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Abstract. Action rules (or actionable patterns) describe possible transitions of
objects from one state to another with respect to a distinguished attribute. Strate-
gies for discovering them can be divided into two types: rule-based and object-
based. Rule-based actionable patterns are built on the foundations of pre-existing
rules. This approach consists of two main steps: (1) a standard learning method is
used to detect interesting patterns in the form of classification rules, association
rules, or clusters; (2) the second step is to use an automatic or semi-automatic
strategy to inspect such results and derive possible action strategies. These strate-
gies provide an insight of how values of some attributes need to be changed so
the desirable objects can be shifted to a desirable group. Object-based approach
assumes that actionable patterns are extracted directly from a database. System
DEAR, presented in this paper, is an example of a rule-based approach. System
ARD and system for association rules mining are examples of an object-based
approach. Music Information Retrieval (MIR) is taken as an application domain.
We show how to manipulate the music score using action rules.

1 Introduction

Modeling actionability in a domain-independent manner is a new learning approach that
traditional learning methods, such as mining for classification, clustering, and associa-
tion rules, are not designed to handle. For example, consider the following application,
a bank manager who is monitoring a dataset may want to analyze the data thoroughly to
improve his or her understanding of the customers and seek specific actions to improve
services such as providing some additional services to retain their royalty. Segmentation
is one of widely used method to analyze the loyalty [24]; it is very useful to identify
customers who have a high probability to move to other banks but it may be insuffi-
cient to provide recommendations that might help retain customer’s loyalty. In general,
a learning method is designed to capture the interesting characteristics of similar ob-
jects in the data. The classical methods can learn rules that summarize the data, but not
the rules that change the state of the data [23]. One of the main issues is that most ex-
isting methods treat populations separately. However, each individual population is not
likely to be interesting, but a group of them together can represent an important piece
of knowledge.

Based on construction methods, action rules discovery can be divided into two
types: rule-based and object-based approach. Rule-based actionable patterns [16], [21],



[22], [18], [10], [20] are built on the foundations of pre-existing rules. This approach
consists of two main steps: (1) in the first step, a standard learning method is used to de-
tect interesting patterns in the form of classification rules, association rules, or clusters
and (2) the second step is to use an automatic or semi-automatic strategy to inspect such
results and derive possible action strategies. These strategies provide an insight of how
values of some attributes need to be changed so the desirable objects can be shifted to a
desirable group. However, the standard data mining methods such as LERS [4] or ERID
[2] (which is used for incomplete data sets) extract only the shortest or close to the
shortest rules. Therefore, by following this approach, some meaningful action patterns
can be easily missed.

To be more precise, an action rule is a rule extracted from a decision system that
describes a possible transition of objects from one state to another with respect to a
distinguished attribute called a decision attribute [16]. We assume that attributes used
to describe objects are partitioned into stable and flexible. Values of flexible attributes
can be changed. This change can be influenced and controlled by users. Action rules
mining initially was based on comparing profiles of two groups of targeted objects -
those that are desirable and those that are undesirable [16]. An action rule is formed as a
term [(ω) ? (α → β)] ⇒ (φ → ψ), where ω is a conjunction of fixed condition features
shared by both groups, (α → β) represents proposed changes in values of flexible
features, and (φ → ψ) is a desired effect of the action. Symbol ? is interpreted as
logical and. The discovered knowledge provides an insight of how relationships should
be managed so the undesirable objects can be changed to desirable. For example, in
society, one would like to find a way to improve his or her salary from a low-income
to a high-income. Another example in business area is when an owner would like to
improve his or her company’s profits by going from a high-cost, low-income business
to a low-cost, high-income business.

Action rules have been introduced in [16] and further investigated in [13][17][14].
Paper [5] was probably the first attempt towards formally introducing the problem of
mining action rules without pre-existing classification rules. Authors explicitly formu-
lated it as a search problem in a support-confidence-cost framework. The proposed
algorithm is similar to Apriori [1]. Their definition of an action rule allows changes on
stable attributes. Changing the value of an attribute, either stable or flexible, is associ-
ated with a cost [19]. In order to rule out action rules with undesired changes on stable
attributes, authors have assigned very high cost to such changes. However, that way, the
cost of action rules discovery is getting unnecessarily increased. Also, they did not take
into account the dependencies between attribute values which are naturally linked with
the cost of rules used either to accept or reject a rule. Algorithm ARED, presented in
[6], is based on Pawlak′s model of an information system S [11]. The goal is to iden-
tify certain relationships between granules defined by the indiscernibility relation on its
objects. Some of these relationships uniquely define action rules for S.

This paper presents two strategies for discovering action rules directly from a deci-
sion system. In the first one, action rules are built from atomic expressions following
an algorithm similar to ERID [2] and in the second one following a strategy similar to
Apriori [1].



2 Background and Objectives

In this section we introduce the notion of an information system, a decision system,
stable attribute, flexible attribute, and give some examples.

By an information system [11] we mean a triple S = (X, A, V ), where:

1. X is a nonempty, finite set of objects
2. A is a nonempty, finite set of attributes, i.e.

a : U −→ Va is a function for any a ∈ A, where Va is called the domain of a

3. V =
⋃{Va : a ∈ A}.

For example, Table 1 shows an information system S with a set of objects X =
{x1, x2, x3, x4, x5, x6, x7, x8}, set of attributes A = {a, b, c, d}, and a set of their val-
ues V = {a1, a2, b1, b2, c1, c2, d1, d2}.

a b c d

x1 a1 b1 c1 d1

x2 a2 b1 c1 d1

x3 a2 b2 c1 d2

x4 a2 b2 c2 d2

x5 a2 b1 c1 d1

x6 a2 b2 c1 d2

x7 a2 b1 c2 d2

x8 a1 b2 c2 d1

Table 1. Information System S

We say that an information system S = (X,A, V ) is a decision system, if A =
ASt ∪ AFl ∪ {d}, where d is a distinguished attribute called the decision. Attributes
in ASt are called stable and attributes in AFl are called flexible. They jointly form the
set of conditional attributes. “Date of birth” is an example of a stable attribute. “Interest
rate” for each customer account is an example of a flexible attribute.

