OPTION 1: Implement the verification method (called RS-method), described below, of whether a given formula in the propositional calculus is a tautology.

Assume that L_0 is a language of order zero (propositional calculus). Letter S (with indices) will denote finite sequences $(\alpha_1, \alpha_2, \ldots, \alpha_m)$ of formulas in L_0.

If $S_1 = (\alpha_1, \alpha_2, \ldots, \alpha_m)$ and $S_2 = (\beta_1, \beta_2, \ldots, \beta_n)$ and α, β are any formulas then S_1, α, S_2 and S_1, α, β, S_2 denote sequences $(\alpha_1, \alpha_2, \ldots, \alpha_m, \alpha, \beta_1, \beta_2, \ldots, \beta_n)$ and $(\alpha_1, \alpha_2, \ldots, \alpha_m, \alpha, \beta, \beta_1, \beta_2, \ldots, \beta_n)$.

A formula in L_0 is indecomposable if it is either a propositional variable or negation of propositional variable.

A sequence is indecomposable provided it is formed only of indecomposable formulas

A sequence is fundamental if it simultaneously contains a formula α and its negation $\neg \alpha$.

We consider two types of schemas: S_1/S_2 and $S_1/(S_2; S_3)$. S_1 is called is a premise and S_2, S_3 conclusions. If a schema is of the form $S_1/(S_2; S_3)$, then S_2 is left conclusion and S_3 right conclusion. The following 7 schemas are considered:

$$[S_1,(\alpha \lor \beta),S_2]/[S_1,\alpha,\beta,S_2] \quad [S_1,(\alpha \land \beta),S_2]/[S_1,\alpha,S_2; S_1,\beta,S_2]$$

$$[S_1,\neg(\alpha \lor \beta),S_2]/[S_1,\neg \alpha,\neg \beta ,S_2] \quad [S_1,\neg(\alpha \land \beta),S_2]/[S_1,\neg \alpha,S_2; S_1,\neg \beta,S_2]$$

$$[S_1,(\alpha \rightarrow \beta),S_2]/[S_1,\neg \alpha,\beta,S_2] \quad [S_1,\neg(\alpha \rightarrow \beta),S_2]/[S_1,\alpha,S_2; S_1,\neg \beta,S_2]$$

$$[S_1,\neg \neg \alpha,S_2]/ [S_1,\alpha,S_2],$$

where S_1 is indecomposable in all schemas.

Let’s denote by $D(\alpha)$ the diagram (tree) built for α using the above seven schemas.

FACT: Formula α is a propositional tautology if and only if all end sequences in the diagram $D(\alpha)$ (leaves in $D(\alpha)$) are fundamental.

System Input: propositional formula; System output: yes/no

OPTION 2: Write a program which solves N queens puzzle ($8 < N < 13$).

Input: N; Output: $N \times N$ Boolean array with 1’s showing final position of queens.

Your program should use heuristics minimizing the search space.