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Syntax and Grammars

• Syntax [Greek syntaxis] º the way words are arranged 
together:
– Not all combinations of words are well formed.

• Syntactic constraints can be captured using:
– N-gram models.
– Part-of-speech categories.

– Formal Grammars:
• Regular Grammars.
• Context Free Grammars.
• Dependency Grammars.
• Categorial Grammars.
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The dog that my cat chased yesterday barked at the moon.



Syntax and Constituency

• Groups of words behave as a single unit or phrase, called a 
constituent.

• Constituents for coherent classes that behave in similar ways:
– Internal structure:

• a common structure for all constituents in a class (use CFGs):
– the white whale, the yellow fever, the scarlet letter, …
– the elephant in the room, the man on the moon, …

– External behavior:
• similar behavior with respect to other language units:

– three parties from Brooklyn arrive …
– a high-class spot such as Mindy’s attracts …
– they sit …
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Constituency and Context Free Grammars

• Context Free Grammar (CFG) º a formal model 
commonly used to describe constituent structure:
– A sentence as a hierarchy of constituents [Wilhelm Wundt, 1900].
– Formalizations: 

• Phrase Structure Grammars [Chomsky, 1956].
• Backus-Naur Form [Backus, 1959].

• A CFG is-a generative grammar is-a formal grammar:
– Panini (4th century BC): the earliest known grammar of Sanskrit.
– Chomsky (1950s): first formalized generative grammars.
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Generative Grammars

• A grammar is tuple G = (S, N, P, S):
– A finite set S of terminal symbols.

• the words of a natural language.
• the tokens of a programming language.

– A finite set N of nonterminal symbols, disjoint from S.
• the constituent classes in a NL (noun phrase, verb phrase, 

sentence).
• expressions, statement, type declarations in a PL.

– A finite set P of production rules.
• P : (S∪N)* N (S∪N)* ® (S∪N)*

– A distinguished start symbol SÎN.
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Generative Grammars

• The language L associated with a formal grammar G is the 
set of strings from S* that can be generated as follows:
– start with the start symbol S;
– apply the production rules in P until no more nonterminal symbols 

are present.

• Example:
– S = {a,b,c}, N={S,B}
– P consists of the following production rules:

1. S ® aBSc
2. S ® abc
3. Ba ® aB
4. Bb ® bb
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Generative Grammars

• Production rules:
1. S ® aBSc
2. S ® abc
3. Ba ® aB
4. Bb ® bb

• Derivations of strings in the language L(G):
– S Þ2 abc
– S Þ1 aBSc Þ2 aBabcc Þ3 aaBbcc Þ4 aabbcc
– S Þ … Þ aaabbbccc

• L(G) = {anbncn| n > 0}
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Generative Grammars

• A derivation is a repeated application of rules, starting with 
the start symbol and ending with a sentence:
– A string of symbols in a derivation is a sentential form.
– A sentence is a sentential form that has only terminal symbols.

• A parse tree is a hierarchical representation of a derivation:
– The root and intermediate nodes are nonterminals.
– The leaf nodes are terminals.
– For each rule used in a derivation step:

• the LHS is a parent node.
• the symbols in the RHS are children nodes (from left to right).
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Chomsky Hierarchy (1956)

• Type 0 grammars (unrestricted grammars)
– Includes all formal grammars.

• Type 1 grammars (context-sensitive grammars).
– Rules restricted to: aAb® agb, where A is a non-terminal, and a, 
b, g strings of terminals and non-terminals.

• Type 2 grammars (context-free grammars).
– Rules restricted to A® g, where A is a non-terminal, and g a string 

of terminals and non-terminals
• Type 3 grammars (regular grammars).

– Rules restricted to A ® g, where A is a non-terminal, and g:
• the empty string, or a single terminal symbol followed 

optionally by a non-terminal symbol.
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Context Free Grammars (Type 2)

• Example:
– S = {a,b}, N={S}
– P consists of the following production rules:

1. S ® aSb
2. S ® e

– L(G) = ?
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CFGs provide the formal syntax specification
of most programming languages.

S ® aSb ® aaSbb ® aaaSbbb ® aaabbb



Regular Grammars (Type 3)

• Example:
– S = {a,b,c}, N={S,A,B}
– P consists of the following production rules:

1. S ® aS
2. S ® cB
3. B ® bB
4. B ® e

– L(G) = ?
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Regular Grammars/Expressions provide the formal 
lexical specification of most programming languages.



