First-order logic

We saw how propositional logic can create intelligent behavior

But propositional logic is a poor representation for complex environments

First-order logic is a more expressive and powerful representation
Diagnostic Rules

Rules leading from observed effects to hidden causes

- After you’ve observed something, this rule offers an explanation
- These rules explain what happened in the past
 - Breezy implies pits
 \[\forall s \ Breezy(s) \Rightarrow \exists r \ Adjacent(r, s) \land Pit(r) \]
 - Not breezy implies no pits
 \[\forall s \ \neg Breezy(s) \Rightarrow \neg \exists r \ Adjacent(r, s) \land Pit(r) \]
 - Combining
 \[\forall s \ Breezy(s) \iff \exists r \ Adjacent(r, s) \land Pit(r) \]
Causal Rules

Some hidden property causes percepts to be generated

- These are predictions of perceptions you expect to have in the future given current conditions
 - A pit causes adjacent squares to be breezy
 \[
 \forall r \text{ Pit}(r) \Rightarrow [\forall s \text{ Adjacent}(r, s) \Rightarrow \text{Breezy}(s)]
 \]
 - If all squares adjacent to a square are pitless, it will not be breezy
 \[
 \forall s [\forall r \text{ Adjacent}(r, s) \Rightarrow \neg \text{Pit}(r)] \Rightarrow \neg \text{Breezy}(s)
 \]
Causal Rules

The causal rules formulate a model

- Knowledge of how the environment operates
- Model can be very useful and important and replace straightforward diagnostic approaches
Conclusion

If the axioms correctly and completely describe the way the world works and the way percepts are produced,
then any complete logical inference procedure will infer *the strongest possible description of the world state given the available percepts*

The agent designer can focus on getting the knowledge right without worrying about the processes of deduction
Discussion of models

Let’s think about how we use models every day

• Daily stock prices
• Seasonal stock prices
• Seasonal temperatures
• Annual temperatures
Knowledge Engineering

- Understand a particular domain
 - How does stock trading work
- Learn what concepts are important in the domain (features)
 - Buyer confidence, strength of the dollar, company earnings, interest rate
- Create a formal representation of the objects and relations in the domain
 - Forall stocks (price = low ^ confidence = high) => profitability = high
Assemble the relevant knowledge

• You know what information is relevant

• How can you accumulate the information?
 – Not formal description of knowledge at this point
 – Just principled understanding of where information resides
Formalize the knowledge

Decide on vocabulary of predicates, functions, and constants

- Beginning to map domain into a programmatic structure
- You’re selecting an ontology
 - A particular theory of how the domain can be simplified and represented at its basic elements
 - Mistakes here cause big problems
Encode general knowledge

- Write down axioms for all vocabulary terms
 - Define the meaning of terms

- Errors will be discovered and knowledge assembly and formalization steps repeated
Map to this particular instance

Encode a description of the specific problem instance

- Should be an easy step
- Write simple atomic sentences
 - Derived from sensors/percepts
 - Derived from external data
Use the knowledge base

Pose queries and get answers

- Use inference procedure
- Derive new facts
Debug the knowledge base

There will most likely be bugs

• If inference engine works bugs will be in knowledge base
 – Missing axioms
 – Axioms that are too weak
 – Conflicting axioms
Enough talk, let’s get to the meat

Chapter 9

Inference in First-Order Logic

• We want to use inference to answer any answerable question stated in first-order logic
Propositional Inference

We already know how to perform inference in propositional logic

- Transform first-order logic to propositional logic
- First-order logic makes powerful use of variables
 - Universal quantification (for all x)
 - Existential quantification (there exists an x)
Converting universal quantifiers

Universal Instantiation

Example:

$$\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$$

after substitution \{x/John\}, \{x/Richard\}, \{x/Father(John)\} becomes

$$King(John) \land Greedy(John) \Rightarrow Evil(John).$$

$$King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard).$$

$$King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John))$$

:.

We’ve replaced the variable with all possible ground terms (terms without variables)
Converting existential quantifiers

Existential Instantiation

Example:

\[\exists x \ Crown(x) \land OnHead(x, John) \]

- There is some thing that is a crown and is on John’s head…
- Let’s call it \(C_1 \)

becomes:

\[Crown(C_1) \land OnHead(C_1, John) \]

You can replace the variable with a constant symbol that does not appear elsewhere in the knowledge base

The constant symbol is a **Skolem constant**
Existential Instantiation

Only perform substitution once

- There exists an x s.t. $\text{Kill} (x, \text{Victim})$
 - Someone killed the victim
 - Maybe more than once person killed the victim
 - Existential quantifier says at least one person was killer

- Replacement is
 - $\text{Kill} (\text{Murderer}, \text{Victim})$
Complete reduction

- Convert existentially quantified sentences
 - Creates one instantiation
- Convert universally quantified sentences
 - Creates all possible instantiations
- Use propositional logic to resolve

Every first-order knowledge base and query can be propositionalized in such a way that entailment is preserved
Trouble ahead!

Universal quantification with functions:

\[King(John) \land Greedy(John) \Rightarrow Evil(John) . \]
\[King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard) . \]
\[King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John)) . \]

What about \((Father(Father(Father(John))))\)?

- Isn’t it possible to have infinite number of substitutions?
- How well will the propositional algorithms work with infinite number of sentences?
A theorem of completeness

if

- a sentence is entailed by the original, first-order knowledge base

then

- there is a proof involving just a finite subset of the propositional knowledge base

We want to find that finite subset

- First try proving the sentence with constant symbols
- Then add all terms of depth 1: Father (Richard)
- Then add all terms of depth 2: Father (Father (Richard))
- ...
Completeness says that if statement is true in first-order logic, it will also be true in propositions

- But what happens if you've been waiting for your proposition-based algorithm to return an answer and it has been a while?
 - Is the statement not true?
 - Is the statement just requiring lots of substitutions?

