Dijkstra’s Algorithm [shortest path]

Example
An example of an A* algorithm in action where nodes are cities connected with roads and h(x) is the straight-line distance to target point:

A* - Algorithm

\[f(n) = g(n) + h(n) \] /expand node with minimum f(n)/

\[g(n) = \text{cost to get to } n \text{ from the root} \]
\[h(n) = \text{cost to get to goal from } n \text{ (optimistic function)} \]

\[f(n) \text{ never overestimates cost of a solution through } n \text{ /it is admissible/} \]
\[h(n) \leq c(n, a, n') + h(n') \text{ is monotonic /f(n) is not decreasing along any path/} \]

Remark: A* is simplified to Dijkstra’s algorithm if h(n)=0
f(n) – admissible & monotonic -> consistent

![Diagram showing the admissibility and monotonicity of f(n)]

Example (8-puzzle problem)

<table>
<thead>
<tr>
<th>Initial State</th>
<th>Goal State</th>
<th>Hamming</th>
<th>Manhattan</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 1 3</td>
<td>1 2 3 4 5 6 7 8</td>
<td>5 + 0</td>
<td>10 + 0</td>
</tr>
<tr>
<td>4 2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 6 5</td>
<td>1 1 0 0 1 1 0 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option I (Hamming Distance)

\[c(x) = f(x) + h(x) \]

- \(f(x) \) is the length of the path from root to \(x \) (the number of moves so far) and
- \(h(x) \) is the number of non-blank tiles not in their goal position (the number of mis-placed tiles). There are at least \(h(x) \) moves to transform state \(x \) to a goal state

Option II (Manhattan Distance – better approximation)
The sum of the Manhattan distances (sum of the vertical and horizontal distance) from the blocks to their goal positions.

Option I & Option II – both admissible (do not overestimate the cost)

Some 8-puzzles are not solvable

![8-puzzles](image)

Interesting property

For every digit count the number of smaller digits which follow that digit.

![Board counting](image)

Fact: If this number is odd, then the puzzle is solvable with goal state given below.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Game 2: [Cannibals & Missionaries](#)
f(n)=g(n) + h(n) ; 2 traveling from right to left and 1 traveling from left to right

h(n) = 2 * (m(R) + c(R)), where

m(R) - number of missionaries on the right site of the river

c(R) – number of cannibals on the right site of the river

f(n) – admissible (can we find better approximation?)

New Problem: Farmer went to a market and purchased a fox, a goose, and a bag of beans. On his way home, he came to the bank of a river and rented a boat. But crossing the river by boat, the farmer could carry only himself and a single one of his purchases: the fox, the goose, or the bag of beans. If left unattended together, the fox would eat the goose, or the goose would eat the beans.
Eight Puzzle

A, \(h(A) = 10 \)
B, \(h(B) = 11 \)
C, \(h(C) = 9 \)
D, \(h(D) = 9 \)
E, \(h(E) = 11 \)

\[f(n) = g(n) + h(n) \]

Goal State

H – Manhattan Distance