
ITCS 4111/5111: Introduction to NLP

Syntax and Grammars

Syntactic Parsing

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

Syntax and Grammars

• Syntax [Greek syntaxis] º the way words are arranged
together:
– Not all combinations of words are well formed.

• Syntactic constraints can be captured using:
– N-gram models.
– Part-of-speech categories.

– Formal Grammars:
• Regular Grammars.
• Context Free Grammars.
• Dependency Grammars.
• Categorial Grammars.

Lecture 04

The dog that my cat chased yesterday barked at the moon.

Syntax and Constituency

• Groups of words behave as a single unit or phrase, called a
constituent.

• Constituents for coherent classes that behave in similar ways:
– Internal structure:

• a common structure for all constituents in a class (use CFGs):
– the white whale, the yellow fever, the scarlet letter, …
– the elephant in the room, the man on the moon, …

– External behavior:
• similar behavior with respect to other language units:

– three parties from Brooklyn arrive …
– a high-class spot such as Mindy’s attracts …
– they sit …

Lecture 04

Constituency and Context Free Grammars

• Context Free Grammar (CFG) º a formal model
commonly used to describe constituent structure:
– A sentence as a hierarchy of constituents [Wilhelm Wundt, 1900].
– Formalizations:

• Phrase Structure Grammars [Chomsky, 1956].
• Backus-Naur Form [Backus, 1959].

• A CFG is-a generative grammar is-a formal grammar:
– Panini (4th century BC): the earliest known grammar of Sanskrit.
– Chomsky (1950s): first formalized generative grammars.

Lecture 04

Generative Grammars

• A grammar is tuple G = (S, N, P, S):
– A finite set S of terminal symbols.

• the words of a natural language.
• the tokens of a programming language.

– A finite set N of nonterminal symbols, disjoint from S.
• the constituent classes in a NL (noun phrase, verb phrase,

sentence).
• expressions, statement, type declarations in a PL.

– A finite set P of production rules.
• P : (S∪N)* N (S∪N)* ® (S∪N)*

– A distinguished start symbol SÎN.

Lecture 04

Generative Grammars

• The language L associated with a formal grammar G is the
set of strings from S* that can be generated as follows:
– start with the start symbol S;
– apply the production rules in P until no more nonterminal symbols

are present.

• Example:
– S = {a,b,c}, N={S,B}
– P consists of the following production rules:

1. S ® aBSc
2. S ® abc
3. Ba ® aB
4. Bb ® bb

Lecture 04

Generative Grammars

• Production rules:
1. S ® aBSc
2. S ® abc
3. Ba ® aB
4. Bb ® bb

• Derivations of strings in the language L(G):
– S Þ2 abc
– S Þ1 aBSc Þ2 aBabcc Þ3 aaBbcc Þ4 aabbcc
– S Þ … Þ aaabbbccc

• L(G) = {anbncn| n > 0}

Lecture 04

Generative Grammars

• A derivation is a repeated application of rules, starting with
the start symbol and ending with a sentence:
– A string of symbols in a derivation is a sentential form.
– A sentence is a sentential form that has only terminal symbols.

• A parse tree is a hierarchical representation of a derivation:
– The root and intermediate nodes are nonterminals.
– The leaf nodes are terminals.
– For each rule used in a derivation step:

• the LHS is a parent node.
• the symbols in the RHS are children nodes (from left to right).

Lecture 04

Chomsky Hierarchy (1956)

• Type 0 grammars (unrestricted grammars)
– Includes all formal grammars.

• Type 1 grammars (context-sensitive grammars).
– Rules restricted to: aAb® agb, where A is a non-terminal, and a,
b, g strings of terminals and non-terminals.

• Type 2 grammars (context-free grammars).
– Rules restricted to A® g, where A is a non-terminal, and g a string

of terminals and non-terminals
• Type 3 grammars (regular grammars).

