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Abstract 
 

The increasing needs of content-based automatic 
indexing for large musical repositories have led to 
extensive investigation in musical sound pattern 
recognition. Numerous acoustical sound features have 
been developed to describe the characteristics of a 
sound piece. Many of these features have been 
successfully applied to monophonic sound timbre 
recognition. However, most of those features failed to 
describe enough characteristics of polyphonic sounds 
for the purpose of classification, where sound patterns 
from different sources are overlapping with each 
other. Thus, sound separation technique is needed to 
process polyphonic sounds into monophonic sounds 
before feature extraction. In this paper, we proposed a 
novel sound source separation and estimation system 
to isolate sound sources by maximum likelihood 
fundamental frequency estimation and pattern 
matching of a harmonic sequence in our feature 
database. 

1. Introduction 

Numerous successful features have been developed 
to describe the characteristics of monophonic sound 
pieces. Recently, the Moving Picture Expert Group 
(MPEG) has published the MPEG7 standard of a set 
of acoustical features based on latest research in this 
area. However, most of these features failed to describe 
enough information to distinguish timbers for 
polyphonic sounds, where multiple sound sources are 
active at the same time. Thus, Blind Sound Separation 
is needed to preprocess polyphonic sounds into 
monophonic sounds before feature extraction.   

Human hearing perception system can focus on a 
few sound sources in a multi-sounds environment, 
where different musical instruments are playing at the 
same time. However, it is a very challenging task for 

computer to recognize pre-dominant musical sound 
sources in sound mixtures, which is also called a 
Cocktail Party Problem [8].  Next, this paper will 
contribute a review on Blind Signal Separation and 
Multi-pitch estimation in the rest of this section, since 
this work has implications for research in blind 
harmonic sound separation and pre-dominant 
fundamental frequency estimation. 

1.1. Blind signal separation 

Blind Signal Separation is a very general problem 
in a lot of areas besides musical sound timbre 
recognition: neural computation, finance, brain signal 
processing, general biomedical signal processing and 
speech enhancement, etc. Numerous overlapping 
techniques have been investigated in this area, which 
can be categorized into, but not limited to the 
following types: Filtering Techniques ([22], [1] and 
[4]), Independent Component Analysis (ICA) ([14], 
[10] and [6]), the Degenerate Un-mixing Estimation 
Technique (DUET) [16], Factorial Hidden Markov 
Models (HMM) [19], Singular Value Decomposition 
(Spectrum Basis Functions in MPEG7 [15]) and 
Harmonic Sources Separation Algorithms  ([11], [18] 
and [21]). Filtering Techniques, ICA and DUET 
require different sound sources to be stored separately 
in multiple channels. Most often, HMM works well for 
sound sources separation, where fundamental 
frequency range is small and the variation is subtle. 
However, unfortunately, western orchestral musical 
instruments can produce a wide range of fundamental 
frequencies with dynamic variations. Spectral 
decomposition is used to efficiently decompose the 
spectrum into several independent subspaces [7] with 
smaller number of states for HMM. Commonly, 
Harmonic Sources Separation Algorithms have been 
used to estimate sound sources by detecting their 
harmonic peaks, decoding spectrum into several 



streams and re-synthesizing them separately. This type 
of methods relies on multi-pitch detection techniques 
and iterative Sinusoidal Modeling (SM) [11]. For the 
purpose of interpolating the breaks in the sinusoidal 
component trajectories, numerous mathematical 
models have been explored: linear models [23], and 
non-linear models such as high degree interpolation 
polynomials with cubic spine approximation model 
[11], etc. However, it is very difficult to develop an 
accurate sinusoidal component model to describe the 
characteristics of musical sound patterns for all the 
western orchestral instruments. In this research, we 
focus on separating harmonic sound signal mixtures in 
a single channel by isolating and matching the pre-
dominant harmonic features with connection to a 
feature database. In terms of applying harmonic peak 
information to distinguish timbre, our sound 
separation method is similar to the SM approach. 
However, instead of using a model to describe an input 
signal, we estimate the signal by matching it with the 
most similar pattern in a harmonic peak feature 
database. Given an unknown sound mixture, our 
sound separation system first identifies pre-dominant 
fundamental frequency among a set of harmonic 
candidates by a robust maximum likelihood algorithm, 
and then compares a sequence of its corresponding 
main harmonic peaks with the ones in our feature 
database and estimates the unknown sound source by 
the best match, and then subtracts the matched sound 
from the unknown sound mixture, and repeats the 
same steps to the remaining signal. 

