Introduction

Razvan C. Bunescu
Department of Computer Science @ CCI
r bunescu@uncc.edu
What is Natural Language Processing?

• **Natural Language Processing (NLP)** = developing computer systems that can process, understand, or communicate in natural language (text or speech):
 – **Natural Languages**: English, Turkish, Japanese, Latin, Hawaiian Creole, Esperanto, American Sign Language, …
 • Music?
 – **Formal Languages**: C++, Java, Python, XML, OWL, Predicate Calculus, Lambda Calculus, …
 – **Natural Languages are significantly more difficult to process than Artificial Languages!**

• What about **Computational Linguistics (CL)**?
 – Computational Linguistics is focused on the study of language, using computational tools.
 – NLP is focused on solving language tasks such as **machine translation, information extraction, question answering, taking instructions, holding conversations, …**
What is the meaning of life?

Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury
Signifying nothing.

Shakespeare’s Macbeth (Act 5, Scene 5, lines 17-28)
NLP Application: Question Answering

• Input:
 – A question:
 • What is the meaning of life?
 – A large collection of text documents:
 • all books from UNCC Library.

• Output:
 – An answer, or list of answers.
 • Found by ‘mining’ the documents in the collection.

What is the meaning of life?

Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury
Signifying nothing.

Skakespeare’s Macbeth (Act 5, Scene 5, lines 17-28)
NLP Application: Question Answering

• Input:
 – A question:

 What is the meaning of life?

 – A large collection of text documents:

 all books from UNCC Library.

• Output:
 – An answer, or list of answers.
 • Found by ‘mining’ the documents in the collection.

 Try simple pattern matching:
 “the meaning of life is <?>”

What is the meaning of life?

Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury
Signifying nothing.

Skakespeare’s Macbeth (Act 5, Scene 5, lines 17-28)
NLP Application: Question Answering

• Input:
 – A question:
 • What is the meaning of life?
 – A large collection of text documents:
 • all books from OU Library.

• Output:
 – An answer, or list of answers.
 • Found by ‘mining’ the documents in the collection.

What is the **meaning** of life?

Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle! *Life's but a walking shadow, a poor player*
That struts and frets his hour upon the stage
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury

Signifying nothing.

Shakespeare’s Macbeth (Act 5, Scene 5, lines 17-28)
NLP Application: Question Answering

What is the meaning of life?

Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury
Signifying nothing.

Skakespeare’s Macbeth (Act 5, Scene 5, lines 17-28)

Input:
- A question:
 - What is the meaning of life?
- A large collection of text documents:
 - all books from UNCC Library.

Output:
- An answer, or list of answers.
 - Found by ‘mining’ the documents in the collection.
NLP Application: Question Answering

• Input:
 – A question:
 • What is the meaning of life?

Coreference Resolution: \{Life, it, tale\} are coreferent.

• Output:
 – An answer, or list of answers.
 • Found by ‘mining’ the documents in the collection.

What is the meaning of life?

Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury
Signifying nothing.

Skakespeare’s Macbeth (Act 5, Scene 5, lines 17-28)
What is the **meaning** of **life**?

Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player
That struts and frets his hour upon the stage
*And then is heard no more. *It is a tale*
Told by an idiot, full of sound and fury
Signifying nothing.

Skakespeare’s Macbeth (Act 5, Scene 5, lines 17-28)
NLP Application: Question Answering

What is the **meaning** of **life**?

Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death. Out, out, brief candle!
Life's but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more. It is a tale
Told by an idiot, full of sound and fury
Signifying nothing.

Shakespeare's Macbeth (Act 5, Scene 5, lines 17-28)
Fundamental NLP Tasks in Text Analysis

- Tokenization
- Morphological Analysis
- Part of Speech Tagging
- Syntactic Parsing
- Word Sense Disambiguation
- Semantic Role Labeling
- Semantic Parsing
- Anaphora/Coreference Resolution
Tokenization

- **Tokenization** = segmenting text into words and sentences.
 - A crucial first step in most text processing applications.

- Whitespace indicative of word boundaries?
 - Yes: English, French, Spanish, …
 - No: Chinese, Japanese, Thai, …

- Whitespace is not enough:
 - ‘What’re you? Crazy?’ said Sadowsky. ‘I can’t afford to do that.’
 \[\Rightarrow \text{‘what’re you? crazy? Sadowsky. ‘I can’t that.’}\]
Word Segmentation

• In English, characters other than whitespace can be used to separate words:
 – , ; . : ()”

• But punctuation often occurs inside words:
 – m.p.h., Ph.D., AT&T, 01/02/06, google.com, 62.5
 – Homework: design regular expressions to match constructions where punctuation does not split:
 – acronyms, dates, web addresses, numbers, etc.
 – https://docs.python.org/3/howto/regex.html

• Expansion of clitic constructions:
 – he’s happy ⇒ he is happy
 – Need ambiguity resolution between clitic construction, possessive markers, quotative markers:
 • he’s happy vs. the book’s cover vs. ‘what are you? crazy?’
Sentence Segmentation

• Generally based on punctuation marks: ? ! .
 – Periods are ambiguous, as sentence boundary markers and abbreviation/acronym markers:
 • Mr., Inc., m.p.h.
 – Sometimes they mark both:
 • SAN FRANCISCO (MarketWatch) – Technology stocks were mostly in positive territory on
 Monday, powered by gains in shares of Microsoft Corp. and IBM Corp.