In earlier works (see [13][16][17]), action rules have been constructed from classi-
fication rules. This means that we either use pre-existing classification rules or generate
them by a rule discovery algorithm, such as LERS [4] or ERID [2], then, construct ac-
tion rules either from certain pairs of classification rules or from a single classification
rule. For instance, algorithm ARAS [17] generates sets of terms (built from values of
attributes) around classification rules and constructs action rules directly from them.

In the following sections, we recall DEAR algorithm for constructing action rules
from pre-existing classification rules and present two different methods for constructing
action rules directly from a decision system. The first one, called ARD, follows an
algorithm similar to ERID and the second one is similar to Apriori [1].



3 Action Rules

In this section we give a definition of action terms, action rules, and we propose their
interpretation which we call standard. Also, we present system DEAR for action rules
construction.

Let S = (X, A ∪ {d}, V ) be a decision system, where V =
⋃{Va : a ∈ A}. First,

we introduce the notion of an action term.

By an atomic action term we mean an expression (a, a1 → a2), where a is an
attribute and a1, a2 ∈ Va. If a1 = a2, then a is called stable on a1.

For simplicity reason, we will often write (a, a1) instead of (a, a1 → a1).

By a set of action terms we mean a smallest set such that:

1. If t is an atomic action term, then t is an action term.
2. If t1, t2 are action terms, then t1 ? t2 is an action term.
3. If t is an action term containing (a, a1 → a2), (b, b1 → b2) as its sub-terms, then

a 6= b.

By the domain of an action term t, denoted by Dom(t), we mean the set of all
attribute names listed in t.

By an action rule we mean an expression r = [t1 ⇒ t2], where t1 is an action term
and t2 is an atomic action term. Additionally, we assume that Dom(t2) = {d} and
Dom(t1) ⊆ A. The domain Dom(r) of action rule r is defined as Dom(t1)∪Dom(t2).

Now, let us give an example of action rule assuming that the decision system S is
represented by Table 1, a is stable and b, c are flexible attributes. Expressions (a, a2 →
a2), (b, b1 → b2), (c, c2 → c2), (d, d1 → d2) are examples of atomic action terms.
Expression (b, b1 → b2) means that the value of attribute b is changed from b1 to b2.
Expression (c, c2 → c2) means that the value c2 of attribute c remains unchanged.
Expression r = [[(a, a2 → a2) ? (b, b1 → b2)] ⇒ (d, d1 → d2)] is an example of an
action rule. The rule says that if value a2 remains unchanged and value b will change
from b1 to b2, then it is expected that the value d will change from d1 to d2. Clearly,
Dom(r) = {a, b, d}.

Standard interpretation NS of action terms in S = (X,A, V ) is defined as follow:

1. If (a, a1 → a2) is an atomic action term, then
NS((a, a1 → a2)) = [{x ∈ X : a(x) = a1}, {x ∈ X : a(x) = a2}].

2. If t1 = (a, a1 → a2) ? t and NS(t) = [Y1, Y2], then
NS(t1) = [Y1 ∩ {x ∈ X : a(x) = a1}, Y2 ∩ {x ∈ X : a(x) = a2}].

Now, let us define [Y1, Y2]∩[Z1, Z2] as [Y1∩Z1, Y2∩Z2] and assume that NS(t1) =
[Y1, Y2] and NS(t2) = [Z1, Z2]. Then, NS(t1 ? t2) = NS(t1) ∩NS(t2).

Let r = [t1 ⇒ t2] be an action rule, where NS(t1) = [Y1, Y2], NS(t2) = [Z1, Z2].
Support and confidence of r are defined as follow:



1. sup(r) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)}.
2. conf(r) = [ card(Y1∩Z1)

card(Y1)
] · [ card(Y2∩Z2)

card(Y2)
].

The definition of a confidence requires that card(Y1) 6= 0, card(Y2) 6= 0, card(Y1∩
Z1) 6= 0, and card(Y2 ∩ Z2) 6= 0. Otherwise, the confidence of action rule is zero.

Coming back to the example of S given in Table 1, we can find many action rules
associated with S. Let us take r = [[(a, a2 → a2) ? (b, b1 → b2)] ⇒ (d, d1 → d2)] as
an example of the action rule. Then,

NS((a, a2 → a2)) = [{x2, x3, x4, x5, x6, x7}, {x2, x3, x4, x5, x6, x7}],
NS((b, b1 → b2)) = [{x1, x2, x5, x7}, {x3, x4, x6, x8}],
NS((d, d1 → d2)) = [{x1, x2, x5, x8}, {x3, x4, x6, x7}],
NS((a, a2 → a2) ? (b, b1 → b2)) = [{x2, x5, x7}, {x3, x4, x6}].

Clearly, sup(r) = 2 and conf(r) = 2
3 · 1 = 2

3 .