A Simple CFG for English

• Lexicon = the rules that generalize the terminal symbols:
– token ® lexeme // in programming languages.
– part-of-speech ® word // in natural languages.
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A Simple CFG for English

Lecture 04



A Simple CFG for English

• Leftmost Derivation & Parse Tree:
S => NP VP
=> Pro VP
=> I VP
=> I Verb NP
=> I prefer NP
=> I prefer Det Nom
=> I prefer a Nom
=> I prefer a Nom Noun
=> I prefer a Noun Noun
=> I prefer a morning Noun
=> I prefer a morning flight
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Syntactic Parsing

• Syntactic Parsing (Analysis) = a computing problem:
– Input: 

• a context free grammar.
• a sequence of tokens.

– Output: 
• YES if the input  can be generated by the CFG.

– The parse tree Þ need unambiguous grammar.
• NO if the input  cannot be generated by the CFG.

– Find all syntax errors; for each, produce an appropriate 
diagnostic message and recover quickly.

Lecture 04



Some Grammar Rules for English

• Sentences:

– and Clauses.

• Noun Phrases:

– Agreement.

• Verb Phrases:

– Subcategorization.
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Sentence Types

• Declaratives:  A plane left.
S ® NP VP

• Imperatives:   Show me the cheapest fare that has lunch.
S ® VP

• Yes-No Questions: Do any of these flights have stops?
S ® Aux NP VP

• WH Questions: 
– What airlines fly from Burbank to Denver?

S ® WH-NP VP

– What flights do you have for Washington DC?
S ® WH-NP Aux NP VP Lecture 04

long distance dependency



Sentences and Clauses

• Clauses are modeled using the S nonterminal:
– Sentences are clauses.
– “They form a complete thought”
– Can appear both on the LHS and RHS of a rule:

• S => NP VP
• VP => Verb S
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[S [NP You] [VP [VB said] [S there were two flights to Denver]]]

sentential complement



Noun Phrases

• “All the morning flights from Denver to Tampa leaving 
before 10”:
− Clearly this NP is about flights.

• the head of the NP, i.e. its central noun.

• Context free rules:
NP => PreDet NP

NP => Det Nominal

Nominal => ?

the head, along with various modifiers that can appear before and 
after the head
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Noun Phrases
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Determiners

• Noun phrases can start with determiners:
– Exceptions: plural nouns, mass nouns, …

• Determiners can be
– Simple lexical items: the, this, a, an, etc.

• a car, the car, those flights, any flights, some flights, …
– Or simple possessives:

• John’s car
– Or complex recursive versions of that

• John’s sister’s husband’s son’s car
NP => Det Nom

Det => NP POS
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Nominals: Premodifiers

• Nominals contain the head and any pre- and post- modifiers:
– Premodifiers:

• Quantifiers, cardinals, ordinals...
– Three cars

• Adjectives and Adjectival Phrases
– large cars

• Ordering constraints
– Three large cars
– ?large three cars

NP => [Det] [Card] [Ord] [Quant] [AP] Nom
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Nominals: Postmodifiers

• Three kinds of postmodifiers:
– Prepositional phrases:

• all flights from Seattle
– Non-finite clauses:

• any flights arriving before noon
– Relative clauses:

• a flight that serve breakfast

• Same general (recursive) rule to handle these
– Nominal ® Nominal PP
– Nominal ® Nominal GerundVP
– Nominal ® Nominal RelClause
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Nominals: Agreement Constraints

• Number Agreement:
– subject & verb

• flights leave *flights leaves
• do you have *does you have

– determiner & head noun:
• this flight *this flights
• those flights *those flight

• Case Agreement:
– nominative: I, she, he, they
– accusative: me, her, him, them

• Gender Agreement:
– le petit prince * la petite prince
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Agreement Constraints

• NP rules so far are deficient:
– NP ® Det Nominal

• Accepts, and assigns correct structures, to grammatical 
examples (this flight)

• But it’s also happy with incorrect examples (*these flight).
– The rule is said to overgenerate.

• VP rules are deficient too:
– subcategorization constraints.
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Verb Phrases

• “flies from Milwakee to Orlando in less than 4 hours”
– The VP is about the action of  flying.
Þ flies is the head of the VP.