1.2. Multi-pitch recognition 

Pitch detection has been extensively explored by 
lots of audio signal processing researchers [17] [24] 
[2] [9]. Pitch detection techniques have been widely 
used in music transcription and music file annotation. 
Numerous methods of pitch detection have been 
developed and explored, which can be categorized by 
the functional domain into three different types: time, 
frequency, and time-frequency. This paper focuses on 
reviewing the most promising type of the fundamental 
frequency estimation algorithms, which leads to multi-
pitch detection: the frequency domain pitch 
estimation. Since, most famous and well-established 
algorithms in other domains such as the 
autocorrelation [2] and the Average Magnitude 
Difference Function [9] in the time domain, which 
have been successfully applied in mono-signal 
processing, fail to detect the fundamental frequencies 
of sound mixtures in polyphonic sounds.  

 
FIGURE 1. Common frequency domain pitch 

detector diagram. 

Many interesting methods have been explored by 
lots of researchers to detect fundamental frequency in 
the frequency domain ([5], [13], [3], [2] and [12]). 
The diagram of a common frequency domain pitch 
detector is shown in the above figure. One approach is 
to use a group of hypothetical fundamental frequencies 
for a comb function [5], where the fundamental 
frequency is estimated by a hypothetical fundamental 
frequency that maximized the value of a sum of 
products of the comb function and its corresponding 
power in the STFT spectrum. 
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where Kfk is the highest integer multiple of the kth 
candidate frequency smaller than half the sampling 
rate N, and X is the power of the spectrum. 

 Beauchamp et al. extended this algorithm by 
replacing the comb function with a two-way mismatch 
function [2]. 
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where N is the sampling rate, w1 and w2 are empirical 
coefficients. The drawback of this type of algorithms is 
that the selection of a group of hypothetical 
fundamental frequencies is critical to their system 
performance and efficiency.  

Another approach is based on the Schroeder’s 
histogram method, which uses the maximum value in 
the Schroeder’s histogram of the integer multiples of 
each peak frequency to estimate the fundamental 
frequency [20]. Hess extended this approach by 
applying a compressed spectrum to the histogram 



[13]. Edgar et al. improved this algorithm with a 
maximum likelihood function by taking the distance 
between the real peak and the integer multiple of a 
candidate fundamental frequency and the priority of 
the frequency order into account [3].  
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The above review is not a complete for all the 
fundamental frequency estimation. It focuses on the 
pitch detection by the frequency components in the 
power spectrum. We proposed a robust pre-dominant 
fundamental frequency algorithm based on the 
maximum likelihood of the frequency components 
concept. The following sections begin with an outline 
of our system, and then describe the details of 
algorithm in this research.  

2. Harmonic signal isolating system  

Our system consists of five modules: a quasi-steady 
state detector, a STFT converter with hamming 
window, a pre-dominant fundamental frequency 
estimator, a sequential pattern matching engine with 
connection to a feature database, a FFT subtraction 
device. 

 
FIGURE 2. Sound separation system overview. 

The quasi-steady state detector computes overall 
fundamental frequency in each frame by a cross-
correlation function, and outputs the beginning and 
end positions of the quasi-steady state of the input 
sound.  

The STFT converter divides a digital audio object 
into a sequence of frames, applies STFT transform to 
the mixed sample data of integers from time domain 
to frequency domain with a hamming window, and 
outputs NFFT discrete points. 

