
   

 
 

Intelligent Query Answering  
 
 
 

Zbigniew W. Ras* 
Department of Computer Science  

University of North Carolina 
9201 University City Blvd. 
Charlotte, NC 28223, USA  

voice: +1 704-687-4567 
fax: +1 704-687-3516 
email: ras@uncc.edu 

 
 
 

Agnieszka Dardzinska  
Department of Mathematics 

Bialystok Technical University 
Wiejska 45a 

15-351 Bialystok, Poland 
voice: +48 85-746-9070 

email: adardzin@uncc.edu 
 
 
 

(*Corresponding author) 



   

Intelligent Query Answering  
 

Zbigniew W. Ras, University of North Carolina Charlotte, USA 

Agnieszka Dardzinska, Bialystok Technical University, Poland 

 

INTRODUCTION 

One way to make Query Answering System (QAS) intelligent is to assume a hierarchical 

structure of its attributes. Such systems have been investigated by (Cuppens & Demolombe, 

1988), (Gal & Minker, 1988), (Gaasterland et al., 1992) and they are called cooperative. Any 

attribute value listed in a query, submitted to cooperative QAS, is seen as a node of the tree 

representing that attribute.  If QAS retrieves empty set of objects which match query q in a target 

information system S, then any attribute value listed in q can be generalized and the same the 

number of objects which possibly can match q in S can increase. In cooperative systems, these 

generalizations are usually controlled by users. 

Another way to make QAS intelligent is to use knowledge discovery methods to increase 

the number of queries which QAS can answer: knowledge discovery module of QAS extracts 

rules from a local system S and requests their extraction from remote sites (if system is 

distributed). These rules are uses to construct new attributes and/or impute null or hidden values 

of attributes in S. By enlarging the set of attributes from which queries are built and by making 

information systems less incomplete, we not only increase the number of queries which QAS can 

handle but also increase the number of retrieved objects. 

So, QAS based on knowledge discovery has two classical scenarios which need to be 

considered:   



   

•  In a standalone and incomplete system, association rules are extracted from that system 

and used to predict what values should replace null values before queries are answered.    

• When system is distributed with autonomous sites and user needs to retrieve objects, 

from one of these sites (called client), satisfying query q based on attributes which are not 

local for that site, we search for definitions of these non-local attributes at remote sites 

and use them to approximate q (Ras, 2002), (Ras & Joshi, 1997), (Ras & Dardzinska, 

2004).  

The goal of this article is to provide foundations and basic results for knowledge-

discovery based QAS. 

BACKGROUND 

Modern query answering systems area of research is related to enhancements of query-

answering systems into intelligent systems. The emphasis is on problems in users posing queries 

and systems producing answers. This becomes more and more relevant as the amount of 

information available from local or distributed information sources increases. We need systems 

not only easy to use but also intelligent in answering the users' needs. A query-answering system 

often replaces human with expertise in the domain of interest, thus it is important, from the user's 

point of view, to compare the system and the human expert as alternative means for accessing 

information.  

Knowledge systems are defined as information systems coupled with a knowledge base 

simplified in (Ras 2002), (Ras &Joshi, 1997), (Ras & Dardzinska, 1997) to a set of rules treated 

as definitions of attribute values. If information system is distributed with autonomous sites, 

these rules can be extracted either from the information system which is seen as local (query was 

submitted to that system) or from remote sites. Domains of attributes in the local information 



   

system S and the set of decision values used in rules from the knowledge base associated with S 

form the initial alphabet for the local query answering system. When the knowledge base 

associated with S is updated (new rules are added or some deleted), the alphabet for the local 

query answering system is automatically changed. In this paper we assume that knowledge bases 

for all sites are initially empty. Collaborative information system (Ras, 2002) learns rules 

describing values of incomplete attributes and attributes classified as foreign for its site called a 

client. These rules can be extracted at any site but their condition part should use, if possible, 

only terms which can be processed by the query answering system associated with the client. 