• Verb Phrase structure:
– a head verb along with 0 or more following constituents called 

complements:
• arguments (core complements).
• adjuncts (modifiers).
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Verb Subcategorization

• Subcategorization º the tendency of heads to place 
restrictions on the types and number of arguments.
– Sneeze:  John sneezed
– Find:  Please find [a flight to NY]NP

– Give: Give [me]NP[a cheaper fare]NP

– Help: Can you help [me]NP[with a flight]PP

– Prefer: I prefer [to leave earlier]TO-VP

– Told: I was told [United has a flight]S

– Want: I want [to fly from Milwakee to Orlando]TO-VP
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Verb Subcategorization

• Right now, the various rules for VPs overgenerate:
– *John sneezed the book
– *I prefer United has a flight
– *Give with a flight

• We can subcategorize the verbs in a language according to 
the sets of VP rules that they participate in:
– generalization of the traditional notion of transitive/intransitive.
– Modern grammars may have 100s of such classes.
– Subcategorization Frame: the possible sets of arguments for a 

given verb.
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“All grammars leak” [Sapir, 1921]



Agreement and Subcategorization

• Should these constraints be modeled through CFG rules?

• Similar approach for subcategorization Þ proliferation of 
rules.
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SgS ® SgNP SgVP
PlS ® PlNp PlVP
SgNP ® SgDet SgNom
PlNP ® PlDet PlNom
PlVP ® PlV NP
SgVP ® SgV Np
…

agreement



Agreement and Subcategorization

• How to avoid bloated grammars in natural languages?
– parameterize each non-terminal with feature structures.
– use unification to enforce constraints.
– more details in Ch. 15 “Features and Unification” in J&M.

• Similar to static semantic constraints in programming 
languages:
– type compatibility rules (e.g. Java cannot assign float to integer)
– use  attribute grammars [Knuth, 1968], where a CFG is 

augmented to carry some semantic info on parse tree nodes.
– approach (implicitly) used by compiler writers.
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Agreement and Subcategorization

• CFGs appear to be just about what we need to account for 
a lot of basic syntactic structure in English:
– It doesn’t scale all that well because the interaction among the 

various constraints explodes the number of rules in our grammar.

• There are simpler, more elegant solutions that take us out 
of the CFG framework (beyond its formal power):
– Lexical Functional Grammar (LFG). 
– Head-driven Phrase Structure Grammar (HPSG),
– Construction Grammar, 
– Tree Adjoining Grammar (TAG), 
– …
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Treebanks

• Treebank = a corpus in which every sentence is syntactically 
annotated with a parse tree.

• Generally created in two steps:
1) First parse the collection with an automatic parser.
2) Then human annotators correct each parse as necessary.

• Requires detailed annotation guidelines:
– a POS tagset, a grammar.
– Instructions for how to deal with particular grammatical 

constructions.
» ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/
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The Penn Treebank

• Brown, Switchboard, ATIS, and Wall Street Journal.
– also Arabic and Chinese.
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traces and co-indexing for 
long distance dependencies

tags indicate grammatical 
function: surface subject, 
logical topic, cleft, …



Treebank Grammars

• Treebanks implicitly define a grammar for the language 
covered in the treebank.
– Simply take the local rules that make up the sub-trees.
– Not complete, but if you have decent size corpus, you’ll have a 

grammar with decent coverage.
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Treebank Grammars
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Treebank Grammars

• Treebank grammars tend to be very flat:
– They tend to avoid recursion, to ease the annotators burden.
– The Penn Treebank has 4500 different rules for VPs.

– Even longer: VP ® VBP PP PP PP PP PP ADVP PP

• Typically “normalized” to make them amenable to 
porbabilistic parsing  algorithms.
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“This mostly happens because we go from football in the 
fall to lifting in the winter to football again in the spring”.



Heads in Trees

• Each syntactic constituent can be associated with a lexical 
head:
– nouns for NPs, verbs for VPs and clauses, … [Bloomfield, 1914].
– central for HPSGs, corpus linguistics, statistical parsing with 

lexicalized grammars.
• statistical parsers are trained on treebanks Þ need to be able to 

automatically find heads in trees.

• Finding heads: 
– visualize this task by annotating the nodes of a parse tree with the 

heads of each corresponding node.
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Head Decorated Parse Tree
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Head Finding

• Use a simple set of hand-written rules:
– For Penn Treebank [Magerman, 1995; Collins, 1999].
– Rules for NPs:

• If the last word is tagged POS, return last word.
• Else search from R to L for the first child which is an NN, NNP, 

NNPS, NX, POS, or JJR.
• Else search from L to R for the first child which is an NP.
• Else search from R to L for the first child which is a $, ADJP or PRN.
• Else search from R to L for the first child which is a CD.
• Else search from R to L for the first child which is a JJ, JJS, RB or QP.
• Else return the last word.
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Head Percolation Table
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Treebank Searching: Tgrep2
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Treebank Searching: Tgrep2
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Is English a Regular Language?