4 DEAR: From Classification Rules to Action Rules

In this section we recall the Action-Tree algorithm for discovering action rules which
was implemented as one of the modules in system DEAR [18]. Assume that S =
(X, ASt ∪ AFl ∪ {d}), where ASt is a set of stable attributes, AFl is a set of flexible
attributes and, Vd = {d1, d2, ..., dk} is a set of decision values.

Action-tree algorithm for extracting action rules from decision system S is as fol-
lows:

i. Build Action-Tree
a. Divide the rule table, R, taking into consideration all stable attributes

1. Find the domain Dom(w) of each attribute w ∈ ASt from the initial table.
2. Assuming that the number of values in Dom(w) is the smallest, partition

the current table into sub-tables each of which contains only rules support-
ing values of stable attributes in the corresponding sub-table.

3. Determine if a new table contains minimum two different decision values
and minimum two different values for each flexible attribute. If it does, go
to step 2, otherwise there is no need to split the table further and we place
a mark.

b. Divide each lowest level sub-table into new sub-tables each of which contains
rules having the same decision value.

c. Represent each leaf as a set of rules which do not contradict on stable attributes
and also define decision value di. The path from the root to that leaf gives the
description of objects supported by these rules.

ii. Generate action rules
a. Form action rules by comparing all unmarked leaf nodes of the same parent.
b. Calculate the support and the confidence of a new-formed rule. If its support and

confidence meet the requirements, print it.



The algorithm starts with all extracted classification rules at the root node of the tree.
A stable attribute is selected to partition theses rules. For each value of the attribute a
branch is created, and the corresponding subset of rules that have the attribute value
specified by the branch is moved to the newly created child node. Now the process is
repeated recursively for each child node. When we are done with stable attributes, the
last split is based on a decision attribute for each branch. If at any time all instances
at a node have the same decision value, then we stop developing that part of the tree.
The only thing left to build the tree is to decide how to determine which of the sta-
ble attributes to split, given a set of rules with different classes. The node selection is
based on the stable attributes with the smallest number of possible values among all the
remaining stable attributes.

An action tree has two types of nodes: a leaf node and a non-leaf node. At a non-
leaf node in the tree, the set of rules is partitioned along the branches and each child
node gets its corresponding subset of rules. Every path to the decision attribute node,
one level above the leaf node, in the action tree represents a subset of the extracted
classification rules when the stable attributers have the same value. Each leaf represents
a set of rules, which do not contradict on stable attributes and also define decision value
di. The path from the root to that leaf gives the description of objects supported by these
rules.

a b c d

x1 2 1 2 L
x2 2 1 2 L
x3 1 1 0 H
x4 1 1 0 H
x5 2 3 2 H
x6 2 3 2 H
x7 2 1 1 L
x8 2 1 1 L
x9 2 2 1 L
x10 2 3 0 L
x11 1 1 2 H
x12 1 1 1 H

Table 2. Decision System

Let us take Table 2 as an example of a decision system S. We assume that a, c are
stable attributes and b, d are flexible. Assume now that our goal is to re-classify some
objects from the class d−1({di}) into the class d−1({dj}). In our example, we assume
that di = (d, L) and dj = (d,H).

First, we represent the set R of certain rules extracted from S as a table (see Table
3). The first column of this table shows objects in S supporting the rules from R (each
row represents a rule). The construction of an action tree starts with the set R as a table



Objects a b c d

{x3, x4, x11, x12} 1 H
{x1, x2, x7, x8} 2 1 L
{x7, x8, x9} 2 1 L
{x3, x4} 1 0 H
{x5, x6} 3 2 H

Table 3. Set of rules R with supporting objects

(see Table 3) at the root of the tree (T1 in Fig. 1). The root node selection is based on
a stable attribute with the smallest number of states among all stable attributes. The
same strategy is used for the child node selection. After putting all stable attributes on
the tree, the tree is split based on the value of the decision attribute. Referring back
to the example in Table 2, we use stable attribute a to split that table into two sub-
tables defined by values {1, 2} of attribute a. The domain of attribute a is {1, 2} and
the domain of attribute c is {0, 1, 2}. Clearly, card[Va] is less than card[Vc] so we
divide the table into two: one table with rules containing a = 1 and another with rules
containing a = 2. Each corresponding edge is labeled by the value of attribute a. Next,
all objects in the sub-table T2 have the same decision value. We can not generate any
action rules from this sub-table so it is not divided any further. Because sub-table T3

contains different decision values and stable attribute, it is divided into three, one with
rules containing c=0, one with rules containing c=1, and one with rules containing c=2.
At this step, each sub-table does not contain any stable attributes. Table T6 can not be
split any further for the same reason as sub-table T2. All objects in sub-table T4 have
the same value of flexible attribute b, so the table is not partitioned any further. The
remaining table T5 is partitioned into two sub-tables. Each leaf represents a set of rules
which do not contradict on stable attributes and also define decision value di.

The path from the root to that leaf gives the description of objects supported by
these rules. Following the path labeled by value [a = 2], [c = 2], and [d = L], we get
table T7. Following the path labeled by value [a = 2], [c = 2], and [d = H], we get
table T8. Because T7 and T8 are sibling nodes, we can directly compare pairs of rules
belonging to these two tables and construct one action rule such as:

[[(a, 2) ? (b, 1 → 3)] ⇒ (d, L → H)].

After the rule is formed, we evaluate it by checking its support and its confidence.
We have discovered the action rule given below:

r = [[(a, 2) ? (b, 1 → 3)] ⇒ (d, L → H)] with
sup(r) = min{4, 2} = 2, conf(r) = 1 · 2

3 = 2
3 .