When the time progresses more and more rules can be added to the local knowledge base which 

means that some attribute values (decision parts of rules) foreign for the client are also added to 

its local alphabet. The choice of which site should be contacted first, in search for definitions of 

foreign attribute values, is mainly based on the number of attribute values common for the client 

and server sites. The solution to this problem is given in (Ras, 2002). 

MAIN THRUST  

The technology dimension will be explored to help clarify the meaning of intelligent 

query answering based on knowledge discovery and chase.  

 

Intelligent Query Answering for Standalone Information System  

QAS for an information system is concerned with identifying all objects in the system 

satisfying a given description. For example an information system might contain information 

about students in a class and classify them using four attributes of “hair color”, “eye color”, 

“gender” and “size”. A simple query might be to find all students with brown hair and blue eyes. 

When information system is incomplete, students having brown hair and unknown eye color can 



   

be handled by either including or excluding them from the answer to the query. In the first case 

we talk about optimistic approach to query evaluation while in the second case we talk about 

pessimistic approach. Another option to handle such a query would be to discover rules for eye 

color in terms of the attributes hair color, gender, and size. These rules could then be applied to 

students with unknown eye color to generate values that could be used in answering the query. 

Consider that in our example one of the generated rules said:  

(hair, brown) ∧ (size, medium) → (eye,brown). 

Thus, if one of the students having brown hair and medium size has no value for eye 

color, then the query answering system should not include this student in the list of students with 

brown hair and blue eyes. Attributes hair color and size are classification attributes and eye color 

is the decision attribute. 

We are also interested in how to use this strategy to build intelligent QAS for incomplete 

information systems. If query is submitted to information system S, the first step of QAS is to 

make S as complete as possible. The approach proposed in (Dardzinska & Ras, 2003b) is to use 

not only functional dependencies to chase S (Atzeni & DeAntonellis, 1992) but also use rules 

discovered from a complete subsystem of S to do the chasing.  

In the first step, intelligent QAS identifies all incomplete attributes used in a query. An 

attribute is incomplete in S if there is an object in S with incomplete information on this attribute. 

The values of all incomplete attributes are treated as concepts to be learned (in a form of rules) 

from S. 

Incomplete information in S is replaced by new data provided by Chase algorithm based 

on these rules. When the process of removing incomplete vales in the local information system is 

completed, QAS finds the answer to query in a usual way.  

 



   

Intelligent Query Answering for Distributed Autonomous Information Systems 

Semantic inconsistencies are due to different interpretations of attributes and their values 

among sites (for instance one site can interpret the concept “young” differently than other sites). 

Different interpretations are also due to the way each site is handling null values. Null value 

replacement by values suggested either by statistical or knowledge discovery methods is quite 

common before user query is processed by QAS.  

Ontology (Guarino, 1998), (Sowa, 1999, 2000), (Van Heijst et al., 1997) is a set of terms 

of a particular information domain and the relationships among them. Currently, there is a great 

deal of interest in the development of ontologies to facilitate knowledge sharing among 

information systems.  

Ontologies and inter-ontology relationships between them are created by experts in 

corresponding domain, but they can also represent a particular point of view of the global 

information system by describing customized domains. To allow intelligent query processing, it 

is often assumed that an information system is coupled with some ontology. Inter-ontology 

relationships can be seen as semantical bridges between ontologies built for each of the 

autonomous information systems so they can collaborate and understand each other.  

In (Ras and Dardzinska, 2004), the notion of optimal rough semantics and the method of 

its construction have been proposed. Rough semantics can be used to model semantic 

inconsistencies among sites due to different interpretations of incomplete values of attributes. 

Distributed chase (Ras and Dardzinska, 2004) is a chase-type algorithm, driven by a client site of 

a distributed information system DIS, which is similar to chase algorithms based on knowledge 

discovery and presented in (Dardzinska and Ras, 2003a, 2003b). Distributed chase has one extra 



   

feature in comparison to other chase-type algorithms: the dynamic creation of knowledge bases 

at all sites of DIS involved in the process of solving a query submitted to the client site of DIS.  

The knowledge base at the client site may contain rules extracted from the client 

information system and also rules extracted from information systems at remote sites in DIS. 