1) Certain syntactic structures cannot be described with RGs:
– Recursive center-embedding rules:

• A ®* a A b
– The luggage arrived.
– The luggage that the passengers checked arrived.
– The luggage that the passengers that the storm delayed 

checked arrived.
• Matching parantheses in programming languages.

2) Even when expressive enough, regular grammars do not 
produce structures of immediate use in semantic analysis.
– Syntax-directed semantic analysis / translation.
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Dependency Grammars

• In CFG-style phrase-structure grammars the main focus 
is on constituents.

• In dependency grammars, the focus is on binary 
relations among the words in an utterance.
– In a parse tree:

• The nodes stand for the words in an utterance
• The links between the nodes represent dependency relations 

between pairs of words.
– Relations may be typed (labeled), or not.
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Dependency Relations
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[de Marneffe et al., 2006]



Dependency Parse

Lecture 04

[de Marneffe et al., 2006]

They hid the letter on the shelf



Projective vs. Non-Projective Dependencies
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[McDonald et al., EMNLP’05]



Dependency Parsing

• Dependency Parsing vs. Phrase-Structure Parsing:
– Ability to handle languages with relatively free word order.

• In Czech, an object may occur before or after a location adverbial
– In a CFG, need separate rule.
– In a DG, need only one link type.

– Parsing is much faster.
– CFGs are often used to extract the same syntactic relations anyway.

• dependency trees extracted automatically from constituent trees.
• Implementations:

– Link Grammar (Sleator and Temperley, 1993), Constraint Grammar 
(Karlsson et al.), MINIPAR (Lin, 2003), Stanford Parser (de 
Marneffe et al., 2006).
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From Constituent Trees to Dependency Trees

1) Mark the head child of each node.
2) For every parent node, create a dependency link between the head of 

a non-head child node and the head of the head-child.
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3) Type dependencies using hand 
written patterns [de Marneffe 
et al., 2006].



Syntactic Parsing
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Syntactic Parsing

• Syntactic Parsing = assigning a syntactic structure to a 
sentence.
– For CFGs: assigning a phrase-tructure tree to a sentence.

Lecture 04

Book that flight.



Syntactic Parsing as Search

• Parsing º search through the space of all possible parse 
trees such that:
1. The leaves of the final parse tree coincide with the words in the 

input sentence.
2. The root of the parse tree is the symbol S, i.e. complete parse 

tree.

Þ 2 search strategies:
– Top-Down parsing (goal-directed search).
– Bottom-Up parsing (data-directed search).
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Top-Down Parsing

• Build the parse tree from the root S down to the leaves:
– Expand tree nodes N by using CFG rules N ® N1 … Nk.
– Grow trees downward until reaching the POS categories at the 

bottom of the tree.
– Reject trees that do not match all the words in the input.
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Bottom-Up Parsing

• Build the parse tree from the leaf words up to the root S:
– Find root nodes N1 … Nk in the current forest such that they match 

a CFG rule N ® N1 … Nk.
– Reject sub-trees that cannot lead to the start symbol S.
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Top-Down vs. Bottom-Up

• Top-down:
– Only searches for trees that are complete (i.e. S’s)
– But also suggests trees that are not consistent with any of the words.

• Bottom-up:
– Only forms trees consistent with the words.
– But also suggests trees that make no sense globally.

• How expensive is the entire search process?
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Syntactic Parsing as Search

• How to keep track of the search space and how to make 
choices:
– Which node to try to expand next.
– Which grammar rule to use to expand a node.