5 ARD: From Data to Action Rules

Algorithm ARD for discovering action rules directly from a decision system is presented
in this section. The algorithm is of agglomerative type and because of its similarity
to LERS [4], it is sufficient to explain how the positive/negative marks are assigned to



Fig. 1. Action tree

atomic action terms and how the terms of length greater than one are built. Only positive
marks yield action rules. Action terms of length k are built from unmarked action terms
of length k − 1 and unmarked atomic action terms of length one. Marking strategy for
terms of any length is the same as for action terms of length one.

Now, let us assume that S = (X, A ∪ {d}, V ) is a decision system and λ1, λ2

denote minimum support and confidence, respectively. Each a ∈ A uniquely defines
the set CS(a) = {NS(ta) : ta is an atomic action term built from elements in Va}.
By td we mean an atomic action term built from elements in Vd. Also, we assume that
L([Y,Z]) = Y and R([Y,Z]) = Z.

Marking strategy for atomic action terms

For each NS(ta) ∈ CS(a) do

if L(NS(ta)) = ∅ or R(NS(ta)) = ∅ or L(NS(ta?td)) = ∅ or R(NS(ta?td)) = ∅,
then ta is marked negative.

if L(NS(ta)) = R(NS(ta)) then ta stays unmarked

if card(L(NS(ta ? td)) < λ1 then ta is marked negative

if card(L(NS(ta ? td)) ≥ λ1 and conf(ta → td) < λ2 then ta stays unmarked

if card(L(NS(ta ? td)) ≥ λ1 and conf(ta → td) ≥ λ2 then ta is marked positive
and the action rule [ta → td] is printed.

Now, to clarify ARD (Action Rules Discovery) strategy for constructing action
rules, we go back to our example with S defined by Table 1 and with ASt = {b},



AFl = {a, c, d}. We are interested in action rules which may reclassify objects from
the decision class d1 to d2. Additionally, we assume that λ1 = 2, λ2 = 1/4.

All atomic action terms for S are listed below:
For Decision Attribute in S: t12 = (d, d1 → d2).
NS(t12) = [{x1, x2, x3, x4, x5, x7}, {x6}]
For Classification Attributes in S:
t1 = (b, b1 → b1), t2 = (b, b2 → b2), t3 = (b, b3 → b3), t4 = (a, a1 → a2),
t5 = (a, a1 → a1), t6 = (a, a2 → a2), t7 = (a, a2 → a1), t8 = (c, c1 → c2),
t9 = (c, c2 → c1), t10 = (c, c1 → c1), t11 = (c, c2 → c2).

Following the first loop of ARD algorithm we get:

NS(t1) = [{x1, x2, x4, x6}, {x1, x2, x4, x6}] Not Marked /Y1 = Y2/
NS(t2) = [{x3, x7, x8}, {x3, x7, x8}] Marked ”-” /card(Y2 ∩ Z2) = 0/
NS(t3) = [{x5}, {x5}] Marked ”-” /card(Y2 ∩ Z2) = 0/
NS(t4) = [{x1, x6, x7, x8}, {x2, x3, x4, x5}] Marked ”-” /card(Y2 ∩ Z2) = 0/
NS(t5) = [{x1, x6, x7, x8}, {x1, x6, x7, x8}] Not Marked /Y1 = Y2/
NS(t6) = [{x2, x3, x4, x5}, {x2, x3, x4, x5}] Marked ”-” /card(Y2 ∩ Z2) = 0/
NS(t7) = [{x2, x3, x4, x5}, {x1, x6, x7, x8}] Marked ”+”
/rule r1 = [t7 ⇒ t12] has conf = 1/2 ≥ λ2, sup = 2 ≥ λ1/
NS(t8) = [{x1, x4, x8}, {x2, x3, x5, x6, x7}] Not Marked
/rule r1 = [t8 ⇒ t12] has conf = [2/3] · [1/5] < λ2, sup = 2 ≥ λ1/
NS(t9) = [{x2, x3, x5, x6, x7}, {x1, x4, x8}] Marked ”-” /card(Y2 ∩ Z2) = 0/
NS(t10) = [{x1, x4, x8}, {x1, x4, x8}] Marked ”-” /card(Y2 ∩ Z2) = 0/
NS(t11) = [{x2, x3, x5, x6, x7}, {x2, x3, x5, x6, x7}] Not Marked /Y1 = Y2/

Now, we build action terms of length two from unmarked action terms of length
one.

NS(t1 ? t5) = [{x1, x6}, {x1, x6}] Not Marked /Y1 = Y2/
NS(t1 ? t8) = [{x1, x4}, {x2, x6}] Marked ”+”
/rule r1 = [[t1 ? t8] ⇒ t12] has conf = 1/2 ≥ λ2, sup = 2 ≥ λ1/
NS(t1 ? t11) = [{x2, x6}, {x2, x6}] Not Marked /Y1 = Y2/
NS(t5 ? t8) = [{x1, x8}, {x6, x7}] Marked ”-”
/rule r1 = [[t5 ? t8] ⇒ t12] has conf = 1/2 ≥ λ2, sup = 1 < λ1/
NS(t5 ? t11) = [{x6, x7}, {x6, x7}] Not Marked /Y1 = Y2/
NS(t8 ? t11) = [∅, {x2, x3, x5, x6, x7}] Marked ”-” /card(Y1) = 0/

Finally (there are only 3 classification attributes in S), we build action terms of
length three from unmarked action terms of length one and length two.