The pre-dominant fundamental frequency estimator 
identifies all the possible harmonic peaks, computes 
the likelihood value for each candidate peak, elects the 
frequency with the maximum likelihood value as the 
fundamental frequency, and stores its normalized 
correspondence harmonic sequence. 

The sequential-pattern matching engine computes 
the distance of each pair wise sequence of first N 
harmonic peaks, where N is set empirically, then 
outputs the sound with the minimum distance value 
for each frame, and finally estimates the sound object 
by the most frequent sound object among all the 
frames.  

The FFT subtraction device subtracts the detected 
sound source from the spectrum, computes the 
imaginary and real part of the FFT point by the power 
and phase information, performs IFFT for each frame, 
and outputs resultant remaining signals into a new 
audio data file. 

2.1. Quasi-steady state estimation 

This research investigates harmonic sequence 
information for the purpose of distinguishing the 
sound timbre, where energy is significantly distributed 
in harmonic peaks and fundamental frequency 
variation is relatively subtle. Also, by focusing on the 
steady frames, it efficiently shrinks down the size of 
the feature database for the purpose of pattern 
matching.   
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where s is the audio signal sample data, n represents 
the frame size, k represents a lag. 

The beginning of the quasi-steady state is at the 
first frame having an overall fundamental frequency in 
the same frequency bin as its N continuous following 
neighbor frames, where the total energy in the 
spectrum is bigger than a threshold in a case of 
salience or noise. Each frequency bin corresponds to a 
music note. The overall fundamental frequency is 
estimated by pattern recognition with a cross-
correlation function [25]. 



 
FIGURE 3. Estimating fundamental frequency by 
the cross-correlation pattern. 

The above figure shows the cross-correlation 
pattern of a sound played by an electronic bass in a 
quasi-steady state. The fundamental frequency is 
computed as the difference between the frequency 
having the maximum value and the closest frequency 
having a local maximum value precedent to it where 
the maximum value is marked by a circle and the 
precedent local maximum value is marked by a 
rectangle.  

An empirical flexible threshold related to the 
maximum peak of the whole pattern is used to detect a 
local maximum peak.  

Also, points before the first lag where the function 
value begins to increase are skipped since for low 
pitch signals, the duration is often relatively 
insignificant comparing to the whole periodicity and 
therefore may have the maximum function value. The 
figure below presents two different frames of the cross 
correlation function of a sound played by an electronic 
bass of F in the first octave, where the maximum value 
of the whole pattern is among the first few points. 

 
FIGURE 4. Cross-correlation pattern for low pitch 
signals. 

2.2. Pre-dominant fundamental frequency 

In each steady frame, the pre-dominant 
fundamental frequency is elected among a group of 
harmonic peaks by a maximum likelihood function. A 
peak is defined as a point having power value bigger 
than its immediate neighbor FFT points. 

Harmonic peaks are estimated by a convolution 
window of mean amplitude, which is larger than a 
flexible threshold t. 
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where C is a empirical coefficient, and Amax is the 
largest amplitude in the spectrum, Pi is the ith 
candidate peak, χi is the power of Pi, χi-1 is the power 
of the FFT point before Pi, and χi+1 is the power of the 
FFT point after Pi. 

 
FIGURE 5. Candidate peaks identification. 

The figure above shows that four peak candidates 
were identified by four continuous windows, one peak 
per window. The peak marked with gray circle from 
window1 (displayed as w1 in the figure) is then 
removed from the candidate list, since it doesn’t meet 
the requirement in the above equation of power: its 
power is less than one of its immediate neighbor FFT 
points.  Each selected harmonic peak is then treated as 
a fundamental frequency candidate, where for each 
candidate, only harmonic peaks in higher ordinal 
position will be considered as its possible 
corresponding harmonic peaks. This way, candidate 
peaks in lower ordinal positions automatically have 
higher priority to gain accumulative weights. For each 



candidate peak, the weight is computed by the 
following equation.   
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where Sr is the sampling rate, fi is the frequency of 
the candidate peak, and c is a range of the possible 
corresponding harmonic peak. Finally, the amplitude 
of each harmonic peak is normalized by the 
summation of those of the first N harmonic peaks. 