• Backtracking (naïve implementation of parsing):
– Expand the search space incrementally, choose a state to expand in 

the search space (depth-first, breadth-first, or other strategies).
– If strategy arrives at an inconsistent tree, backtrack to an 

unexplored search on the agenda.
– Doomed because of large search space and redundant work due to 

shared subproblems.
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Large Search Space

• Global Ambiguity:
– coordination: old men and women
– attachment: we saw the Eiffel Tower flying to Paris

• Local Ambiguity
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Shared Subproblems

• Parse the sentence:
“a flight from Indianapolis to Houston on TWA”

• Use backtracking with a top-down, depth-first, left-to-right 
strategy:
– Assume a top-down parse making choices among the various 

Nominal rules, in particular, between these two:
• Nominal ® Noun
• Nominal ® Nominal PP

– Statically choosing the rules in this order leads to the following 
bad results, in which every part of the final tree is derived more 
than once:
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Syntactic Parsing using Dynamic 
Programming

• Shared subproblems Þ dynamic programming could help.

• Dynamic Programming:
– CKY algorithm (bottom-up search).

• Need to transform the CFG into Chomsky Normal Form (CNF).
• Any CFG can be transformed into CNF automatically.

– Earley algorithm (top-down search).
• does not require a normalized grammar.
• a single left-to-right pass that fills an array/chart of size n + 1.
• more complex than CKY.

– Chart parsing:
• more general, retain completed phrases in a chart, can combine 

top-down and bottom-up search.Lecture 04



CKY Parsing: Chomsky Normal Form

• All rules should be of one of two forms:
A ® B C or A ® w

• CNF conversion procedure:
1. Convert terminals to dummy non-terminals:

INF-VP ® to VP Û INF-VP ® TO VP and TO ® to
2. Convert unit productions

Nominal ® Noun
Noun ® book | flight

3. Make all rules binary by adding new non-terminals:
VP ® Verb NP PP  Û VP ® VX PP

VX ® Verb NP
Lecture 04

Û Nominal ® book | flight



L1 Grammar
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CKY Parsing: Dynamic Programming

• Use indeces to point at gaps between words:
0 Book 1 the 2 flight 3 through 4 Houston 5

• A sentence with n words Þ n + 1 positions.
– words[1] = “book”, words[2] = “the”, …

• Define a (n + 1)´(n + 1) matrix T:
– T[i,j] = the set of non-terminals that can generate the sequence of 

words between gaps i and j.
– T[0,n] contains S Û the sentence can be generated by the CFG.

• How can we compute T[i,j]?
– Only interested in the upper-triangular portion (i.e. i < j).
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CKY: Dynamic Programming

• Recursively define the table values:
1. A Î T[i-1,i] if and only if there is a rule A ® words[i].
2. A Î T[i,j] if and only if  $ k, i < k < j, such that:

• B Î T[i,k] and C Î T[k,j].
• There is a rule A ® B C in the CFG.

• Bottom-up computation:
– In order to compute the set T[i,j], the sets T[i,k] and T[k,j] need to 

have been computed already, for all i < k < j.
Þ (at least) two possible orderings:

• which one is more “natural”?
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CKY: Bottom-Up Computation

A[i,k] A[i,j]

A[k,j]

Lecture 04

i = 1

j = 6

0

2

3

4

0 1 2 3 4 5

5

6

7

7



CKY Parsing

• Fill the table a column at a time, left to right, bottom to top.
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CKY Parsing: Example
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S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
NP → I  | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal | 
money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP

0               1               2                  3                  4                 5
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S → NP VP
S → X1 VP
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CKY Parsing

• How do we change the algorithm to output the parse trees?
• Time complexity:

– for computing the table?
– for  computing all parses?
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CKY Parsing

• The parse trees correspond to the CNF grammar, not the 
original CFG:
Þ complicates subsequent syntax-direct semantic analysis.

• Post-processing of the parse tree:
– For binary productions:

• delete the new dummy non-terminals and promote their 
daughters to restore the original tree.

– For unit productions:
• alter the basic CKY algorithm to handle them directly.

– homework exercise 13.3
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CKY Parsing

• Does CKY solve ambiguity?
– Book the flight through Houston.
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Use probabilistic CKY parsing, output highest probability tree.

• Will probabilistic CKY solve all ambiguity?
- One morning I shot an elephant in my pajamas.

- How he got into my pajamas I don’t know.



Shallow Parsing: Chunking

• Chunking = find all non-recursive major types of phrases:
– [NP The morning flight] [PP from] [NP Denver] [VP has arrived]
– [NP The morning flight] from [NP Denver] has arrived

• Chunking can be approached as Sequence Labeling.

• Evaluation:
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found chunkscorrect  # (P) Precision =
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Currently, best NP chunking system obtains F1=96%.



Supplemental Reading

• Sections 12 and 13 from Jurafsky & Martin.
• Section 9 and 10 from Eisenstein.
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