– Rules restricted to A ® g, where A is a non-terminal, and g:
• the empty string, or a single terminal symbol followed

optionally by a non-terminal symbol.
Lecture 04

Context Free Grammars (Type 2)

• Example:
– S = {a,b}, N={S}
– P consists of the following production rules:

1. S ® aSb
2. S ® e

– L(G) = ?

Lecture 04

CFGs provide the formal syntax specification
of most programming languages.

S ® aSb ® aaSbb ® aaaSbbb ® aaabbb

Regular Grammars (Type 3)

• Example:
– S = {a,b,c}, N={S,A,B}
– P consists of the following production rules:

1. S ® aS
2. S ® cB
3. B ® bB
4. B ® e

– L(G) = ?

Lecture 04

Regular Grammars/Expressions provide the formal
lexical specification of most programming languages.

A Simple CFG for English

• Lexicon = the rules that generalize the terminal symbols:
– token ® lexeme // in programming languages.
– part-of-speech ® word // in natural languages.

Lecture 04

A Simple CFG for English

Lecture 04

A Simple CFG for English

• Leftmost Derivation & Parse Tree:
S => NP VP
=> Pro VP
=> I VP
=> I Verb NP
=> I prefer NP
=> I prefer Det Nom
=> I prefer a Nom
=> I prefer a Nom Noun
=> I prefer a Noun Noun
=> I prefer a morning Noun
=> I prefer a morning flight

Lecture 04

Syntactic Parsing

• Syntactic Parsing (Analysis) = a computing problem:
– Input:

• a context free grammar.
• a sequence of tokens.

– Output:
• YES if the input can be generated by the CFG.

– The parse tree Þ need unambiguous grammar.
• NO if the input cannot be generated by the CFG.

– Find all syntax errors; for each, produce an appropriate
diagnostic message and recover quickly.

Lecture 04

Some Grammar Rules for English

• Sentences:

– and Clauses.

• Noun Phrases:

– Agreement.

• Verb Phrases:

– Subcategorization.

Lecture 04

Sentence Types

• Declaratives: A plane left.
S ® NP VP

• Imperatives: Show me the cheapest fare that has lunch.
S ® VP

• Yes-No Questions: Do any of these flights have stops?
S ® Aux NP VP

• WH Questions:
– What airlines fly from Burbank to Denver?

S ® WH-NP VP

– What flights do you have for Washington DC?
S ® WH-NP Aux NP VP Lecture 04

long distance dependency

Sentences and Clauses

• Clauses are modeled using the S nonterminal:
– Sentences are clauses.
– “They form a complete thought”
– Can appear both on the LHS and RHS of a rule:

• S => NP VP
• VP => Verb S

Lecture 04

[S [NP You] [VP [VB said] [S there were two flights to Denver]]]

sentential complement

Noun Phrases

• “All the morning flights from Denver to Tampa leaving
before 10”:
− Clearly this NP is about flights.

• the head of the NP, i.e. its central noun.

• Context free rules:
NP => PreDet NP

NP => Det Nominal

Nominal => ?

the head, along with various modifiers that can appear before and
after the head

Lecture 04

Noun Phrases

Lecture 04

Determiners

• Noun phrases can start with determiners:
– Exceptions: plural nouns, mass nouns, …

• Determiners can be
– Simple lexical items: the, this, a, an, etc.

• a car, the car, those flights, any flights, some flights, …
– Or simple possessives:

• John’s car
– Or complex recursive versions of that

• John’s sister’s husband’s son’s car
NP => Det Nom

Det => NP POS
Lecture 04

Nominals: Premodifiers

• Nominals contain the head and any pre- and post- modifiers:
– Premodifiers:

• Quantifiers, cardinals, ordinals...
– Three cars

• Adjectives and Adjectival Phrases
– large cars

• Ordering constraints
– Three large cars
– ?large three cars

NP => [Det] [Card] [Ord] [Quant] [AP] Nom

Lecture 04

Nominals: Postmodifiers

• Three kinds of postmodifiers:
– Prepositional phrases:

• all flights from Seattle
– Non-finite clauses:

