm{c}^{2}$. Dividing both sides by 2 yields $b^{2}=2 c^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Coreference in Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $b \sqrt{ } 2=a$. Squaring both sides yields $2 b^{2}=a^{2}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $2 \mathrm{~b}^{2}=(2 \mathrm{c})^{2}=4 \mathrm{c}^{2}$. Dividing both sides by 2 yields $b^{2}=2 c^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Coreference in Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $\mathrm{b} \sqrt{ } 2=\mathrm{a}$. Squaring both sides yields $\mathbf{2} \mathbf{b}^{\mathbf{2}}=\mathrm{a}^{2}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $2 \mathrm{~b}^{2}=(2 \mathrm{c})^{2}=4 \mathrm{c}^{2}$. Dividing both sides by 2 yields $b^{2}=2 c^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Coreference in Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $b \sqrt{ } 2=a$. Squaring both sides yields $\mathbf{2} \mathbf{b}^{\mathbf{2}}=\mathrm{a}^{2}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $2 \mathrm{~b}^{2}=(2 \mathrm{c})^{2}=4 \mathrm{c}^{2}$. Dividing both sides by 2 yields $b^{2}=2 c^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Coreference in Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $\mathrm{b} \sqrt{ } 2=$ a. Squaring both sides yields $\mathbf{2 b}^{\mathbf{2}}=\mathbf{a}^{\mathbf{2}}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $2 \mathrm{~b}^{2}=(2 \mathrm{c})^{2}=4 \mathrm{c}^{2}$. Dividing both sides by 2 yields $b^{2}=2 c^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Coreference in Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $\mathfrak{b} \sqrt{ } 2=\mathrm{a}$. Squaring both sides yields $\mathbf{2} \mathbf{b}^{\mathbf{2}}=\mathbf{a}^{2}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $2 b^{2}=(2 c)^{2}=4 c^{2}$. Dividing both sides by 2 yields $b^{2}=2 c^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Coreference in Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $\mathrm{b} \sqrt{ } 2=\mathrm{a}$. Squaring both sides yields $\mathbf{2} \mathbf{b}^{\mathbf{2}}=\mathbf{a}^{2}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $2 b^{2}=(2 c)^{2}=4 c^{2}$. Dividing both sides by 2 yields $b^{2}=2 c^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Coreference in Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $\mathfrak{b} \sqrt{ } 2=\mathrm{a}$. Squaring both sides yields $\mathbf{2 b}^{\mathbf{2}}=\mathbf{a}^{2}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $2 \mathrm{~b}^{2}=(2 \mathrm{c})^{2}=4 \mathrm{c}^{2}$. Dividing both sides by 2 yields $\mathrm{b}^{2}=2 \mathrm{c}^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Coreference in Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $\mathfrak{b} \sqrt{ } 2=\mathrm{a}$. Squaring both sides yields $\mathbf{2 b}^{\mathbf{2}}=\mathbf{a}^{2}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $\mathbf{2 b}^{\mathbf{2}}=(2 \mathrm{c})^{2}=\mathbf{4} \mathbf{c}^{\mathbf{2}}$. Dividing both sides by 2 yields $\mathrm{b}^{2}=2 \mathrm{c}^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Coreference in Mathematical Statements

- Theorem: $\sqrt{ } 2$ is an irrational number.
- Proof: Suppose that $\sqrt{ } 2$ were a rational number, so by definition $\sqrt{ } 2=\mathrm{a}$ $/ \mathrm{b}$ where a and b are non-zero integers with no common factor. Thus, $b \sqrt{ } 2=a$. Squaring both sides yields $\mathbf{2} \mathbf{b}^{\mathbf{2}}=\mathbf{a}^{2}$. Since 2 divides the left hand side, 2 must also divide the right hand side (as they are equal and both integers). So a^{2} is even, which implies that a must also be even. So we can write $a=2 c$, where c is also an integer. Substitution into the original equation yields $\mathbf{2 b}^{\mathbf{2}}=(2 \mathrm{c})^{2}=4 \mathbf{c}^{\mathbf{2}}$. Dividing both sides by 2 yields $b^{2}=2 c^{2}$. But then, by the same argument as before, 2 divides b^{2}, so b must be even. However, if a and b are both even, they share a factor, namely 2 . This contradicts our assumption, so we are forced to conclude that $\sqrt{ } 2$ is an irrational number.