Only, the term t1 ? t5 ? t8 can be built. It is an extension of t5 ? t8 which is already
marked as negative. So, the algorithm ARD stops and two action rules are constructed:
[[(b, b1 → b1) ? (c, c1 → c2)] ⇒ (d, d1 → d2)], [(a, a2 → a1) ⇒ (d, d1 → d2)].



Following the notation used in previous papers on action rules mining (see [6], [17],
[16], [13]), the first of the above two action rules will be presented as [[(b, b1)?(c, c1 →
c2)] ⇒ (d, d1 → d2)].

6 Association Action Rules

In this section, atomic action set has the same meaning as atomic action term and action
set has the same meaning as action term.

Now, let us assume that S = (X, A, V ) is an information system and λ1, λ2 denote
minimum support and minimum confidence assigned to action rules, respectively. The
algorithm for constructing frequent action sets is similar to Agrawal′s algorithm in [1].

Generating frequent action sets

Let ta be an atomic action set, where NS(ta) = [Y1, Y2] and a ∈ A. We say that ta
is called frequent if card(Y1) ≥ λ1 and card(Y2) ≥ λ1.

The operation of generating (k + 1)- element candidate action sets from frequent
k-element action sets is performed in two steps:

Merging Step: Merge pairs (t1, t2) of frequent k-element action sets into (k + 1)-
element candidate action set if all elements in t1 and t2 are the same except the last
elements.

Pruning Step: Delete each (k + 1)-element candidate action set t if either it is not
an action set or some k-element subset of f is not a frequent k-element action set.

Now, if t is a (k + 1)-element candidate action set, NS(t) = [Y1, Y2], card(Y1) ≥
λ1, and card(Y2) ≥ λ1, then t is a frequent (k + 1)-element action set.

We say that t is a frequent action set in S if t is a frequent k-element action set in S,
for some k. Assume now that the expression [t − t1] denotes the action set containing
all atomic action sets listed in t but not listed in t1.

The set AARS(λ1, λ2) of association action rules in S is constructed in the follow-
ing way:

Let t be a frequent action set in S and t1 is its subset. Any action rule r = [(t−t1) ⇒
t1] is an association action rule in AARS(λ1, λ2) if conf(r) ≥ λ2.

An Example

Lets us assume that an information system S is represented by Table 1 with {a, c}
as stable attributes. We take λ1 = 2 and λ2 = 4/9. The following frequent action sets
can be constructed: (a, a1) - support 2

(a, a2) - support 6
(b, b1) - support 4
(b, b2) - support 4
(b, b1 → b2) - support 4



(b, b2 → b1) - support 4
(c, c1) - support 5, (c, c2) - support 3
(d, d1) - support 4, (d, d2) - support 4
(d, d1 → d2) - support 4
(d, d2 → d1) - support 4

(a, a1) ? (b, b1) - support 1 (not frequent)
(a, a1) ? (b, b2) - support 1 (not frequent)
(a, a1) ? (b, b1 → b2) - support 1 (not frequent)
(a, a1) ? (b, b2 → b1) - support 1 (not frequent)
(a, a1) ? (c, c1) - support 1 (not frequent)
(a, a1) ? (c, c2) - support 1 (not frequent)
(a, a1) ? (d, d1) - support 2
(a, a1) ? (d, d2) - support 0 (not frequent)
(a, a1) ? (d, d1 → d2) - support 0 (not frequent)
(a, a1) ? (d, d2 → d1) - support 0 (not frequent)

(a, a2) ? (b, b1) - support 3
(a, a2) ? (b, b2) - support 3
(a, a2) ? (b, b1 → b2) - support 3
(a, a2) ? (b, b2 → b1) - support 3
(a, a2) ? (c, c1) - support 4
(a, a2) ? (c, c2) - support 2
(a, a2) ? (d, d1) - support 2
(a, a2) ? (d, d2) - support 4
(a, a2) ? (d, d2 → d1) - support 2
(a, a2) ? (d, d1 → d2) - support 2

(b, b1) ? (c, c1) - support 3
(b, b1) ? (c, c2) - support 1 (not frequent)
(b, b1) ? (d, d1) - support 3
(b, b1) ? (d, d2) - support 1 (not frequent)

(b, b2) ? (c, c1) - support 2
(b, b2) ? (c, c2) - support 2
(b, b2) ? (d, d1) - support 1 (not frequent)
(b, b2) ? (d, d2) - support 3

(b, b1 → b2) ? (c, c1) - support 2
(b, b1 → b2) ? (c, c2) - support 1 (not frequent)
(b, b1 → b2) ? (d, d1) - support 1 (not frequent)
(b, b1 → b2) ? (d, d2) - support 1 (not frequent)
(b, b1 → b2) ? (d, d2 → d1) - support 1 (not frequent)
(b, b1 → b2) ? (d, d1 → d2) - support 3



(b, b2 → b1) ? (c, c1) - support 2
(b, b2 → b1) ? (c, c2) - support 1 (not frequent)
(b, b2 → b1) ? (d, d1) - support 1 (not frequent)
(b, b2 → b1) ? (d, d1 → d2) - support 1 (not frequent)
(b, b2 → b1) ? (d, d2 → d1) - support 3

(c, c1) ? (d, d1) - support 3
(c, c1) ? (d, d2) - support 2
(c, c1) ? (d, d2 → d1) - support 2
(c, c1) ? (d, d1 → d2) - support 2
(c, c2) ? (d, d1) - support 1 (not frequent)
(c, c2) ? (d, d2) - support 2
(c, c2) ? (d, d2 → d1) - support 1 (not frequent)
(c, c2) ? (d, d1 → d2) - support 1 (not frequent)