• any flights arriving before noon
– Relative clauses:

• a flight that serve breakfast

• Same general (recursive) rule to handle these
– Nominal ® Nominal PP
– Nominal ® Nominal GerundVP
– Nominal ® Nominal RelClause

Lecture 04

Nominals: Agreement Constraints

• Number Agreement:
– subject & verb

• flights leave *flights leaves
• do you have *does you have

– determiner & head noun:
• this flight *this flights
• those flights *those flight

• Case Agreement:
– nominative: I, she, he, they
– accusative: me, her, him, them

• Gender Agreement:
– le petit prince * la petite prince

Lecture 04

Agreement Constraints

• NP rules so far are deficient:
– NP ® Det Nominal

• Accepts, and assigns correct structures, to grammatical
examples (this flight)

• But it’s also happy with incorrect examples (*these flight).
– The rule is said to overgenerate.

• VP rules are deficient too:
– subcategorization constraints.

Lecture 04

Verb Phrases

• “flies from Milwakee to Orlando in less than 4 hours”
– The VP is about the action of flying.
Þ flies is the head of the VP.

• Verb Phrase structure:
– a head verb along with 0 or more following constituents called

complements:
• arguments (core complements).
• adjuncts (modifiers).

Lecture 04

Verb Subcategorization

• Subcategorization º the tendency of heads to place
restrictions on the types and number of arguments.
– Sneeze: John sneezed
– Find: Please find [a flight to NY]NP

– Give: Give [me]NP[a cheaper fare]NP

– Help: Can you help [me]NP[with a flight]PP

– Prefer: I prefer [to leave earlier]TO-VP

– Told: I was told [United has a flight]S

– Want: I want [to fly from Milwakee to Orlando]TO-VP

Lecture 04

• Framenet: http://framenet.icsi.berkeley.edu/

http://framenet.icsi.berkeley.edu/

Verb Subcategorization

• Right now, the various rules for VPs overgenerate:
– *John sneezed the book
– *I prefer United has a flight
– *Give with a flight

• We can subcategorize the verbs in a language according to
the sets of VP rules that they participate in:
– generalization of the traditional notion of transitive/intransitive.
– Modern grammars may have 100s of such classes.
– Subcategorization Frame: the possible sets of arguments for a

given verb.

Lecture 04

“All grammars leak” [Sapir, 1921]

Agreement and Subcategorization

• Should these constraints be modeled through CFG rules?

• Similar approach for subcategorization Þ proliferation of
rules.

Lecture 04

SgS ® SgNP SgVP
PlS ® PlNp PlVP
SgNP ® SgDet SgNom
PlNP ® PlDet PlNom
PlVP ® PlV NP
SgVP ® SgV Np
…

agreement

Agreement and Subcategorization

• How to avoid bloated grammars in natural languages?
– parameterize each non-terminal with feature structures.
– use unification to enforce constraints.
– more details in Ch. 15 “Features and Unification” in J&M.

• Similar to static semantic constraints in programming
languages:
– type compatibility rules (e.g. Java cannot assign float to integer)
– use attribute grammars [Knuth, 1968], where a CFG is

augmented to carry some semantic info on parse tree nodes.
– approach (implicitly) used by compiler writers.

Lecture 04

Agreement and Subcategorization

• CFGs appear to be just about what we need to account for
a lot of basic syntactic structure in English:
– It doesn’t scale all that well because the interaction among the

various constraints explodes the number of rules in our grammar.

• There are simpler, more elegant solutions that take us out
of the CFG framework (beyond its formal power):
– Lexical Functional Grammar (LFG).
– Head-driven Phrase Structure Grammar (HPSG),
– Construction Grammar,
– Tree Adjoining Grammar (TAG),
– …

Lecture 04

Treebanks

• Treebank = a corpus in which every sentence is syntactically
annotated with a parse tree.

• Generally created in two steps:
1) First parse the collection with an automatic parser.
2) Then human annotators correct each parse as necessary.