These rules are dynamically updated through the incomplete values replacement process (Ras 

and Dardzinska, 2004).  

Although the names of attributes are often the same among sites, their semantics and 

granularity levels may differ from site to site. As the result of these differences, the knowledge 

bases at the client site and at remote sites have to satisfy certain properties in order to be 

applicable in a distributed chase. 

So, assume that system S = (X,A,V), which is a part of DIS, is queried be user.  

Chase algorithm, to be applicable to S, has to be based on rules from the knowledge base 

D associated with S which satisfies the following conditions: 

1)  Attribute value used in decision part of a rule from D has the granularity level either 

equal to or finer than the granularity level of the corresponding attribute in S. 

2) The granularity level of any attribute used in the classification part of a rule from D is 

either equal or softer than the granularity level of the corresponding attribute in S. 

3) Attribute used in the decision part of a rule from D either does not belong to A or is 

incomplete in S. 

Assume again that  S=(X,A,V)  is an information system (Pawlak, 1991),  (Ras and 

Dardzinska, 2004), where X is a set of objects, A is a set of attributes (seen as partial functions 

from X into 2(V×[0,1]) and, V is a set of  values of attributes from A. By [0,1] we mean the set of 

real numbers from 0 to 1. Let L(D)={[t → vc] ∈ D: c ∈ In(A)} be a set of all rules (called a 



   

knowledge-base) extracted initially from the information system S by ERID (Dardzinska and 

Ras, 2003c), where In(A) is a set of incomplete attributes in S.  

Assume now that query q(B) is submitted to system S=(X,A,V), where B is the set of all 

attributes used in q(B) and that A ∩B ≠ ∅. All attributes in B - [A ∩ B] are called foreign for S. 

If  S is a part of a distributed information system, definitions of foreign attributes for S can be 

extracted at its remote sites (Ras, 2002). Clearly, all semantic inconsistencies and differences in 

granularity of attribute values among sites have to be resolved first. In (Ras and Dardzinska, 

2004) only different granularity of attribute values and different semantics related to different 

interpretations of incomplete attribute values among sites have been considered.  

In (Ras, 2002), it was shown that query q(B) can be processed at site S by discovering 

definitions of values of attributes from B - [A ∩B] at the remote sites for S and next use them to 

answer q(B). 

Foreign attributes for S in B, can be also seen as attributes entirely incomplete in S, 

which means values (either exact or partially incomplete) of such attributes should be ascribed 

by chase to all objects in S before query q(B) is answered. The question remains, if values 

discovered by chase are really correct? 

Classical approach, to this kind of problems, is to build a simple DIS environment 

(mainly to avoid difficulties related to different granularity and different semantics of attributes 

at different sites). As the testing data set (Ras & Dardzinska, 2004a) have taken 10,000 tuples 

randomly selected from a database of some insurance company. This sample table, containing 

100 attributes, was randomly partitioned into four subtables of equal size containing 2,500 tuples 

each. Next, from each of these subtables 40 attributes (columns) have been randomly removed 

leaving four data tables of the size 2,500×60 each. One of these tables was called a client and the 



   

remaining 3 have been called servers. Now, for all objects at the client site, values of one of the 

attributes, which was chosen randomly, have been hidden. This attribute is denoted by d. At each 

server site, if attribute d was listed in its domain schema, descriptions of d using See5 software 

(data are complete so it was not necessary to use ERID) have been learned. All these 

descriptions, in the form of rules, have been stored in the knowledge base of the client. 

Distributed Chase was applied to predict what is the real value of the hidden attribute for each 

object x at the client site. The threshold value λ = 0.125 was used to rule out all values predicted 

by distributed Chase with confidence below that threshold. Almost all hidden values (2476 out of 

2500) have been discovered correctly (assuming λ = 0.125).  