2.3. Sequential pattern matching 

After the system detects the pre-dominant 
fundamental frequency, it queries to the feature 
database based on this value.  

Different music instruments may have very 
different energy distribution among its harmonic 
peaks. Some percussive instruments, such as piano 
and xylophone, have most energy concentrated on a 
single harmonic peak; some reed instruments, such as 
flute and horn, have energy more evenly distributed on 
lots of harmonic peaks; some string instrument, such 
as violin and cello, have energy concentrated on the 
first few harmonic peaks. However, little energy 
distributes on harmonic peaks in higher ordinal 
position than the tenth harmonic peak.  

Due to this fact, our research focuses on the dense 
energy region of a spectrum by applying an empirical 
threshold. The distance of a pair of sequences is 
measured by a weighted and normalized difference 
between each peak. 
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Where ix  is the i th element of the harmonic peak 

sequence from the mth frame of an unknown musical 

sound object, iy  is the i th element of the harmonic 

peak sequence of a sound frame record from the 
feature database. The best K matching sound frame is 

chosen where the minimum distance is reached. After 
repeat the matching procedure for every frame of the 
unknown musical sound object, K×M  sound frame 
records are selected, where each group of K records is 
according to a frame in the unknown sound object, 
and may belong to different sound records. The sound 
record having the maximum total number of matched 
frames is selected as the matching sound object of the 
unknown sound object, if the total number is bigger 
than a threshold. 

2.4. Sound Subtraction 

The harmonic sequence of estimated sound from 
the database is subtracted from the unknown sound by 
the real part. The imaginary part is then computed by 
the phase information of the input unknown sound.  
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where ρ is the phase information in the original input 
sound. 

By an IFFT transform and inverse of hamming 
window, the subtracted spectrum information is 
projected onto the time domain. Due to the 
overlapping of the analysis windows, there are 
duplications in the output.  Different duplication-
removing and zero-padding methods were compared:  
one is to accumulate the output of the overlapping area 
and apply a mean value; others include outputting 
only one third of the analysis window in the front part, 
the middle part, and the ending part.  

The following figures illustrate the output method: 
dash line indicates a mask of the output; rectangle 
represents sample data; zeros are padded in the area 
outsize the rectangle and along the dash line. Due to 
the overlapping of two thirds of the analysis window, 
only one third of the data energy of all the concurrent 
analysis windows is output to the form a new sound. 



 
FIGURE 6. Overlapping-outputs selection method 
No.1. 

Overlapping-outputs selection method No.1 is to 
output only the middle section of the frame, which is 
marked as B1 in the above figure.  

 
FIGURE 7.  Overlapping-outputs selection method 
No.2. 

Overlapping-outputs selection method No.2 is to 
output an averaged sample value. Only zero padded 
areas are not taken into the computation. 

 
FIGURE 8.  Overlapping-outputs selection method 
No.3. 

Overlapping-outputs selection method No.3 is to 
output only the first section of the frame, which is 
marked as A1 in the above figure. 

2.5. Feature database 

Underlying the system is a large feature database, 
which contains the harmonic peak sequences of 
sounds originated from the McGill University Master 
Samples (MUMS) in form of AU format. Every 
musical sound had multiple records to describe its 
harmonic information in the frames. A last frame of a 
sound file, in which the total number of samples is less 
than the frame size, was truncated, due to the fact that 
it may not contain enough information to correctly 
describe the precocity pattern, even though it may be 
in the steady state. These harmonic peak sequences 
were grouped by the corresponding frequency bins of 
their music notes. Their indices include an audio file 
name, a frame number, and a peak identification 
number. The database covers the entire pitch range of 
all its music instruments. 