• Requires detailed annotation guidelines:
– a POS tagset, a grammar.
– Instructions for how to deal with particular grammatical

constructions.
» ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/

Lecture 04

ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/

The Penn Treebank

• Brown, Switchboard, ATIS, and Wall Street Journal.
– also Arabic and Chinese.

Lecture 04

traces and co-indexing for
long distance dependencies

tags indicate grammatical
function: surface subject,
logical topic, cleft, …

Treebank Grammars

• Treebanks implicitly define a grammar for the language
covered in the treebank.
– Simply take the local rules that make up the sub-trees.
– Not complete, but if you have decent size corpus, you’ll have a

grammar with decent coverage.

Lecture 04

Þ

Treebank Grammars

Lecture 04

Treebank Grammars

• Treebank grammars tend to be very flat:
– They tend to avoid recursion, to ease the annotators burden.
– The Penn Treebank has 4500 different rules for VPs.

– Even longer: VP ® VBP PP PP PP PP PP ADVP PP

• Typically “normalized” to make them amenable to
porbabilistic parsing algorithms.

Lecture 04

“This mostly happens because we go from football in the
fall to lifting in the winter to football again in the spring”.

Heads in Trees

• Each syntactic constituent can be associated with a lexical
head:
– nouns for NPs, verbs for VPs and clauses, … [Bloomfield, 1914].
– central for HPSGs, corpus linguistics, statistical parsing with

lexicalized grammars.
• statistical parsers are trained on treebanks Þ need to be able to

automatically find heads in trees.

• Finding heads:
– visualize this task by annotating the nodes of a parse tree with the

heads of each corresponding node.

Lecture 04

Head Decorated Parse Tree

Lecture 04

Head Finding

• Use a simple set of hand-written rules:
– For Penn Treebank [Magerman, 1995; Collins, 1999].
– Rules for NPs:

• If the last word is tagged POS, return last word.
• Else search from R to L for the first child which is an NN, NNP,

NNPS, NX, POS, or JJR.
• Else search from L to R for the first child which is an NP.
• Else search from R to L for the first child which is a $, ADJP or PRN.
• Else search from R to L for the first child which is a CD.
• Else search from R to L for the first child which is a JJ, JJS, RB or QP.
• Else return the last word.

Lecture 04

Lecture 04

Head Percolation Table

Lecture 04

Treebank Searching: Tgrep2

Lecture 04

Treebank Searching: Tgrep2

Lecture 04

Is English a Regular Language?

1) Certain syntactic structures cannot be described with RGs:
– Recursive center-embedding rules:

• A ®* a A b
– The luggage arrived.
– The luggage that the passengers checked arrived.
– The luggage that the passengers that the storm delayed

checked arrived.
• Matching parantheses in programming languages.

2) Even when expressive enough, regular grammars do not
produce structures of immediate use in semantic analysis.
– Syntax-directed semantic analysis / translation.

Lecture 04

Dependency Grammars

• In CFG-style phrase-structure grammars the main focus
is on constituents.

• In dependency grammars, the focus is on binary
relations among the words in an utterance.
– In a parse tree:

• The nodes stand for the words in an utterance
• The links between the nodes represent dependency relations

between pairs of words.
– Relations may be typed (labeled), or not.

Lecture 04

Dependency Relations

Lecture 04

[de Marneffe et al., 2006]

Dependency Parse

Lecture 04

[de Marneffe et al., 2006]

They hid the letter on the shelf

Projective vs. Non-Projective Dependencies

Lecture 04

[McDonald et al., EMNLP’05]

Dependency Parsing

• Dependency Parsing vs. Phrase-Structure Parsing:
– Ability to handle languages with relatively free word order.

• In Czech, an object may occur before or after a location adverbial
– In a CFG, need separate rule.
– In a DG, need only one link type.

– Parsing is much faster.
– CFGs are often used to extract the same syntactic relations anyway.