 

Distributed Chase and Security Problem of Hidden Attributes 

Assume now that an information system S=(X,A,V) is a part of DIS and attribute b∈A 

has to be hidden. For that purpose, we construct  Sb=(X,A,V) to replace S, where: 

1)  aS(x) = aSb(x), for any  a ∈ A-{b}, x ∈ X, 

2)  bSb(x) is undefined, for any x ∈ X,  

3)  bS(x) ∈ Vb. 

Users are allowed to submit queries to Sb and not to S. What about the information 

system Chase(Sb)?  How it differs from S? 

If  bS(x) = bChase(Sb)(x), where x ∈ X, then values of additional attributes for object x have 

to be hidden in Sb to guarantee that value bS(x) can not be reconstructed by Chase. In (Ras & 

Dardzinska, 2004a) it was shown how to identify the minimal number of such values. 

 
 

FUTURE TRENDS 



   

One of the main problems related to semantics of an incomplete information system S is 

the freedom how new values are constructed to replace incomplete values in S, before any rule 

extraction process begins. This replacement of incomplete attribute values in some of the slots in 

S can be done either by chase or/and by a number of available statistical methods (Giudici, 

2003). This implies that semantics of queries submitted to S and driven (defined) by query 

answering system QAS based on chase may often differ. Although rough semantics can be used 

by QAS to handle this problem, we still have to look for new alternate methods.  

Assuming different semantics of attributes among sites in DIS, the use of global ontology 

or local ontologies built jointly with inter-ontology relationships among them seems to be 

necessary for solving queries in DIS using knowledge discovery and chase. Still a lot of research 

has to be done in this area.  

 

CONCLUSION  

Assume that the client site in DIS is represented by partially incomplete information 

system S. When a query is submitted to S, its query answering system QAS will replace S by 

Chase(S) and next will solve the query using, for instance, the strategy proposed in (Ras and & 

Joshi, 1997). Rules used by Chase can be extracted from S or from its remote sites in DIS 

assuming that all differences in semantics of attributes and differences in granularity levels of 

attributes are resolved first. We can argue here why the resulting information system obtained by 

Chase can not be stored aside and reused when a new query is submitted to S?  If system S is not 

frequently updated, we can do that by keeping a copy of Chase(S) and next reusing that copy 

when a new query is submitted to S. But, the original information system S still has to be kept so 

when user wants to enter new data to S, they can be stored in the original system. System 



   

Chase(S), if stored aside, can not be reused by QAS when the number of updates in the original S 

exceeds a given threshold value. It means that the new updated information system S has to be 

chased again before any query is answered by QAS. 
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TERMS AND THEIR DEFINITION 

Autonomous information system: Information system existing as an independent entity. 

Chase: Kind of a recursive strategy applied to a database V, based on functional dependencies or 

rules extracted from V, by which a null value or an incomplete value in V is replaced by a new 

more complete value. 

Distributed chase: Kind of a recursive strategy applied to a database V, based on functional 

dependencies or rules extracted both from V and other autonomous databases, by which a null 

value or an incomplete value in V is replaced by a new more complete value. Any differences in 

semantics among attributes in the involved databases have to be resolved first. 

Intelligent query answering: Enhancements of query-answering systems into sort of intelligent 

systems (capable or being adapted or molded). Such systems should be able to interpret 

incorrectly posed questions and compose an answer not necessarily reflecting precisely what is 

directly referred to by the question, but rather reflecting what the intermediary understands to be 

the intention linked with the question. 

Knowledge base: A collection of rules defined as expressions written in predicate calculus. 

These rules have a form of associations between conjuncts of values of attributes. 

Ontology: An explicit formal specification of how to represent objects, concepts and other 

entities that are assumed to exist in some area of interest and relationships holding among them. 

Systems that share the same ontology are able to communicate about domain of discourse 

without necessarily operating on a globally shared theory.  System commits to ontology if its 

observable actions are consistent with the definitions in the ontology. 



   

Query semantics: The meaning of a query with an information system as its domain of 

interpretation. Application of knowledge discovery and Chase in query evaluation makes 

semantics operational.   

Semantics: The meaning of expressions written in some language, as opposed to their syntax 

which describes how symbols may be combined independently of their meaning. 

  