(a, a2) ? (b, b1) ? (c, c1) - support 2
(a, a2) ? (b, b1) ? (c, c2) - support 1 (not frequent)
(a, a2) ? (b, b1) ? (d, d1) - support 2
(a, a2) ? (b, b1) ? (d, d2) - support 1 (not frequent)
(a, a2) ? (b, b1) ? (d, d1 → d2) - support 1 (not frequent)
(a, a2) ? (b, b2) ? (c, c1) - support 2
(a, a2) ? (b, b2) ? (c, c2) - support 1 (not frequent)
(a, a2) ? (b, b2) ? (d, d1) - support 0 (not frequent)
(a, a2) ? (b, b2) ? (d, d2) - support 3
(a, a2) ? (b, b2) ? (d, d1 → d2) - support 0 (not frequent)
(a, a2) ? (b, b1 → b2) ? (c, c1) - support 2
(a, a2) ? (b, b1 → b2) ? (c, c2) - support 1 (not frequent)
(a, a2) ? (b, b1 → b2) ? (d, d1) - support 0 (not frequent)
(a, a2) ? (b, b1 → b2) ? (d, d2) - support 1 (not frequent)
(a, a2) ? (b, b1 → b2) ? (d, d1 → d2) - support 2
(a, a2) ? (b, b2 → b1) ? (c, c1) - support 2
(a, a2) ? (b, b2 → b1) ? (c, c2) - support 1 (not frequent)
(a, a2) ? (b, b2 → b1) ? (d, d1) - support 0 (not frequent)
(a, a2) ? (b, b2 → b1) ? (d, d2) - support 1 (not frequent)
(a, a2) ? (b, b2 → b1) ? (d, d1 → d2) - support 0 (not frequent)
...............................
...............................
...............................

(a, a2) ? (b, b1 → b2) ? (c, c1) ? (d, d1 → d2) - support 2

Association action rules can be constructed from frequent action sets. For instance,
we can generate association action rule

[(a, a2) ? (b, b1 → b2)] → [(c, c1) ? (d, d1 → d2)]



from the last frequent action set. Its confidence is 4/9.

7 Representative Association Action Rules

The concept of representative association rules was introduced by Kryszkiewicz [7].
They form a small subset of association rules from which the remaining association
rules can be generated. Similar approach is proposed for association action rules.

By a cover C of association action rule r = [t1 ⇒ t] we mean C(t1 ⇒ t) =
{t1 ? t2 → t3 : t2, t3 are not overlapping subterms of t}.

For example, let us assume that r = [(e, e1 → e2) ⇒ (b, b1 → b2) ? (c, c1 →
c2) ? (d, d1 → d2)] is an association action rule. Then, [(e, e1 → e2) ? (b, b1 → b2) ⇒
(c, c1 → c2)] ∈ C(r).

Property 1. If r ∈ AARS(λ1, λ2), then each rule r1 ∈ C(r) also belongs to
AARS(λ1, λ2).

Proof: From the definition of AARS(λ1, λ2) we have, sup(r) ≥ λ1, and conf(r) ≥
λ2. Let r1 = [t1 ? t2 → t4], r = [t1 → t2 ? t3 ? t4], and NS(ti) = [Yi, Zi], for
i = 1, 2, 3, 4. Now, since card[Y1∩Y2∩Y3∩Y4]

card[Y1]
≥ λ1, then card[Y1∩Y2∩Y4]

card[Y1∩Y2]
≥ λ1 because

card(Y1) ≥ card(Y1 ∩ Y2) and card(Y1 ∩ Y2 ∩ Y4) ≥ card(Y1 ∩ Y2 ∩ Y3 ∩ Y4).

In a similar way we show that card[Z1∩Z2∩Z4]
card[Z1∩Z2]

≥ λ1. The same, sup(r1) ≥ λ1.

Now, assume that conf(r) = card(Y1∩Y2∩Y3∩Y4)
card(Y1)

· card(Z1∩Z2∩Z3∩Z4)
card(Z1)

≥ λ2. Clearly,
card(Y1∩Y2∩Y4)

card(Y1∩Y2)
· card(Z1∩Z2∩Z4)

card(Z1∩Z2)
≥ λ2. The same conf(r1) ≥ λ2.

By a set of representative association action rules, with minimum support λ1 and
minimum confidence λ2 we mean

RAARS(λ1, λ2) = {r ∈ AARS(λ1, λ2) :∼ (∃r1) ∈ AARS(λ1, λ2)[[r1 6= r] ∧
[r ∈ C(r1)]}.

Property 2. Representative association action rules RAARS(λ1, λ2) form a least
set of association action rules that covers all association action rules AARS(λ1, λ2).

Proof: Let us assume that r ∈ RAARS(λ1, λ2) and there exists r1 = [t1 ⇒ t] ∈
AARS(λ1, λ2) such that r1 6= r and r ∈ C(r1). Now, since r ∈ C(r1), then r is not in
RAARS(λ1, λ2).

Property 3. All association action rules AARS(λ1, λ2) can be derived from repre-
sentative association action rules RAARS(λ1, λ2) by means of cover operator.

Proof: Assume that r = [t ⇒ s] ∈ AARS(λ1, λ2) and t = t1 ? t2? ... ?tk, where ti
is an atomic action set for 1 ≤ i ≤ k. It means that conf(r) ≥ λ2 and sup(r) ≥ λ1. Let
ri(t) = [[t− ti] ⇒ s? ti] for any atomic action set ti in t. Clearly, sup(ri(t)) = sup(r)
and conf(ri(t)) ≤ conf(r).