• dependency trees extracted automatically from constituent trees.
• Implementations:

– Link Grammar (Sleator and Temperley, 1993), Constraint Grammar
(Karlsson et al.), MINIPAR (Lin, 2003), Stanford Parser (de
Marneffe et al., 2006).

Lecture 04

From Constituent Trees to Dependency Trees

1) Mark the head child of each node.
2) For every parent node, create a dependency link between the head of

a non-head child node and the head of the head-child.

Lecture 04

3) Type dependencies using hand
written patterns [de Marneffe
et al., 2006].

Syntactic Parsing

51

Syntactic Parsing

• Syntactic Parsing = assigning a syntactic structure to a
sentence.
– For CFGs: assigning a phrase-tructure tree to a sentence.

Lecture 04

Book that flight.

Syntactic Parsing as Search

• Parsing º search through the space of all possible parse
trees such that:
1. The leaves of the final parse tree coincide with the words in the

input sentence.
2. The root of the parse tree is the symbol S, i.e. complete parse

tree.

Þ 2 search strategies:
– Top-Down parsing (goal-directed search).
– Bottom-Up parsing (data-directed search).

Lecture 04

Top-Down Parsing

• Build the parse tree from the root S down to the leaves:
– Expand tree nodes N by using CFG rules N ® N1 … Nk.
– Grow trees downward until reaching the POS categories at the

bottom of the tree.
– Reject trees that do not match all the words in the input.

Lecture 04

Bottom-Up Parsing

• Build the parse tree from the leaf words up to the root S:
– Find root nodes N1 … Nk in the current forest such that they match

a CFG rule N ® N1 … Nk.
– Reject sub-trees that cannot lead to the start symbol S.

Lecture 04

Lecture 04

Top-Down vs. Bottom-Up

• Top-down:
– Only searches for trees that are complete (i.e. S’s)
– But also suggests trees that are not consistent with any of the words.

• Bottom-up:
– Only forms trees consistent with the words.
– But also suggests trees that make no sense globally.

• How expensive is the entire search process?

Lecture 04

Syntactic Parsing as Search

• How to keep track of the search space and how to make
choices:
– Which node to try to expand next.
– Which grammar rule to use to expand a node.

• Backtracking (naïve implementation of parsing):
– Expand the search space incrementally, choose a state to expand in

the search space (depth-first, breadth-first, or other strategies).
– If strategy arrives at an inconsistent tree, backtrack to an

unexplored search on the agenda.
– Doomed because of large search space and redundant work due to

shared subproblems.
Lecture 04

Large Search Space

• Global Ambiguity:
– coordination: old men and women
– attachment: we saw the Eiffel Tower flying to Paris

• Local Ambiguity
Lecture 04

Shared Subproblems

• Parse the sentence:
“a flight from Indianapolis to Houston on TWA”

• Use backtracking with a top-down, depth-first, left-to-right
strategy:
– Assume a top-down parse making choices among the various

Nominal rules, in particular, between these two:
• Nominal ® Noun
• Nominal ® Nominal PP

– Statically choosing the rules in this order leads to the following
bad results, in which every part of the final tree is derived more
than once:

Lecture 04

Lecture 04

Shared Subproblems

Syntactic Parsing using Dynamic
Programming

• Shared subproblems Þ dynamic programming could help.

• Dynamic Programming:
– CKY algorithm (bottom-up search).

• Need to transform the CFG into Chomsky Normal Form (CNF).
• Any CFG can be transformed into CNF automatically.

– Earley algorithm (top-down search).
• does not require a normalized grammar.
• a single left-to-right pass that fills an array/chart of size n + 1.
• more complex than CKY.