• Tokenization approaches:
 – Regular Expressions.
 – Machine Learning (state of the art).
Morphology = the field of linguistics that studies the internal structure of words.

- Morpheme is the smallest linguistic unit that has semantic meaning:
 - stems: “carry”, “depend”, “Google”, “lock”
 - affixes: “pre”, “ed”, “ly”, “s”

Morphological analysis = segmenting words into morphemes:

- carried ⇒ carry + ed (past tense)
- independently ⇒ in + (depend + ent) + ly
- Googlers ⇒ (Google + er) + s (plural)
- unlockable ⇒ un + (lock + able) ? (un + lock) + able ?
Morphological Analysis: Stemming

• In **IR applications** such as **Web search**, useful to know if two words have the same **stem**:
 – Boolean Query: “marsupial OR kangaroo OR koala”.
 \[\Rightarrow \text{stemming} \], i.e. given a word, extract the stem:
 • marsupials => marsupial
 • played, playing, player, plays => play

• **Porter stemmer** – a series of simple cascaded rewrite rules:
 – ATIONAL => ATE (e.g. relational => relate)
 – ING => ε (e.g. motoring => motor)
 – SSES => SS (e.g. grasses => grass)
Part of Speech (POS) Tagging

• Annotate each word in a sentence with its POS:
 – nouns, verbs, adjectives, adverbs, pronouns, prepositions, …

 PRP VBD TO VB TO DT NN IN NN VBD VBG

 They used to object to the use of object-oriented programming

 obJECT OBject

• Useful for many NLP tasks downstream:
 – speech recognition and synthesis, syntactic parsing, word sense disambiguation, information retrieval, …

• Nowadays superseded in many tasks by (contextualized) word embeddings.
• Compute the phrase structure of a sentence:

- He lives in the house with two friends

- The corresponding dependency structure:
Words in natural language may have multiple meanings:

- he cashed a check at the bank
- he sat on the bank of the river and watched the currents
- they built a large plant to manufacture automobiles
- chlorophyll is generally present in plant leaves

Use lexical resources such as WordNet that map words to their meanings.

Identifying the meaning of a word is useful for:

- machine translation, information retrieval, question answering, text classification, …

Nowadays superseded in many tasks by (contextualized) word embeddings.
Semantic Role Labeling

For each clause, determine the semantic role played by each noun phrase that is an argument to the verb:

- **agent**
- **patient**
- **source**
- **destination**
- **instrument**

- John drove Mary from Charlotte to Asheville in his Honda Accord.
- The hammer broke the window.

Also referred to as “case role analysis,” “thematic analysis,” and “shallow semantic parsing”.

agent patient source destination instrument
Semantic Parsing

• Map natural language sentences to a formal semantic representation (*logic form*).

• **Text to SQL**, for interaction with DBs in natural language:
 – *List all song names by singers age above the average singer age.*
 – `SELECT song_name FROM singers WHERE age > (SELECT avg(age) FROM singers)`

• In RoboCup, map coaching advice to Clang:
 – *If the ball is in our penalty area, all our players except player 4 should stay in our half.*
 – `((bpos (penalty-area our)) (do (player-except our \{4\}) (pos (half our))))`

• In GeoQuery, map sentences to Prolog queries:
 – *How many states does the Mississippi run through?*
 – `answer(A, count(B, (state(B), const(C, riverid(mississippi))), traverse(C, B)), A))`
Semantic Parsing

- Automatic generation of code, e.g. for cards in Trading Card Games (TCGs):

```python
class ManaWyrm(MinionCard):
    def __init__(self):
        super().__init__(
            'Mana Wyrm', 1,
            CARD_RARITY.COMMON,
            CARD_CLASS.MAGE)
    def create_minion(self, player):
        return Minion(1, 3, effects=[
            Effect(
                SpellCast(),
                ActionTag(
                    Give(ChangeAttack(1)),
                    SelfSelector()))
        ])

class DireWolfAlpha(MinionCard):
    def __init__(self):
        super().__init__(
            "Dire Wolf Alpha", 2,
            CARD_RARITY.COMMON,
            CARD_CLASS.ALL,
            CARD_TYPE.MINION)
    def create_minion(self, player):
        return Minion(2, 3, auras=[
            Aura(ChangeAttack(1), MinionSelector(Adjacent()))
        ])
```

cost: [’2’]
type: [’Minion’]
rarity: [’Common’]
race: [’Beast’]
class: [’Neutral’]
health: [’2’]
attack: [’2’]
durability: [’-1’]
Supplementary Readings

• Chapter 1 (Introduction) in [Jurafsky & Martin] and/or
• Chapter 1 (Introduction) in [Eisenstein]

• Python introductory lecture slides
• Python language tutorial

• Regular expressions in Python:
 – https://docs.python.org/3/howto/regex.html

• Extracting linguistic features with spacy:
 – https://spacy.io/usage/linguistic-features