Now, we show how to construct representative association action rule from which r
can be generated. First, we follow Procedure I:



(1) Find ti in t such that conf(ri(t)) ≥ λ2,
(2) If succeeded, then t := [t− ti], s := s ? ti,
go back to (1). Otherwise procedure stops.

Procedure II will extend the decision part of the rule generated by Procedure I.
Assume that [t ⇒ s] is that rule and T = {t1, t2, ..., tm} is a set of all atomic action
terms not listed in s. Procedure II:

(1) Find ti in T such that sup(t ⇒ s ? ti) ≥ λ1,
(2) If succeeded, then s := s ? ti, T := T − {ti},
go back to (1). Otherwise procedure stops.

Now, the resulting association action rule is a representative rule from which the
initial rule r can be generated.

8 Simple Association Action Rules

In this section we recall the notion of a simple association action rule [14], the cost of
association action rule, and give a strategy to construct simple association action rules
of lowest cost.

Let (a, a1 → a2) be an atomic action set. We assume that the cost of changing
attribute a from a1 to a2 is denoted by costS((a, a1 → a2)) [19]. For simplicity reason,
the subscript S will be omitted if this does not lead to a confusion. Let t1 = (a, a1 →
a2), t2 = (b, b1 → b2) be two atomic action sets. We say that t1, t2 are positively
correlated if change t1 supports change t2 and change t2 supports change t1. Saying
another words, change t1 implies change t2 and change t2 implies change t1.

Now, assume that action set t is constructed from atomic action sets T = {t1, t2, ..., tm}.
We introduce a binary relation ' on T defined as: ti ' tj iff ti and tj are positively
correlated.

Relation ' is an equivalence relation and it partitions T into m equivalence classes
(T = T1 ∪ T2 ∪ ... ∪ Tm), for some m. Now, in each equivalence class Ti, an atomic
action set a(Ti) of the lowest cost is identified. The cost of t is defined as: cost(t) =∑{cost(a(Ti)) : 1 ≤ i ≤ m}.

Now, assume that r = [t1 ⇒ t] is an association action rule. We say that r is simple
if cost(t1 ? t) = cost(t1) and there are no atomic action sets in t1 which are positively
correlated. The cost of r is defined as cost(t1).

We assume that user gives three threshold values, λ1 - minimum support, λ2 - min-
imum confidence, λ3 - maximum cost. Let t be a frequent action set in S and t1 is its
subset. Any association action rule r ∈ AARS(λ1, λ2) is called association action rule
of acceptable cost if cost(r) ≤ λ3. Similarly, frequent action set t is called a frequent
action set of acceptable cost if cost(t) ≤ λ3.

Now, in order to construct simple association action rules of a lowest cost, we built
frequent action sets of acceptable cost following the strategy presented in Section 6
enhanced by additional constraint which requires to verify the cost of frequent action



sets being produced. Any frequent action set which cost is higher than λ3, is removed.
Now, if t is a frequent action set of acceptable cost and {a(Ti) : i ≤ m} is a collection
of atomic action sets constructed by following the strategy presented in this section,
then Π{a(Ti) : i ≤ m} ⇒ [t− {a(Ti) : i ≤ m}] is a simple association action rule of
acceptable cost assuming that its confidence is not greater than λ2. By Π{a(Ti) : i ≤
m} we mean a(T1) ? a(T2) ? ... ? a(Tm).

9 Application Domain and Experiment

Music Information Retrieval (MIR) is chosen as the application area for our research.
In [15], authors present the system MIRAI for automatic indexing of music by instru-
ments and emotions. When MIRAI receives a musical waveform, it divides that wave-
form into segments of equal size and then its classifiers identify the most dominating
musical instruments and emotions associated with each segment and finally with the
musical waveform. In [8], [9] authors follow another approach and present a Basic
Score Classification Database (BSCD) which describes associations between different
scales, regions, genres, and jumps. This database is used to automatically index a piece
of music by emotions. In this section, we show how to use action rules extracted from
BSCD assuming that we need to change the emotion either from the retrieved or sub-
mitted piece of music by minimally changing its score. By a score, in MIR area, we
mean a written form of a musical composition.

To introduce the problem, let’s start with Figure 2 showing an example of a score
of a Pentatonic Minor Scale played in the key of C on a piano. As we can see, 8 notes
are played: A], G,A], F,D], G,C and C. The ordered sequence of the same notes
without repetitions [A], C, D], F , G] uniquely represents that score. Now, we explain
the process of computing its numeric representation [2, 3, 2, 2]. The score is played in
the key of A] which becomes the root. Its second note C is 2 tones up from A]. The
third note D] is three tones up from C. The fourth note F is two tones up from D], and
finally G is two tones up from F . This is how the sequence of jumps [2, 3, 2, 2] with
root A] is generated.

Essentially any combination of notes A],C, D], F, G can be played while still re-
maining within the constraints of a C Pentatonic Minor Scale on a piano. This scale is
illustrated in Figure 3. Accordingly one plays the root, plays 3 tones up, then 2 tones
up then 2 tones up, and then 3 tones up (m means mode). The first note, or in musical
terms, the ”Root” is a C note. It means that the remaining four notes are all in the key
of C Pentatonic Minor Scale on a piano. However, from the score itself, we have no
idea about its key or scale. We can only discern the jumps between the notes and the
repeated notes.