– Chart parsing:
• more general, retain completed phrases in a chart, can combine

top-down and bottom-up search.Lecture 04

CKY Parsing: Chomsky Normal Form

• All rules should be of one of two forms:
A ® B C or A ® w

• CNF conversion procedure:
1. Convert terminals to dummy non-terminals:

INF-VP ® to VP Û INF-VP ® TO VP and TO ® to
2. Convert unit productions

Nominal ® Noun
Noun ® book | flight

3. Make all rules binary by adding new non-terminals:
VP ® Verb NP PP Û VP ® VX PP

VX ® Verb NP
Lecture 04

Û Nominal ® book | flight

L1 Grammar

Lecture 04

Lecture 04

CKY Parsing: Dynamic Programming

• Use indeces to point at gaps between words:
0 Book 1 the 2 flight 3 through 4 Houston 5

• A sentence with n words Þ n + 1 positions.
– words[1] = “book”, words[2] = “the”, …

• Define a (n + 1)´(n + 1) matrix T:
– T[i,j] = the set of non-terminals that can generate the sequence of

words between gaps i and j.
– T[0,n] contains S Û the sentence can be generated by the CFG.

• How can we compute T[i,j]?
– Only interested in the upper-triangular portion (i.e. i < j).

Lecture 04

CKY: Dynamic Programming

• Recursively define the table values:
1. A Î T[i-1,i] if and only if there is a rule A ® words[i].
2. A Î T[i,j] if and only if $ k, i < k < j, such that:

• B Î T[i,k] and C Î T[k,j].
• There is a rule A ® B C in the CFG.

• Bottom-up computation:
– In order to compute the set T[i,j], the sets T[i,k] and T[k,j] need to

have been computed already, for all i < k < j.
Þ (at least) two possible orderings:

• which one is more “natural”?

Lecture 04

CKY: Bottom-Up Computation

A[i,k] A[i,j]

A[k,j]

Lecture 04

i = 1

j = 6

0

2

3

4

0 1 2 3 4 5

5

6

7

7

CKY Parsing

• Fill the table a column at a time, left to right, bottom to top.

Lecture 04

CKY Parsing: Example

Lecture 04

Lecture 04

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal |
money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP

0 1 2 3 4 5

Lecture 04

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal |
money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP

0 1 2 3 4 5

Lecture 04

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal |
money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP

0 1 2 3 4 5

Lecture 04

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal |
money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP

0 1 2 3 4 5

Lecture 04

S → NP VP
S → X1 VP
X1 → Aux NP
S → book | include | prefer
S → Verb NP
S → X2 NP
X2 → Verb NP
S → VP PP
NP → I | he | she | me
NP → Houston | NWA
NP → Det Nominal
Nominal → book | flight | meal |
money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → VP PP
VP → X2 PP
PP → Prep NP

0 1 2 3 4 5

CKY Parsing

• How do we change the algorithm to output the parse trees?
• Time complexity:

– for computing the table?
– for computing all parses?

Lecture 04

CKY Parsing

• The parse trees correspond to the CNF grammar, not the
original CFG:
Þ complicates subsequent syntax-direct semantic analysis.

• Post-processing of the parse tree:
– For binary productions:

• delete the new dummy non-terminals and promote their
daughters to restore the original tree.

– For unit productions:
• alter the basic CKY algorithm to handle them directly.

– homework exercise 13.3

Lecture 04

CKY Parsing

• Does CKY solve ambiguity?
– Book the flight through Houston.

Lecture 04

Use probabilistic CKY parsing, output highest probability tree.

• Will probabilistic CKY solve all ambiguity?
- One morning I shot an elephant in my pajamas.

- How he got into my pajamas I don’t know.

Shallow Parsing: Chunking

• Chunking = find all non-recursive major types of phrases:
– [NP The morning flight] [PP from] [NP Denver] [VP has arrived]
– [NP The morning flight] from [NP Denver] has arrived

• Chunking can be approached as Sequence Labeling.

• Evaluation:

Lecture 04

found chunks # total
found chunkscorrect # (P) Precision =

chunks actual # total
found chunkscorrect # (R) Recall =

RP
PRF

+
+

= 2

2)1(
b
b

RP
PRF
+

=
2

1

Currently, best NP chunking system obtains F1=96%.

Supplemental Reading

• Sections 12 and 13 from Jurafsky & Martin.
• Section 9 and 10 from Eisenstein.

80