You don't know!
The Halting Problem

Alan Turing and Alonzo Church proved

- You can write an algorithm that says yes to every entailed sentence but
- No algorithm exists that says no to every non-entailed sentence

So if your entailment-checking algorithm hasn’t returned “yes” yet, you cannot know if that’s because the sentence is not entailed.

Entailment for first-order logic is semi-decidable
Adapting Modus Ponens

Did you notice how inefficient previous method was?

- Instantiate universal quantifiers by performing lots of substitutions until (hopefully quickly) a proof was found.
- Why bother substituting Richard for x when you and I know it won’t lead to a proof?
- Clearly, John is the right substitution for x.

\[\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x) \]
\[\text{King(John)} \]
\[\text{Greedy(John)} \]
\[\text{Brother(Richard, John)} . \]
Modus Ponens for propositional logic

\[\alpha \implies \beta, \quad \alpha \quad \therefore \beta \]
Generalized Modus Ponens

- For atomic sentences p_i, p_i', θ where there is a substitution θ such that $\text{Subst}(q, p_i') = \text{Subst}(q, p_i)$:

\[
\begin{align*}
p_1', \ p_2', \ \ldots, \ p_n', & \quad (p_1 \land p_2 \land \ldots \land p_n \Rightarrow q) \\
\text{SUBST}(\theta, q)
\end{align*}
\]

\[
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x) \\
\forall \ y \ Greedy(y) \\
\text{Brother(Richard, John)}.
\]

p_1' is King(John) \\
p_2' is Greedy(y) \\
θ is $\{x/\text{John}, y/\text{John}\}$ \\
$\text{SUBST}(\theta, q)$ is Evil(John).

p_1 is King(x) \\
p_2 is Greedy(x) \\
q is Evil(x).
Generalized Modus Ponens

This is a lifted version

- It raises Modus Ponens to first-order logic
- We want to find lifted versions of forward chaining, backward chaining, and resolution algorithms
 - Lifted versions make only those substitutions that are required to allow particular inferences to proceed
Unification

Generalized Modus Ponens requires finding good substitutions

- Logical expressions must look identical
- Other lifted inference rules require this as well

Unification is the process of finding substitutions
Unification

Unify takes two sentences and returns a unifier if one exists

\[\text{UNIFY}(p, q) = \theta \text{ where } \text{SUBST}(\theta, p) = \text{SUBST}(\theta, q) \]

Examples to answer the query, Knows (John, x):

- Whom does John know?

\[
\begin{align*}
\text{UNIFY}(\text{Knows}(\text{John}, x), \text{Knows}(\text{John}, \text{Jane})) &= \{x/\text{Jane}\} \\
\text{UNIFY}(\text{Knows}(\text{John}, x), \text{Knows}(y, \text{Bill})) &= \{x/\text{Bill}, y/\text{John}\} \\
\text{UNIFY}(\text{Knows}(\text{John}, x), \text{Knows}(y, \text{Mother}(y))) &= \{y/\text{John}, x/\text{Mother}(\text{John})\} \\
\text{UNIFY}(\text{Knows}(\text{John}, x), \text{Knows}(x, \text{Elizabeth})) &= \text{fail}.
\end{align*}
\]
Unification

Consider the last sentence:

\[
\text{UNIFY}(\text{Knows}(\text{John}, x), \text{Knows}(x, \text{Elizabeth})) = \text{fail}
\]

- This fails because \(x \) cannot take on two values
- But “Everyone knows Elizabeth” and it should not fail
- Must standardize apart one of the two sentences to eliminate reuse of variable

\[
\text{UNIFY}(\text{Knows}(\text{John}, x), \text{Knows}(z_{17}, \text{Elizabeth})) = \{ x / \text{Elizabeth}, z_{17} / \text{John} \}
\]
Unification

Multiple unifiers are possible:

\[\text{UNIFY}(\text{Knows}(\text{John}, x), \text{Knows}(y, z)) \]

\{y/\text{John}, x/z\} \quad \text{or} \quad \{y/\text{John}, x/\text{John}, z/\text{John}\}

Which is better, Knows (John, z) or Knows (John, John)?

- Second could be obtained from first with extra subs
- First unifier is more general than second because it places fewer restrictions on the values of the variables

There is a single most general unifier for every unifiable pair of expressions
Predicate Indexing

Index the facts in the KB

- Example: unify Knows (John, x) with Brother (Richard, John)
- Predicate indexing puts all the *Knows* facts in one bucket and all the *Brother* facts in another
 - Might not be a win if there are lots of clauses for a particular predicate symbol
 - Consider how many people *Know* one another
 - Instead index by predicate and first argument
 - Clauses may be stored in multiple buckets
Subsumption Lattice

Employs(AIMA.org, Richard) Does AIMA.org employ Richard?
Employs(x, Richard) Who employs Richard?
Employs(AIMA.org, y) Whom does AIMA.org employ?
Employs(x, y) Who employs whom?

Figure 9.2 (a) The subsumption lattice whose lowest node is the sentence Employs(AIMA.org, Richard). (b) The subsumption lattice for the sentence Employs(John, John).
Subsumption lattice

- Each node reflects making one substitution
- The “highest” common descendent of any two nodes is the result of applying the most general unifier
- Predicate with n arguments will create a lattice with $O(2^n)$ nodes
- Benefits of indexing may be outweighed by cost of storing and maintaining indices