To tackle the above problem, authors in [8] built a Basic Score Classification Database
(BSCD) which describes associations between different scales, regions, genres, and
jumps (see Table 4). The attribute Ji means i-th jump. When a music piece is sub-
mitted to QAS associated with BSCD, each note one by one, is drawn into the array
of incoming signals. Assuming that the score is represented by Figure 2, QAS will
generate five optional sequences:



J1 J2 J3 J4 J5 Scale Region Genre Emotion sma

2 2 3 2 Pentatonic Major Western Blues melancholy s

3 2 1 1 2 Blues Major Western Blues depressive s

3 2 2 3 Pentatonic Minor Western Jazz melancholy s

3 2 1 1 3 Blues Minor Western Blues dramatic s

3 1 3 1 3 Augmented Western Jazz feel-good s

2 2 2 2 2 Whole Tone Western Jazz push-pull s

1 2 4 1 Balinese Balinese ethnic neutral s

2 2 3 2 Chinese Chinese ethnic neutral s

2 3 2 3 Egyptian Egyptian ethnic neutral s

1 4 1 4 Iwato Iwato ethnic neutral s

1 4 2 1 Japanese Japanese Asian neutral s

2 1 4 1 Hirajoshi Hirajoshi ethnic neutral s

1 4 2 1 Kumoi Japanese Asian neutral s

2 2 3 2 Mongolian Mongolian ethnic neutral s

1 2 4 3 Pelog Western neutral neutral s

2 2 3 2 Pentatonic Majeur Western neutral happy m

2 3 2 3 Pentatonic 2 Western neutral neutral m

3 2 3 2 Pentatonic 3 Western neutral neutral m

2 3 2 2 Pentatonic 4 Western neutral neutral m

2 2 3 3 Pentatonic Dominant Western neutral neutral m

3 2 2 3 Pentatonic Minor Western neutral sonorous m

1 3 3 2 Altered Pentatonic Western neutral neutral m

3 2 1 1 2 Blues Western Blues depressive m

4 3 Major neutral neutral sonorous a

3 4 Minor neutral neutral sonorous a

4 3 4 Major 7th Major neutral neutral happy a

4 3 3 Major 7th Minor neutral neutral not happy a

3 4 4 Minor 7th Major neutral neutral happy a

3 4 3 Minor 7th Minor neutral neutral not happy a

2 2 3 3 Major 9th neutral neutral happy a

2 1 4 3 Minor 9th neutral neutral not happy a

2 2 1 2 3 Major 11th neutral neutral happy a

2 1 2 2 3 Minor 11th neutral neutral not happy a

4 4 Augmented neutral neutral happy a

3 3 3 Diminished neutral neutral not happy a

Table 4. Basic Score Classification Database



Fig. 2. Example score of a Pentatonic Minor Scale played in the key of C

Fig. 3. Representation of a Pentatonic Minor Scale

[A], C, D], F , G], [G, A], C, D], F ], [F , G, A], C, D]], [D], F , G, A], C], or
[C, D], F , G, A]].

In the first case A] is the root, in the second G is the root, in the third F , in the fourth
D], and in the fifth C is the root. Clearly, at this point, QAS has no idea which note is
the root and the same which sequence out of the 5 is a representative one for the input
sequence of notes A],G, A], F,D], G,C and C. Table 5 gives numeric representation
of these five sequences.

Root J1 J2 J3 J4

A] 2 3 2 2

G 3 2 3 2

F 2 3 2 3

D] 2 2 3 2

C 3 2 2 3

Table 5. Possible Representative Jump Sequences for the Input Sequence

Paper [9] presents a heuristic strategy for identifying which sequence out of these
five sequences is a representative one for the input score. The same, on the basis of
associations between sequences of jumps and emotions which can be extracted from
BSCD, we can identify the emotion which invokes in most of us the above input score.

What about changes to the input score so the scale associated with that score will
change the way user wants. Action rules extracted from BSCD can be used for that
purpose and they guarantee the smallest number of changes needed to achieve the goal.
Example of an action rule extracted from BSCD is given below:

[(J1, 3 → 2) ? (J2, 2 → 3)] ⇒ (Scale, PentatonicMinor → Egyptian).



For instance, this rule can be applied to a music score represented by a sequence of
25 notes (Figure 4). They are
[A], G,A], C, C, D], D, C, C, F, C,A], C, A],G, A, G,G, D],G, C, D],A], C,C].

Fig. 4. Example of a Music Score

The ordered sequence of the same 25 notes without repetitions [A],C, D, D], F, G]
uniquely represents that score. Assume now, that the score is played in the key of G.
So, [3, 2, 2, 1, 2] is its numeric representation.

The classifier trained on Table 4, based on Levenshtein’s distance [9], identified
the sequence [3, 2, 2, 3] as the closest one to [3, 2, 2, 1, 2]. Action rule [(J1, 3 → 2) ?
(J2, 2 → 3)] ⇒ (Scale, PentatonicMinor → Egyptian)], extracted from Table 4,
converts that score to

[A], G,A, C,C, D], D, C, C, F, C,A, C, A],G, A, G,G, D],G, C, D], A, C,C].
Please notice that A] is changing to A only if the note C follows it in the input score.

This example shows how to use action rules to manipulate the music score. Follow-
ing the same approach, we can manipulate music emotions, genre, and region.
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11 Conclusion and Future Work

We presented three different algorithms for discovering action rules from a decision ta-
ble. Rule-based strategies generate less number of action rules than object-based strate-
gies. During the experiment with several data sets, we also noticed that the flexibility of
attributes is not equal. For example, the social conditions are less flexible than the health
conditions in several data sets used in our experiment, and this fact can be described by



assigning weights to changes of values of attributes. Future work should address this
issue jointly with a cost associated with such changes.
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