Application: Social Networks from Text

- Input = a large text, such as a novel or a play, for example Romeo and Juliet, which contains a number of characters, e.g. Romeo Montague, Juliet Capulet, Mercutio, Benvolio.
- Output = a social network extracted from the text:
- Each character is associated a node, and edges between two nodes are created for interactions between those two characters that are explicitly expressed in sentences.
- Each edge is labeled with the type of interaction:
- For example Romeo talked to Juliet would lead to the creation of an edge between Romeo Montague and Juliet Capulet that is labeled with talked to.
- Your solution will be graded based on its precision (how accurate it is) and recall (how many such interactions it correctly extracts).
- Given that NLP tools are often less than $100 \backslash \%$ accurate, elaborate on how you could increase the quality of the extracted social network.

Application: Social Networks from Text

- Pipeline of NLP tasks:

1. Tokenization and sentence segmentation.
2. Syntactic parsing.

- POS tagging to identify pronouns.

3. Named entity recognition.
4. Coreference resolution.

Show pipeline processing on the following example:
Romeo was walking his dog when he met Mercutio's neighbor, Juliet. She asked him if the dog was a golden retriever.

Coreference using SpaCy

- SpaCy uses the NeuralCoref model, as implemented by Huggin Face:
- https://spacy.io/universe/project/neuralcoref
- https://github.com/huggingface/neuralcoref
- Currently not working in version 3 with Python 3.8 , need version 2 with Python 3.7:
- conda create --name spacy-coref
- conda activate spacy-coref
- conda install python=3.7
- pip install spacy==2.1.0
- pip install neuralcoref
- pip install https://github.com/explosion/spacy-models/releases//download/en_core_web_lg-2.1.0/en_core_web_lg-2.1.0.tar.gz
- conda install -c conda-forge jupyterlab \# select Python 3 as kernel in Jupyter.

Coreference using SpaCy

In [1]: \# Load your usual SpaCy model (one of SpaCy English models)
import spacy
import en_core_web_lg
nlp = en_core_web_lg.load()
\# Add neural coref to SpaCy's pipe.
import neuralcoref
neuralcoref.add_to_pipe(nlp)
\# You can now use NeuralCoref as you usually manipulate a SpaCy document annotations. doc = nlp(u'My sister has a dog. She loves him.')
doc._.has_coref
doc._. coref_clusters
Out[1]: [My sister: [My sister, She], a dog: [a dog, him]]

In [5]: doc = nlp(u'Romeo was walking his dog when he met Mercutio\'s neighbor, Juliet.') doc._. coref_clusters

Out[5]: [Romeo: [Romeo, his, he]]

More recent, more accurate approaches

1. CorefQA: Coreference Resolution as Query-based Span Prediction [Wu et al., ACL'20]

- https://github.com/ShannonAI/CorefQA

2. BERT for Coreference Resolution: Baselines and Analysis [Joshi et al., EMNLP‘19]

- https://github.com/mandarjoshi90/coref

3. Coreference Resolution with Entity Equalization [Kantor \& Globerson, ACL'19]

- https://github.com/kkjawz/coref-ee

4. Higher-order Coreference Resolution with Coarse-to-fine Inference [Lee et al, NAACL'18]

- https://github.com/kentonl/e2e-coref

5. End-to-end Neural Coreference Resolution [Lee et al., EMNLP'17]

- https://github.com/kentonl/e2e-coref

Supplementary Readings

- Stanford CS 224N slides on coreference resolution.
- Chapter 21 (Coreference Resolution) in [Jurafsky \& Martin]
- Chapter 15 (Reference Resolution) in [Eisenstein]
- The papers on the previous slide.