3. Experiments and results 

In this research, sound separation experiments were 
performed on two different types of sounds: percussive 
and harmonic sounds, such as piano and xylophone, 
etc., and harmonic sounds, such as guitar, violin, flute 
and so on. The harmonic sound class contains musical 
sounds from two different instrument families: string 
and woodwind. Each instrument family contained 
multiple instruments with all different articulations. 
Totally, there are 97 different music notes in the 
database, where each musical note was played by a 
group of different musical instruments. 12 digital 
sound mixes were made out of 24 randomly selected 
sounds, which originated from the MUMS. Each pair 
wise sound came from a different instrument family.  
During sound mixing, to produce pre-dominant sound 
source in a sound mixture, one sound signal was 
reduced to half of its original volume, while the other 
one was reduced to one eighth of its original volume. 



 
FIGURE 9. The sound signal types in our 
experiments. 

The sampling rate is 44,100Hz, which is a common 
rate in musical compact CDs. Each sound mix 
contained two different sound sources, where sample 
values in one of the sound sources were reduced to one 
fourth of their original values to make the other sound 
source pre-dominant. To cover the full range of music 
notes in our audio database, we used a frame size of 
120 milliseconds and a hop size of 40 milliseconds. 
The feature database contains 3737 sounds having 
corresponding music notes. 

We observed that outputting the middle part of the 
analysis window achieves the smoothest waveform, 
where a wrapping-up zero-padding method is applied 
to the FFT and IFFT transform. Finally, a convolution 
of mean sample value is applied to each ends of an 
output segment to smooth the waveform. The 
following figure shows the waveform and spectrum 
histogram of a sound mixture of a 3B alto flute sound 
and 2A cello sound, where the 3B alto flute sound is 
pre-dominant. The remaining signal is very similar to 
the original 2A cello sound from the MUMS, except 
for areas near the frame borders. 

 
FIGURE 10. A sound mixture of a sound played by 
a alto-flute in the third octave B and a sound 
played by cello in the second octave A. 

 
FIGURE 11. Remaining signal after subtracting 
the 3B also flute signal. 

 
FIGURE 12. An original MUMS cello sound in the 
second octave A. 

Below are two enlarged pictures of the waveform of 
the same signal in the dark-strip area near the frame 
border. After the convolution window being added, the 
waveform becomes smoother. 

 
FIGURE 13. Signal after smoothing. 

 
FIGURE 14. Signal before smoothing. 

Table1 shows the performance of pitch estimation 
in our system. The system correctly identified most of 
the music notes and their corresponding octaves for 
the polyphonic sounds. Table2 shows the accuracy of 
pattern matching of the harmonic sequence. Harmonic 
sounds played by the woodwind instrument and the 
string instrument generally had higher estimation 
accuracy in timbre estimation and articulation 
estimation. Table3 shows the result of the estimation 
for the remaining in the sound after the sound 
separation. 



 
 Note Octave  
Perc. & Harm. 66.7% 100% 
String 100% 83.3% 
Woodwind 100% 75.0% 
TABLE 1.Accuracy of pre-dominant fundamental 
frequency estimation 

 Instr. Family Instr. Type  Articulation 
Perc. & Harm. 100% 83.3% 33.3% 
String 100% 100% 83.3% 
Woodwind 100% 75.0% 75.0% 
TABLE 2.Accuracy of pattern matching of the pre-
dominant signal source. 

 Note Octave  
Perc. & Harm. 66.7% 66.7% 
String 100% 83.3% 
Woodwind 100% 100% 
TABLE 3.Accuracy of fundamental frequency 
estimation for the remaining signal 

 Instr. Family Instr. Type  Articulation 
Perc. & Harm. 66.7% 66.7% 33.3% 
String 100% 100% 83.3% 
Woodwind 100% 75.0% 100% 
TABLE 4.Accuracy of pattern matching of the 
remaining signal source 

4. Conclusion and future trends 

It is possible to estimate the timber of a 
predominant sound source in a polyphonic sound by 
pattern matching of the harmonic sequential 
information in a feature database. The dissimilarity 
measurement of the pattern matching algorithm can 
be further improved. Pattern matching of harmonic 
peak sequence in different states separately may 
provide better accuracy than in the steady state along. 
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